def dot23(A,B, keepdims = False): """ Dot product of a 2-d ndarray with a (N x K x L) 3-d ndarray using einsum(). Args: :A: | ndarray (.shape = (M,N)) :B: | ndarray (.shape = (N,K,L)) Returns: :returns: | ndarray (.shape = (M,K,L)) """ if (len(A.shape)==2) & (len(B.shape)==3): dotAB = np.einsum('ij,jkl->ikl',A,B) if (len(B.shape)==3) & (keepdims == True): dotAB = np.expand_dims(dotAB,axis=1) elif (len(A.shape)==2) & (len(B.shape)==2): dotAB = np.einsum('ij,jk->ik',A,B) if (len(B.shape)==2) & (keepdims == True): dotAB = np.expand_dims(dotAB,axis=1) return dotAB
def _massage_input_and_init_output(data, dataw, inputtype='xyz', direction='forward', n_out=3): """ Redimension input data to ensure most they have the appropriate sizes for easy and efficient looping. | | 1. Convert data and dataw to atleast_2d ndarrays | 2. Make axis 1 of dataw have 'same' dimensions as data | 3. Make dataw have same lights source axis size as data | 4. Flip light source axis to axis=0 for efficient looping | 5. Initialize output array camout to 'same' shape as data but with camout.shape[-1] == n_out Args: :data: | ndarray with input tristimulus values | or spectral data | or input color appearance correlates | Can be of shape: (N [, xM], x 3), whereby: | N refers to samples and M refers to light sources. | Note that for spectral input shape is (N x (M+1) x wl) :dataw: | None or ndarray, optional | Input tristimulus values or spectral data of white point. | None defaults to the use of CIE illuminant C. :inputtype: | 'xyz' or 'spd', optional | Specifies the type of input: | tristimulus values or spectral data for the forward mode. :direction: | 'forward' or 'inverse', optional | -'forward': xyz -> cam | -'inverse': cam -> xyz :n_out: | 3, optional | output size of last dimension of camout | (e.g. n_out=3 for j,a,b output or n_out = 5 for J,M,h,a,b output) Returns: :data: | ndarray with reshaped data :dataw: | ndarray with reshaped dataw :camout: | NaN filled ndarray for output of CAMv (camout.shape[-1] == Nout) :originalshape: | original shape of data Notes: For an example on the use, see code _simple_cam() (type: _simple_cam??) """ # Convert data and dataw to atleast_2d ndarrays: data = np2d(data).copy( ) # stimulus data (can be upto NxMx3 for xyz, or [N x (M+1) x wl] for spd)) dataw = np2d(dataw).copy( ) # white point (can be upto Nx3 for xyz, or [(N+1) x wl] for spd) originalshape = data.shape # to restore output to same shape # Make axis 1 of dataw have 'same' dimensions as data: if (data.ndim == 2): data = np.expand_dims(data, axis=1) # add light source axis 1 # Flip light source dim to axis 0: data = np.transpose(data, axes=(1, 0, 2)) dataw = np.expand_dims( dataw, axis=1) # add extra axis to move light source to axis 0 # Make dataw have same lights source dimension size as data: if inputtype == 'xyz': if dataw.shape[0] == 1: dataw = np.repeat(dataw, data.shape[0], axis=0) if (data.shape[0] == 1) & (dataw.shape[0] > 1): data = np.repeat(data, dataw.shape[0], axis=0) else: dataw = np.array([ np.vstack((dataw[:1, 0, :], dataw[i + 1:i + 2, 0, :])) for i in range(dataw.shape[0] - 1) ]) if (data.shape[0] == 1) & (dataw.shape[0] > 1): data = np.repeat(data, dataw.shape[0], axis=0) # Initialize output array: if n_out is not None: dshape = list((data).shape) dshape[-1] = n_out # requested number of correlates: e.g. j,a,b if (inputtype != 'xyz') & (direction == 'forward'): dshape[-2] = dshape[ -2] - 1 # wavelength row doesn't count & only with forward can the input data be spectral camout = np.zeros(dshape) camout.fill(np.nan) else: camout = None return data, dataw, camout, originalshape
