コード例 #1
0
def dot23(A,B, keepdims = False):
    """
    Dot product of a 2-d ndarray with a (N x K x L) 3-d ndarray 
    using einsum().
    
    Args:
        :A: 
            | ndarray (.shape = (M,N))
        :B: 
            | ndarray (.shape = (N,K,L))
        
    Returns:
        :returns: 
            | ndarray (.shape = (M,K,L))
    """
    if (len(A.shape)==2) & (len(B.shape)==3):
        dotAB = np.einsum('ij,jkl->ikl',A,B)
        if (len(B.shape)==3) & (keepdims == True):
            dotAB = np.expand_dims(dotAB,axis=1)
    elif (len(A.shape)==2) & (len(B.shape)==2):
        dotAB = np.einsum('ij,jk->ik',A,B)
        if (len(B.shape)==2) & (keepdims == True):
            dotAB = np.expand_dims(dotAB,axis=1)
            
    return dotAB
コード例 #2
0
ファイル: helpers.py プロジェクト: simongr2/luxpy
def _massage_input_and_init_output(data,
                                   dataw,
                                   inputtype='xyz',
                                   direction='forward',
                                   n_out=3):
    """
    Redimension input data to ensure most they have the appropriate sizes for easy and efficient looping.
    |
    | 1. Convert data and dataw to atleast_2d ndarrays
    | 2. Make axis 1 of dataw have 'same' dimensions as data
    | 3. Make dataw have same lights source axis size as data
    | 4. Flip light source axis to axis=0 for efficient looping
    | 5. Initialize output array camout to 'same' shape as data but with camout.shape[-1] == n_out
    
    Args:
        :data: 
            | ndarray with input tristimulus values 
            | or spectral data 
            | or input color appearance correlates
            | Can be of shape: (N [, xM], x 3), whereby: 
            | N refers to samples and M refers to light sources.
            | Note that for spectral input shape is (N x (M+1) x wl) 
        :dataw: 
            | None or ndarray, optional
            | Input tristimulus values or spectral data of white point.
            | None defaults to the use of CIE illuminant C.
        :inputtype:
            | 'xyz' or 'spd', optional
            | Specifies the type of input: 
            |     tristimulus values or spectral data for the forward mode.
        :direction:
            | 'forward' or 'inverse', optional
            |   -'forward': xyz -> cam
            |   -'inverse': cam -> xyz 
        :n_out:
            | 3, optional
            | output size of last dimension of camout 
            | (e.g. n_out=3 for j,a,b output or n_out = 5 for J,M,h,a,b output)
            
    Returns:
        :data:
            | ndarray with reshaped data
        :dataw:
            | ndarray with reshaped dataw
        :camout:
            | NaN filled ndarray for output of CAMv (camout.shape[-1] == Nout) 
        :originalshape:
            | original shape of data
            
    Notes:
        For an example on the use, see code _simple_cam() (type: _simple_cam??)
    """
    # Convert data and dataw to atleast_2d ndarrays:
    data = np2d(data).copy(
    )  # stimulus data (can be upto NxMx3 for xyz, or [N x (M+1) x wl] for spd))
    dataw = np2d(dataw).copy(
    )  # white point (can be upto Nx3 for xyz, or [(N+1) x wl] for spd)
    originalshape = data.shape  # to restore output to same shape

    # Make axis 1 of dataw have 'same' dimensions as data:
    if (data.ndim == 2):
        data = np.expand_dims(data, axis=1)  # add light source axis 1

    # Flip light source dim to axis 0:
    data = np.transpose(data, axes=(1, 0, 2))

    dataw = np.expand_dims(
        dataw, axis=1)  # add extra axis to move light source to axis 0

    # Make dataw have same lights source dimension size as data:
    if inputtype == 'xyz':
        if dataw.shape[0] == 1:
            dataw = np.repeat(dataw, data.shape[0], axis=0)
        if (data.shape[0] == 1) & (dataw.shape[0] > 1):
            data = np.repeat(data, dataw.shape[0], axis=0)
    else:
        dataw = np.array([
            np.vstack((dataw[:1, 0, :], dataw[i + 1:i + 2, 0, :]))
            for i in range(dataw.shape[0] - 1)
        ])
        if (data.shape[0] == 1) & (dataw.shape[0] > 1):
            data = np.repeat(data, dataw.shape[0], axis=0)

    # Initialize output array:
    if n_out is not None:
        dshape = list((data).shape)
        dshape[-1] = n_out  # requested number of correlates: e.g. j,a,b
        if (inputtype != 'xyz') & (direction == 'forward'):
            dshape[-2] = dshape[
                -2] - 1  # wavelength row doesn't count & only with forward can the input data be spectral
        camout = np.zeros(dshape)
        camout.fill(np.nan)
    else:
        camout = None
    return data, dataw, camout, originalshape
コード例 #3
0
ファイル: mcri.py プロジェクト: simongr2/luxpy
def spd_to_mcri(SPD, D = 0.9, E = None, Yb = 20.0, out = 'Rm', wl = None):
    """
    Calculates the MCRI or Memory Color Rendition Index, Rm
    