def spd_to_mcri(SPD, D = 0.9, E = None, Yb = 20.0, out = 'Rm', wl = None): """ Calculates the MCRI or Memory Color Rendition Index, Rm Args: :SPD: | ndarray with spectral data (can be multiple SPDs, | first axis are the wavelengths) :D: | 0.9, optional | Degree of adaptation. :E: | None, optional | Illuminance in lux | (used to calculate La = (Yb/100)*(E/pi) to then calculate D | following the 'cat02' model). | If None: the degree is determined by :D: | If (:E: is not None) & (:Yb: is None): :E: is assumed to contain | the adapting field luminance La (cd/m²). :Yb: | 20.0, optional | Luminance factor of background. (used when calculating La from E) | If None, E contains La (cd/m²). :out: | 'Rm' or str, optional | Specifies requested output (e.g. 'Rm,Rmi,cct,duv') :wl: | None, optional | Wavelengths (or [start, end, spacing]) to interpolate the SPDs to. | None: default to no interpolation Returns: :returns: | float or ndarray with MCRI Rm for :out: 'Rm' | Other output is also possible by changing the :out: str value. References: 1. `K.A.G. Smet, W.R. Ryckaert, M.R. Pointer, G. Deconinck, P. Hanselaer,(2012) “A memory colour quality metric for white light sources,” Energy Build., vol. 49, no. C, pp. 216–225. <http://www.sciencedirect.com/science/article/pii/S0378778812000837>`_ """ SPD = np2d(SPD) if wl is not None: SPD = spd(data = SPD, interpolation = _S_INTERP_TYPE, kind = 'np', wl = wl) # unpack metric default values: avg, catf, cieobs, cri_specific_pars, cspace, ref_type, rg_pars, sampleset, scale = [_MCRI_DEFAULTS[x] for x in sorted(_MCRI_DEFAULTS.keys())] similarity_ai = cri_specific_pars['similarity_ai'] Mxyz2lms = cspace['Mxyz2lms'] scale_fcn = scale['fcn'] scale_factor = scale['cfactor'] sampleset = eval(sampleset) # A. calculate xyz: xyzti, xyztw = spd_to_xyz(SPD, cieobs = cieobs['xyz'], rfl = sampleset, out = 2) if 'cct' in out.split(','): cct, duv = xyz_to_cct(xyztw, cieobs = cieobs['cct'], out = 'cct,duv',mode = 'lut') # B. perform chromatic adaptation to adopted whitepoint of ipt color space, i.e. D65: if catf is not None: Dtype_cat, F, Yb_cat, catmode_cat, cattype_cat, mcat_cat, xyzw_cat = [catf[x] for x in sorted(catf.keys())] # calculate degree of adaptationn D: if E is not None: if Yb is not None: La = (Yb/100.0)*(E/np.pi) else: La = E D = cat.get_degree_of_adaptation(Dtype = Dtype_cat, F = F, La = La) else: Dtype_cat = None # direct input of D if (E is None) and (D is None): D = 1.0 # set degree of adaptation to 1 ! if D > 1.0: D = 1.0 if D < 0.6: D = 0.6 # put a limit on the lowest D # apply cat: xyzti = cat.apply(xyzti, cattype = cattype_cat, catmode = catmode_cat, xyzw1 = xyztw,xyzw0 = None, xyzw2 = xyzw_cat, D = D, mcat = [mcat_cat], Dtype = Dtype_cat) xyztw = cat.apply(xyztw, cattype = cattype_cat, catmode = catmode_cat, xyzw1 = xyztw,xyzw0 = None, xyzw2 = xyzw_cat, D = D, mcat = [mcat_cat], Dtype = Dtype_cat) # C. convert xyz to ipt and split: ipt = xyz_to_ipt(xyzti, cieobs = cieobs['xyz'], M = Mxyz2lms) #input matrix as published in Smet et al. 2012, Energy and Buildings I,P,T = asplit(ipt) # D. calculate specific (hue dependent) similarity indicators, Si: if len(xyzti.shape) == 3: ai = np.expand_dims(similarity_ai, axis = 1) else: ai = similarity_ai a1,a2,a3,a4,a5 = asplit(ai) mahalanobis_d2 = (a3*np.power((P - a1),2.0) + a4*np.power((T - a2),2.0) + 2.0*a5*(P-a1)*(T-a2)) if (len(mahalanobis_d2.shape)==3) & (mahalanobis_d2.shape[-1]==1): mahalanobis_d2 = mahalanobis_d2[:,:,0].T Si = np.exp(-0.5*mahalanobis_d2) # E. calculate general similarity indicator, Sa: Sa = avg(Si, axis = 0,keepdims = True) # F. rescale similarity indicators (Si, Sa) with a 0-1 scale to memory color rendition indices (Rmi, Rm) with a 0 - 100 scale: Rmi = scale_fcn(np.log(Si),scale_factor = scale_factor) Rm = np2d(scale_fcn(np.log(Sa),scale_factor = scale_factor)) # G. calculate Rg (polyarea of test / polyarea of memory colours): if 'Rg' in out.split(','): I = I[...,None] #broadcast_shape(I, target_shape = None,expand_2d_to_3d = 0) a1 = a1[:,None]*np.ones(I.shape)#broadcast_shape(a1, target_shape = None,expand_2d_to_3d = 0) a2 = a2[:,None]*np.ones(I.shape) #broadcast_shape(a2, target_shape = None,expand_2d_to_3d = 0) a12 = np.concatenate((a1,a2),axis=2) #broadcast_shape(np.hstack((a1,a2)), target_shape = ipt.shape,expand_2d_to_3d = 0) ipt_mc = np.concatenate((I,a12),axis=2) nhbins, normalize_gamut, normalized_chroma_ref, start_hue = [rg_pars[x] for x in sorted(rg_pars.keys())] hue_bin_data = _get_hue_bin_data(ipt, ipt_mc, start_hue = start_hue, nhbins = nhbins, normalized_chroma_ref = normalized_chroma_ref) Rg = _hue_bin_data_to_rg(hue_bin_data) if (out != 'Rm'): return eval(out) else: return Rm
def cam15u(data, fov=10.0, inputtype='xyz', direction='forward', outin='Q,aW,bW', parameters=None): """ Convert between CIE 2006 10° XYZ tristimulus values (or spectral data) and CAM15u color appearance correlates. Args: :data: | ndarray of CIE 2006 10° XYZ tristimulus values or spectral data | or color appearance attributes :fov: | 10.0, optional | Field-of-view of stimulus (for size effect on brightness) :inputtpe: | 'xyz' or 'spd', optional | Specifies the type of input: | tristimulus values or spectral data for the forward mode. :direction: | 'forward' or 'inverse', optional | -'forward': xyz -> cam15u | -'inverse': cam15u -> xyz :outin: | 'Q,aW,bW' or str, optional | 'Q,aW,bW' (brightness and opponent signals for amount-of-neutral) | other options: 'Q,aM,bM' (colorfulness) and 'Q,aS,bS' (saturation) | Str specifying the type of | input (:direction: == 'inverse') and | output (:direction: == 'forward') :parameters: | None or dict, optional | Set of model parameters. | - None: defaults to luxpy.cam._CAM15U_PARAMETERS | (see references below) Returns: :returns: | ndarray with color appearance correlates (:direction: == 'forward') | or | XYZ tristimulus values (:direction: == 'inverse') References: 1. `M. Withouck, K. A. G. Smet, W. R. Ryckaert, and P. Hanselaer, “Experimental driven modelling of the color appearance of unrelated self-luminous stimuli: CAM15u,” Opt. Express, vol. 23, no. 9, pp. 12045–12064, 2015. <https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-9-12045&origin=search>`_ 2. `M. Withouck, K. A. G. Smet, and P. Hanselaer, (2015), “Brightness prediction of different sized unrelated self-luminous stimuli,” Opt. Express, vol. 23, no. 10, pp. 13455–13466. <https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-10-13455&origin=search>`_ """ if parameters is None: parameters = _CAM15U_PARAMETERS outin = outin.split(',') #unpack model parameters: Mxyz2rgb, cA, cAlms, cHK, cM, cW, ca, calms, cb, cblms, cfov, cp, k, unique_hue_data = [ parameters[x] for x in sorted(parameters.keys()) ] # precomputations: invMxyz2rgb = np.linalg.inv(Mxyz2rgb) MAab = np.array([cAlms, calms, cblms]) invMAab = np.linalg.inv(MAab) #initialize data and camout: data = np2d(data) if len(data.shape) == 2: data = np.expand_dims(data, axis=0) # avoid looping if not necessary if (data.shape[0] > data.shape[1]): # loop over shortest dim. flipaxis0and1 = True data = np.transpose(data, axes=(1, 0, 2)) else: flipaxis0and1 = False dshape = list(data.shape) dshape[-1] = len(outin) # requested number of correlates if (inputtype != 'xyz') & (direction == 'forward'): dshape[-2] = dshape[ -2] - 1 # wavelength row doesn't count & only with forward can the input data be spectral camout = np.zeros(dshape) camout.fill(np.nan) for i in range(data.shape[0]): if (inputtype != 'xyz') & (direction == 'forward'): xyz = spd_to_xyz(data[i], cieobs='2006_10', relative=False) lms = np.dot(_CMF['2006_10']['M'], xyz.T).T # convert to l,m,s rgb = (lms / _CMF['2006_10']['K']) * k # convert to rho, gamma, beta elif (inputtype == 'xyz') & (direction == 'forward'): rgb = np.dot(Mxyz2rgb, data[i].T).T if direction == 'forward': # apply cube-root compression: rgbc = rgb**(cp) # calculate achromatic and color difference signals, A, a, b: Aab = np.dot(MAab, rgbc.T).T A, a, b = asplit(Aab) A = cA * A a = ca * a b = cb * b # calculate colorfullness like signal M: M = cM * ((a**2.0 + b**2.0)**0.5) # calculate brightness Q: Q = A + cHK[0] * M**cHK[ 1] # last term is contribution of Helmholtz-Kohlrausch effect on brightness # calculate saturation, s: s = M / Q # calculate amount of white, W: W = 100.0 / (1.0 + cW[0] * (s**cW[1])) # adjust Q for size (fov) of stimulus (matter of debate whether to do this before or after calculation of s or W, there was no data on s, M or W for different sized stimuli: after) Q = Q * (fov / 10.0)**cfov # calculate hue, h and Hue quadrature, H: h = hue_angle(a, b, htype='deg') if 'H' in outin: H = hue_quadrature(h, unique_hue_data=unique_hue_data) else: H = None # calculate cart. co.: if 'aM' in outin: aM = M * np.cos(h * np.pi / 180.0) bM = M * np.sin(h * np.pi / 180.0) if 'aS' in outin: aS = s * np.cos(h * np.pi / 180.0) bS = s * np.sin(h * np.pi / 180.0) if 'aW' in outin: aW = W * np.cos(h * np.pi / 180.0) bW = W * np.sin(h * np.pi / 