    Args: 
        :SPD: 
            | ndarray with spectral data (can be multiple SPDs, 
            |  first axis are the wavelengths)
        :D: 
            | 0.9, optional
            | Degree of adaptation.
        :E: 
            | None, optional
            | Illuminance in lux 
            |  (used to calculate La = (Yb/100)*(E/pi) to then calculate D 
            |  following the 'cat02' model). 
            | If None: the degree is determined by :D:
            |  If (:E: is not None) & (:Yb: is None):  :E: is assumed to contain 
            |  the adapting field luminance La (cd/m²).
        :Yb: 
            | 20.0, optional
            | Luminance factor of background. (used when calculating La from E)
            | If None, E contains La (cd/m²).
        :out: 
            | 'Rm' or str, optional
            | Specifies requested output (e.g. 'Rm,Rmi,cct,duv') 
        :wl: 
            | None, optional
            | Wavelengths (or [start, end, spacing]) to interpolate the SPDs to. 
            | None: default to no interpolation   
    
    Returns:
        :returns: 
            | float or ndarray with MCRI Rm for :out: 'Rm'
            | Other output is also possible by changing the :out: str value.        
          
    References:
        1. `K.A.G. Smet, W.R. Ryckaert, M.R. Pointer, G. Deconinck, P. Hanselaer,(2012)
        “A memory colour quality metric for white light sources,” 
        Energy Build., vol. 49, no. C, pp. 216–225.
        <http://www.sciencedirect.com/science/article/pii/S0378778812000837>`_
    """
    SPD = np2d(SPD)
    
    if wl is not None: 
        SPD = spd(data = SPD, interpolation = _S_INTERP_TYPE, kind = 'np', wl = wl)
    
    
    # unpack metric default values:
    avg, catf, cieobs, cri_specific_pars, cspace, ref_type, rg_pars, sampleset, scale = [_MCRI_DEFAULTS[x] for x in sorted(_MCRI_DEFAULTS.keys())] 
    similarity_ai = cri_specific_pars['similarity_ai']
    Mxyz2lms = cspace['Mxyz2lms'] 
    scale_fcn = scale['fcn']
    scale_factor = scale['cfactor']
    sampleset = eval(sampleset)
    
    # A. calculate xyz:
    xyzti, xyztw = spd_to_xyz(SPD, cieobs = cieobs['xyz'],  rfl = sampleset, out = 2)
    if 'cct' in out.split(','):
        cct, duv = xyz_to_cct(xyztw, cieobs = cieobs['cct'], out = 'cct,duv',mode = 'lut')
        
    # B. perform chromatic adaptation to adopted whitepoint of ipt color space, i.e. D65:
    if catf is not None:
        Dtype_cat, F, Yb_cat, catmode_cat, cattype_cat, mcat_cat, xyzw_cat = [catf[x] for x in sorted(catf.keys())]
        
        # calculate degree of adaptationn D:
        if E is not None:
            if Yb is not None:
                La = (Yb/100.0)*(E/np.pi)
            else:
                La = E
            D = cat.get_degree_of_adaptation(Dtype = Dtype_cat, F = F, La = La)
        else:
            Dtype_cat = None # direct input of D

        if (E is None) and (D is None):
            D = 1.0 # set degree of adaptation to 1 !
        if D > 1.0: D = 1.0
        if D < 0.6: D = 0.6 # put a limit on the lowest D

        # apply cat:
        xyzti = cat.apply(xyzti, cattype = cattype_cat, catmode = catmode_cat, xyzw1 = xyztw,xyzw0 = None, xyzw2 = xyzw_cat, D = D, mcat = [mcat_cat], Dtype = Dtype_cat)
        xyztw = cat.apply(xyztw, cattype = cattype_cat, catmode = catmode_cat, xyzw1 = xyztw,xyzw0 = None, xyzw2 = xyzw_cat, D = D, mcat = [mcat_cat], Dtype = Dtype_cat)
     
    # C. convert xyz to ipt and split:
    ipt = xyz_to_ipt(xyzti, cieobs = cieobs['xyz'], M = Mxyz2lms) #input matrix as published in Smet et al. 2012, Energy and Buildings
    I,P,T = asplit(ipt)  

    # D. calculate specific (hue dependent) similarity indicators, Si:
    if len(xyzti.shape) == 3:
        ai = np.expand_dims(similarity_ai, axis = 1)
    else: 
        ai = similarity_ai
    a1,a2,a3,a4,a5 = asplit(ai)
    mahalanobis_d2 = (a3*np.power((P - a1),2.0) + a4*np.power((T - a2),2.0) + 2.0*a5*(P-a1)*(T-a2))
    if (len(mahalanobis_d2.shape)==3) & (mahalanobis_d2.shape[-1]==1):
        mahalanobis_d2 = mahalanobis_d2[:,:,0].T
    Si = np.exp(-0.5*mahalanobis_d2)