180.0) if (outin != ['Q', 'aW', 'bW']): camout[i] = eval('ajoin((' + ','.join(outin) + '))') else: camout[i] = ajoin((Q, aW, bW)) elif direction == 'inverse': # get Q, M and a, b depending on input type: if 'aW' in outin: Q, a, b = asplit(data[i]) Q = Q / ( (fov / 10.0)**cfov ) #adjust Q for size (fov) of stimulus back to that 10° ref W = (a**2.0 + b**2.0)**0.5 s = (((100 / W) - 1.0) / cW[0])**(1.0 / cW[1]) M = s * Q if 'aM' in outin: Q, a, b = asplit(data[i]) Q = Q / ( (fov / 10.0)**cfov ) #adjust Q for size (fov) of stimulus back to that 10° ref M = (a**2.0 + b**2.0)**0.5 if 'aS' in outin: Q, a, b = asplit(data[i]) Q = Q / ( (fov / 10.0)**cfov ) #adjust Q for size (fov) of stimulus back to that 10° ref s = (a**2.0 + b**2.0)**0.5 M = s * Q if 'h' in outin: Q, WsM, h = asplit(data[i]) Q = Q / ( (fov / 10.0)**cfov ) #adjust Q for size (fov) of stimulus back to that 10° ref if 'W' in outin: s = (((100.0 / WsM) - 1.0) / cW[0])**(1.0 / cW[1]) M = s * Q elif 's' in outin: M = WsM * Q elif 'M' in outin: M = WsM # calculate achromatic signal, A from Q and M: A = Q - cHK[0] * M**cHK[1] A = A / cA # calculate hue angle: h = hue_angle(a, b, htype='rad') # calculate a,b from M and h: a = (M / cM) * np.cos(h) b = (M / cM) * np.sin(h) a = a / ca b = b / cb # create Aab: Aab = ajoin((A, a, b)) # calculate rgbc: rgbc = np.dot(invMAab, Aab.T).T # decompress rgbc to rgb: rgb = rgbc**(1 / cp) # convert rgb to xyz: xyz = np.dot(invMxyz2rgb, rgb.T).T camout[i] = xyz if flipaxis0and1 == True: # loop over shortest dim. camout = np.transpose(camout, axes=(1, 0, 2)) if camout.shape[0] == 1: camout = np.squeeze(camout, axis=0) return camout
def cam_sww16(data, dataw = None, Yb = 20.0, Lw = 400.0, Ccwb = None, relative = True, \ parameters = None, inputtype = 'xyz', direction = 'forward', \ cieobs = '2006_10'): """ A simple principled color appearance model based on a mapping of the Munsell color system. | This function implements the JOSA A (parameters = 'JOSA') published model. Args: :data: | ndarray with input tristimulus values | or spectral data | or input color appearance correlates | Can be of shape: (N [, xM], x 3), whereby: | N refers to samples and M refers to light sources. | Note that for spectral input shape is (N x (M+1) x wl) :dataw: | None or ndarray, optional | Input tristimulus values or spectral data of white point. | None defaults to the use of CIE illuminant C. :Yb: | 20.0, optional | Luminance factor of background (perfect white diffuser, Yw = 100) :Lw: | 400.0, optional | Luminance (cd/m²) of white point. :Ccwb: | None, optional | Degree of cognitive adaptation (white point balancing) | If None: use [..,..] from parameters dict. :relative: | True or False, optional | True: xyz tristimulus values are relative (Yw = 100) :parameters: | None or str or dict, optional | Dict with model parameters. | - None: defaults to luxpy.cam._CAM_SWW_2016_PARAMETERS['JOSA'] | - str: 'best-fit-JOSA' or 'best-fit-all-Munsell' | - dict: user defined model parameters | (dict should have same structure) :inputtype: | 'xyz' or 'spd', optional | Specifies the type of input: | tristimulus values or spectral data for the forward mode. :direction: | 'forward' or 'inverse', optional | -'forward': xyz -> cam_sww_2016 | -'inverse': cam_sww_2016 -> xyz :cieobs: | '2006_10', optional | CMF set to use to perform calculations where spectral data is involved (inputtype == 'spd'; dataw = None) | Other options: see luxpy._CMF['types'] Returns: :returns: | ndarray with color appearance correlates (:direction: == 'forward') | or | XYZ tristimulus values (:direction: == 'inverse') Notes: | This function implements the JOSA A (parameters = 'JOSA') published model. | With: | 1. A correction for the parameter | in Eq.4 of Fig. 11: 0.952 --> -0.952 | | 2. The delta_ac and delta_bc white-balance shifts in Eq. 5e & 5f | should be: -0.028 & 0.821 | | (cfr. Ccwb = 0.66 in: | ab_test_out = ab_test_int - Ccwb*ab_gray_adaptation_field_int)) References: 1. `Smet, K. A. G., Webster, M. A., & Whitehead, L. A. (2016). A simple principled approach for modeling and understanding uniform color metrics. Journal of the Optical Society of America A, 33(3), A319–A331. <https://doi.org/10.1364/JOSAA.33.00A319>`_ """ # get model parameters args = locals().copy() if parameters is None: parameters = _CAM_SWW16_PARAMETERS['JOSA'] if isinstance(parameters, str): parameters = _CAM_SWW16_PARAMETERS[parameters] parameters = put_args_in_db( parameters, args) #overwrite parameters with other (not-None) args input #unpack model parameters: Cc, Ccwb, Cf, Mxyz2lms, cLMS, cab_int, cab_out, calpha, cbeta, cga1, cga2, cgb1, cgb2, cl_int, clambda, lms0 = [ parameters[x] for x in sorted(parameters.keys()) ] # setup default adaptation field: if (dataw is None): dataw = _CIE_ILLUMINANTS['C'].copy() # get illuminant C xyzw = spd_to_xyz(dataw, cieobs=cieobs, relative=False) # get abs. tristimulus values if relative == False: #input is expected to be absolute dataw[1:] = Lw * dataw[ 1:] / xyzw[:, 1:2] #dataw = Lw*dataw # make absolute else: dataw = dataw # make relative (Y=100) if inputtype == 'xyz': dataw = spd_to_xyz(dataw, cieobs=cieobs, relative=relative) # precomputations: Mxyz2lms = np.dot( np.diag(cLMS), math.normalize_3x3_matrix(Mxyz2lms, np.array([[1, 1, 1]])) ) # normalize matrix for xyz-> lms conversion to ill. E weighted with cLMS invMxyz2lms = np.linalg.inv(Mxyz2lms) MAab = np.array([clambda, calpha, cbeta]) invMAab = np.linalg.inv(MAab) #initialize data and camout: data = np2d(data).copy( ) # stimulus data (can be upto NxMx3 for xyz, or [N x (M+1) x wl] for spd)) dataw = np2d(dataw).copy( ) # white point (can be upto Nx3 for xyz, or [(N+1) x wl] for spd) # make axis 1 of dataw have 'same' dimensions as data: if (data.ndim == 2): data = np.expand_dims(data, axis=1) # add light source axis 1 if inputtype == 'xyz': if dataw.shape[ 0] == 1: #make dataw have same lights source dimension size as data dataw = np.repeat(dataw, data.shape[1], axis=0) else: if dataw.shape[0] == 2: dataw = np.vstack( (dataw[0], np.repeat(dataw[1:], data.shape[1], axis=0))) # Flip light source dim to axis 0: data = np.transpose(data, axes=(1, 0, 2)) # Initialize output array: dshape = list(data.shape) dshape[-1] = 3 # requested number of correlates: l_int, a_int, b_int if (inputtype != 'xyz') & (direction == 'forward'): dshape[-2] = dshape[ -2] - 1 # wavelength row doesn't count & only with forward can the input data be spectral camout = np.zeros(dshape) camout.fill(np.nan) # apply forward/inverse model for each row in data: for i in range(data.shape[0]): # stage 1: calculate photon rates of stimulus and adapting field, lmst & lmsf: if (inputtype != 'xyz'): if relative == True: xyzw_abs = spd_to_xyz(np.vstack((dataw[0], dataw[i + 1])), cieobs=cieobs, relative=False) dataw[i + 1] = Lw * dataw[i + 1] / xyzw_abs[0, 1] # make absolute xyzw = spd_to_xyz(np.vstack((dataw[0], dataw[i + 1])), cieobs=cieobs, relative=False) lmsw = 683.0 * np.dot(Mxyz2lms, xyzw.T).T / _CMF[cieobs]['K'] lmsf = (Yb / 100.0 ) * lmsw # calculate adaptation field and convert to l,m,s if (direction == 'forward'): if relative == True: data[i, 1:, :] = Lw * data[i, 1:, :] / xyzw_abs[ 0, 1] # make absolute xyzt = spd_to_xyz(data[i], cieobs=cieobs, relative=False) / _CMF[cieobs]['K'] lmst = 683.0 * np.dot(Mxyz2lms, xyzt.T).T # convert to l,m,s else: lmst = lmsf # put lmsf in lmst for inverse-mode elif (inputtype == 'xyz'): if relative == True: dataw[i] = Lw * dataw[i] / 100.0 # make absolute lmsw = 683.0 * np.dot( Mxyz2lms, dataw[i].T).T / _CMF[cieobs]['K'] # convert to lms lmsf = (Yb / 100.0) * lmsw if (direction == 'forward'): if relative == True: data[i] = Lw * data[i] / 100.0 # make absolute lmst = 683.0 * np.dot( Mxyz2lms, data[i].T).T / _CMF[cieobs]['K'] # convert to lms else: lmst = lmsf # put lmsf in lmst for inverse-mode # stage 2: calculate cone outputs of stimulus lmstp lmstp = math.erf(Cc * (np.log(lmst / lms0) + Cf * np.log(lmsf / lms0))) lmsfp = math.erf(Cc * (np.log(lmsf / lms0) + Cf * np.log(lmsf / lms0))) lmstp = np.vstack( (lmsfp, lmstp) ) # add adaptation field lms temporarily to lmsp for quick calculation # stage 3: calculate optic nerve signals, lam*, alphp, betp: lstar, alph, bet = asplit(np.dot(MAab, lmstp.T).T) alphp = cga1[0] * alph alphp[alph < 0] = cga1[1] * alph[alph < 0] betp = cgb1[0] * bet betp[bet < 0] = cgb1[1] * bet[bet < 0] # stage 4: calculate recoded nerve signals, alphapp, betapp: alphpp = cga2[0] * (alphp + betp) betpp = cgb2[0] * (alphp - betp) # stage 5: calculate conscious color perception: lstar_int = cl_int[0] * (lstar + cl_int[1]) alph_int = cab_int[0] * (np.cos(cab_int[1] * np.pi / 180.0) * alphpp - np.sin(cab_int[1] * np.pi / 180.0) * betpp) bet_int = cab_int[0] * (np.sin(cab_int[1] * np.pi / 180.0) * alphpp + np.cos(cab_int[1] * np.pi / 180.0) * betpp) lstar_out = lstar_int if direction == 'forward': if Ccwb is None: alph_out = alph_int - cab_out[0] bet_out = bet_int - cab_out[1] else: Ccwb = Ccwb * np.ones((2)) Ccwb[Ccwb < 0.0] = 0.0 Ccwb[Ccwb > 1.0] = 1.0 alph_out = alph_int - Ccwb[0] * alph_int[ 0] # white balance shift using adaptation gray background (Yb=20%), with Ccw: degree of adaptation bet_out = bet_int - Ccwb[1] * bet_int[0] camout[i] = np.vstack( (lstar_out[1:], alph_out[1:], bet_out[1:]) ).T # stack together and remove adaptation field from vertical stack elif direction == 'inverse': labf_int = np.hstack((lstar_int[0], alph_int[0], bet_int[0])) # get lstar_out, alph_out & bet_out for data: lstar_out, alph_out, bet_out = asplit(data[i]) # stage 5 inverse: # undo cortical white-balance: if Ccwb is None: alph_int = alph_out + cab_out[0] bet_int = bet_out + cab_out[1] else: Ccwb = Ccwb * np.ones((2)) Ccwb[Ccwb < 0.0] = 0.0 Ccwb[Ccwb > 1.0] = 1.0 alph_int = alph_out + Ccwb[0] * alph_int[ 0] # inverse white balance shift using adaptation gray background (Yb=20%), with Ccw: degree of adaptation bet_int = bet_out + Ccwb[1] * bet_int[0] lstar_int = lstar_out alphpp = (1.0 / cab_int[0]) * ( np.cos(-cab_int[1] * np.pi / 180.0) * alph_int - np.sin(-cab_int[1] * np.pi / 180.0) * bet_int) betpp = (1.0 / cab_int[0]) * ( np.sin(-cab_int[1] * np.pi / 180.0) * alph_int + np.cos(-cab_int[1] * np.pi / 180.0) * bet_int) lstar_int = lstar_out lstar = (lstar_int / cl_int[0]) - cl_int[1] # stage 4 inverse: alphp = 0.5 * (alphpp / cga2[0] + betpp / cgb2[0] ) # <-- alphpp = (Cga2.*(alphp+betp)); betp = 0.5 * (alphpp / cga2[0] - betpp / cgb2[0] ) # <-- betpp = (Cgb2.*(alphp-betp)); # stage 3 invers: alph = alphp / cga1[0] bet = betp / cgb1[0] sa = np.sign(cga1[1]) sb = np.sign(cgb1[1]) alph[(sa * alphp) < 0.0] = alphp[(sa * alphp) < 0] / cga1[1] bet[(sb * betp) < 0.0] = betp[(sb * betp) < 0] / cgb1[1] lab = ajoin((lstar, alph, bet)) # stage 2 inverse: lmstp = np.dot(invMAab, lab.T).T lmstp[lmstp < -1.0] = -1.0 lmstp[lmstp > 1.0] = 1.0 lmstp = math.erfinv(lmstp) / Cc - Cf * np.log(lmsf / lms0) lmst = np.exp(lmstp) * lms0 # stage 1 inverse: xyzt = np.dot(invMxyz2lms, lmst.T).T if relative == True: xyzt = (100.0 / Lw) * xyzt camout[i] = xyzt # if flipaxis0and1 == True: # loop over shortest dim. # camout = np.transpose(camout, axes = (1,0,2)) # Flip light source dim back to axis 1: camout = np.transpose(camout, axes=(1, 0, 2)) if camout.shape[0] == 1: camout = np.squeeze(camout, axis=0) return camout
def cam18sl(data, datab=None, Lb=[100], fov=10.0, inputtype='xyz', direction='forward', outin='Q,aS,bS', parameters=None): """ Convert between CIE 2006 10° XYZ tristimulus values (or spectral data) and CAM18sl color appearance correlates. Args: :data: | ndarray of CIE 2006 10° absolute XYZ tristimulus values or spectral data | or color appearance attributes of stimulus :datab: | ndarray of CIE 2006 10° absolute XYZ tristimulus values or spectral data | of stimulus background :Lb: | [100], optional | Luminance (cd/m²) value(s) of background(s) calculated using the CIE 2006 10° CMFs | (only used in case datab == None and the background is assumed to be an Equal-Energy-White) :fov: | 10.0, optional | Field-of-view of stimulus (for size effect on brightness) :inputtpe: | 'xyz' or 'spd', optional | Specifies the type of input: | tristimulus values or spectral data for the forward mode. :direction: | 'forward' or 'inverse', optional | -'forward': xyz -> cam18sl | -'inverse': cam18sl -> xyz :outin: | 'Q,aS,bS' or str, optional | 'Q,aS,bS' (brightness and opponent signals for saturation) | other options: 'Q,aM,bM' (colorfulness) | (Note that 'Q,aW,bW' would lead to a Cartesian | a,b-coordinate system centered at (1,0)) | Str specifying the type of | input (:direction: == 'inverse') and | output (:direction: == 'forward') :parameters: | None or dict, optional | Set of model parameters. | - None: defaults to luxpy.cam._CAM18SL_PARAMETERS | (see references below) Returns: :returns: | ndarray with color appearance correlates (:direction: == 'forward') | or | XYZ tristimulus values (:direction: == 'inverse') Notes: | * Instead of using the CIE 1964 10° CMFs in some places of the model, | the CIE 2006 10° CMFs are used througout, making it more self_consistent. | This has an effect on the k scaling factors (now different those in CAM15u) | and the illuminant E normalization for use in the chromatic adaptation transform. | (see future erratum to Hermans et al., 2018) | * The paper also used an equation for the amount of white W, which is | based on a Q value not expressed in 'bright' ('cA' = 0.937 instead of 123). | This has been corrected for in the luxpy version of the model, i.e. | _CAM18SL_PARAMETERS['cW'][0] has been changed from 2.29 to 1/11672. | (see future erratum to Hermans et al., 2018) | * Default output was 'Q,aW,bW' prior to March 2020, but since this | is an a,b Cartesian system centered on (1,0), the default output | has been changed to 'Q,aS,bS'. References: 1. `Hermans, S., Smet, K. A. G., & Hanselaer, P. (2018). "Color appearance model for self-luminous stimuli." Journal of the Optical Society of America A, 35(12), 2000–2009. <https://doi.org/10.1364/JOSAA.35.002000>`_ """ if parameters is None: parameters = _CAM18SL_PARAMETERS outin = outin.split(',') #unpack model parameters: cA, cAlms, cHK, cM, cW, ca, calms, cb, cblms, cfov, cieobs, k, naka, unique_hue_data = [ parameters[x] for x in sorted(parameters.keys()) ] # precomputations: Mlms2xyz = np.linalg.inv(_CMF[cieobs]['M']) MAab = np.array([cAlms, calms, cblms]) invMAab = np.linalg.inv(MAab) #------------------------------------------------- # setup EEW reference field and default background field (Lr should be equal to Lb): # Get Lb values: if datab is not None: if inputtype != 'xyz': Lb = spd_to_xyz(datab, cieobs=cieobs, relative=False)[..., 1:2] else: Lb = datab[..., 1:2] else: if isinstance(Lb, list): Lb = np2dT(Lb) # Setup EEW ref of same luminance as datab: if inputtype == 'xyz': wlr = getwlr(_CAM18SL_WL3) else: if datab is None: wlr = data[0] # use wlr of stimulus data else: wlr = datab[0] # use wlr of background data datar = np.vstack((wlr, np.ones( (Lb.shape[0], wlr.shape[0])))) # create eew xyzr = spd_to_xyz(datar, cieobs=cieobs, relative=False) # get abs. tristimulus values datar[1:] = datar[1:] / xyzr[..., 1:2] * Lb # Create datab if None: if (datab is None): if inputtype != 'xyz': datab = datar.copy() else: datab = spd_to_xyz(datar, cieobs=cieobs, relative=False) # prepare data and datab for loop over backgrounds: # make axis 1 of datab have 'same' dimensions as data: if (data.ndim == 2): data = np.expand_dims(data, axis=1) # add light source axis 1 if inputtype == 'xyz': datar = spd_to_xyz(datar, cieobs=cieobs, relative=False) # convert to xyz!! if datab.shape[ 0] == 1: #make datab and datar have same lights source dimension (used to store different backgrounds) size as data datab = np.repeat(datab, data.shape[1], axis=0) datar = np.repeat(datar, data.shape[1], axis=0) else: if datab.shape[0] == 2: datab = np.vstack( (datab[0], np.repeat(datab[1:], data.shape[1], axis=0))) if datar.shape[0] == 2: datar = np.vstack( (datar[0], np.repeat(datar[1:], data.shape[1], axis=0))) # Flip light source/ background dim to axis 0: data = np.transpose(data, axes=(1, 0, 2)) #------------------------------------------------- #initialize camout: dshape = list(data.shape) dshape[-1] = len(outin) # requested number of correlates if (inputtype != 'xyz') & (direction == 'forward'): dshape[-2] = dshape[ -2] - 1 # wavelength row doesn't count & only with forward can the input data be spectral camout = np.zeros(dshape) camout.fill(np.nan) for i in range(data.shape[0]): # get rho, gamma, beta of background and reference white: if (inputtype != 'xyz'): xyzb = spd_to_xyz(np.vstack((datab[0], datab[i + 1:i + 2, :])), cieobs=cieobs, relative=False) xyzr = spd_to_xyz(np.vstack((datar[0], datar[i + 1:i + 2, :])), cieobs=cieobs, relative=False) else: xyzb = datab[i:i + 1, :] xyzr = datar[i:i + 1, :] lmsb = np.dot(_CMF[cieobs]['M'], xyzb.T).T # convert to l,m,s rgbb = (lmsb / _CMF[cieobs]['K']) * k # convert to rho, gamma, beta #lmsr = np.dot(_CMF[cieobs]['M'],xyzr.T).T # convert to l,m,s #rgbr = (lmsr / _CMF[cieobs]['K']) * k # convert to rho, gamma, beta #rgbr = rgbr/rgbr[...,1:2]*Lb[i] # calculated EEW cone excitations at same luminance values as background rgbr = np.ones(xyzr.shape) * Lb[ i] # explicitely equal EEW cone excitations at same luminance values as background if direction == 'forward': # get rho, gamma, beta of stimulus: if (inputtype != 'xyz'): xyz = spd_to_xyz(data[i], cieobs=cieobs, relative=False) elif (inputtype == 'xyz'): xyz = data[i] lms = np.dot(_CMF[cieobs]['M'], xyz.T).T # convert to l,m,s rgb = (lms / _CMF[cieobs]['K']) * k # convert to rho, gamma, beta # apply von-kries cat with D = 1: if (rgbb == 0).any(): Mcat = np.eye(3) else: Mcat = np.diag((rgbr / rgbb)[0]) rgba = np.dot(Mcat, rgb.T).T # apply naka-rushton compression: rgbc = naka_rushton(rgba, n=naka['n'], sig=naka['sig'](rgbr.mean()), noise=naka['noise'], scaling=naka['scaling']) #rgbc = np.ones(rgbc.shape)*rgbc.mean() # test if eew ends up at origin # calculate achromatic and color difference signals, A, a, b: Aab = np.dot(MAab, rgbc.T).T A, a, b = asplit(Aab) a = ca * a b = cb * b # calculate colorfullness like signal M: M = cM * ((a**2.0 + b**2.0)**0.5) # calculate brightness Q: Q = cA * ( A + cHK[0] * M**cHK[1] ) # last term is contribution of Helmholtz-Kohlrausch effect on brightness # calculate saturation, s: s = M / Q S = s # make extra variable, jsut in case 'S' is called # calculate amount of white, W: W = 1 / (1.0 + cW[0] * (s**cW[1])) # adjust Q for size (fov) of stimulus (matter of debate whether to do this before or after calculation of s or W, there was no data on s, M or W for different sized stimuli: after) Q = Q * (fov / 10.0)**cfov # calculate hue, h and Hue quadrature, H: h = hue_angle(a, b, htype='deg') if 'H' in outin: H = hue_quadrature(h, unique_hue_data=unique_hue_data) else: H = None # calculate cart. co.: if 'aM' in outin: aM = M * np.cos(h * np.pi / 180.0) bM = M * np.sin(h * np.pi / 180.0) if 'aS' in outin: aS = s * np.cos(h * np.pi / 180.0) bS = s * np.sin(h * np.pi / 180.0) if 'aW' in outin: aW = W * np.cos(h * np.pi / 180.0) bW = W * np.sin(h * np.pi / 180.0) if (outin != ['Q', 'as', 'bs']): camout[i] = eval('ajoin((' + ','.join(outin) + '))') else: camout[i] = ajoin((Q, aS, bS)) elif direction == 'inverse': # get Q, M and a, b depending on input type: if 'aW' in outin: Q, a, b = asplit(data[i]) Q = Q / ( (fov / 10.0)**cfov ) #adjust Q for size (fov) of stimulus back to that 10° ref W = (a**2.0 + b**2.0)**0.5 s = (((1.0 / W) - 1.0) / cW[0])**(1.0 / cW[1]) M = s * Q if 'aM' in outin: Q, a, b = asplit(data[i]) Q = Q / ( (fov / 10.0)**cfov ) #adjust Q for size (fov) of stimulus back to that 10° ref M = (a**2.0 + b**2.0)**0.5 if 'aS' in outin: Q, a, b = asplit(data[i]) Q = Q / ( (fov / 10.0)**cfov ) #adjust Q for size (fov) of stimulus back to that 10° ref s = (a**2.0 + b**2.0)**0.5 M = s * Q if 'h' in outin: Q, WsM, h = asplit(data[i]) Q = Q / ( (fov / 10.0)**cfov ) #adjust Q for size (fov) of stimulus back to that 10° ref if 'W' in outin: s = (((1.0 / WsM) - 1.0) / cW[0])**(1.0 / cW[1]) M = s * Q elif 's' in outin: M = WsM * Q elif 'M' in outin: M = WsM # calculate achromatic signal, A from Q and M: A = Q / cA - cHK[0] * M**cHK[1] # calculate hue angle: h = hue_angle(a, b, htype='rad') # calculate a,b from M and h: a = (M / cM) * np.cos(h) b = (M / cM) * np.sin(h) a = a / ca b = b / cb # create Aab: Aab = ajoin((A, a, b)) # calculate rgbc: rgbc = np.dot(invMAab, Aab.T).T # decompress rgbc to (adapted) rgba : rgba = naka_rushton(rgbc, n=naka['n'], sig=naka['sig'](rgbr.mean()), noise=naka['noise'], scaling=naka['scaling'], direction='inverse') # apply inverse von-kries cat with D = 1: rgb = np.dot(np.diag((rgbb / rgbr)[0]), rgba.T).T # convert rgb to lms to xyz: lms = rgb / k * _CMF[cieobs]['K'] xyz = np.dot(Mlms2xyz, lms.T).T camout[i] = xyz camout = np.transpose(camout, axes=(1, 0, 2)) if camout.shape[1] == 1: camout = np.squeeze(camout, axis=1) return camout