    # E. calculate general similarity indicator, Sa:
    Sa = avg(Si, axis = 0,keepdims = True)

    # F. rescale similarity indicators (Si, Sa) with a 0-1 scale to memory color rendition indices (Rmi, Rm) with a 0 - 100 scale:
    Rmi = scale_fcn(np.log(Si),scale_factor = scale_factor)
    Rm = np2d(scale_fcn(np.log(Sa),scale_factor = scale_factor))

    # G. calculate Rg (polyarea of test / polyarea of memory colours):
    if 'Rg' in out.split(','):
        I = I[...,None] #broadcast_shape(I, target_shape = None,expand_2d_to_3d = 0)
        a1 = a1[:,None]*np.ones(I.shape)#broadcast_shape(a1, target_shape = None,expand_2d_to_3d = 0)
        a2 = a2[:,None]*np.ones(I.shape) #broadcast_shape(a2, target_shape = None,expand_2d_to_3d = 0)
        a12 = np.concatenate((a1,a2),axis=2) #broadcast_shape(np.hstack((a1,a2)), target_shape = ipt.shape,expand_2d_to_3d = 0)
        ipt_mc = np.concatenate((I,a12),axis=2)
        nhbins, normalize_gamut, normalized_chroma_ref, start_hue  = [rg_pars[x] for x in sorted(rg_pars.keys())]
    
        hue_bin_data = _get_hue_bin_data(ipt, ipt_mc, 
                                         start_hue = start_hue, nhbins = nhbins,
                                         normalized_chroma_ref = normalized_chroma_ref)
        Rg = _hue_bin_data_to_rg(hue_bin_data)

    if (out != 'Rm'):
        return  eval(out)
    else:
        return Rm
コード例 #4
0
ファイル: cam15u.py プロジェクト: simongr2/luxpy
def cam15u(data,
           fov=10.0,
           inputtype='xyz',
           direction='forward',
           outin='Q,aW,bW',
           parameters=None):
    """
    Convert between CIE 2006 10°  XYZ tristimulus values (or spectral data) 
    and CAM15u color appearance correlates.
    
    Args:
        :data: 
            | ndarray of CIE 2006 10°  XYZ tristimulus values or spectral data
            |  or color appearance attributes
        :fov: 
            | 10.0, optional
            | Field-of-view of stimulus (for size effect on brightness)
        :inputtpe:
            | 'xyz' or 'spd', optional
            | Specifies the type of input: 
            |     tristimulus values or spectral data for the forward mode.
        :direction:
            | 'forward' or 'inverse', optional
            |   -'forward': xyz -> cam15u
            |   -'inverse': cam15u -> xyz 
        :outin:
            | 'Q,aW,bW' or str, optional
            | 'Q,aW,bW' (brightness and opponent signals for amount-of-neutral)
            |  other options: 'Q,aM,bM' (colorfulness) and 'Q,aS,bS' (saturation)
            | Str specifying the type of 
            |     input (:direction: == 'inverse') and 
            |     output (:direction: == 'forward')
        :parameters:
            | None or dict, optional
            | Set of model parameters.
            |   - None: defaults to luxpy.cam._CAM15U_PARAMETERS 
            |    (see references below)
    
    Returns:
        :returns: 
            | ndarray with color appearance correlates (:direction: == 'forward')
            |  or 
            | XYZ tristimulus values (:direction: == 'inverse')

    References: 
        1. `M. Withouck, K. A. G. Smet, W. R. Ryckaert, and P. Hanselaer, 
        “Experimental driven modelling of the color appearance of 
        unrelated self-luminous stimuli: CAM15u,” 
        Opt. Express, vol. 23, no. 9, pp. 12045–12064, 2015.
        <https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-9-12045&origin=search>`_
        2. `M. Withouck, K. A. G. Smet, and P. Hanselaer, (2015), 
        “Brightness prediction of different sized unrelated self-luminous stimuli,” 
        Opt. Express, vol. 23, no. 10, pp. 13455–13466. 
        <https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-10-13455&origin=search>`_  
     """

    if parameters is None:
        parameters = _CAM15U_PARAMETERS

    outin = outin.split(',')

    #unpack model parameters:
    Mxyz2rgb, cA, cAlms, cHK, cM, cW, ca, calms, cb, cblms, cfov, cp, k, unique_hue_data = [
        parameters[x] for x in sorted(parameters.keys())
    ]

    # precomputations:
    invMxyz2rgb = np.linalg.inv(Mxyz2rgb)
    MAab = np.array([cAlms, calms, cblms])
    invMAab = np.linalg.inv(MAab)

    #initialize data and camout:
    data = np2d(data)
    if len(data.shape) == 2:
        data = np.expand_dims(data, axis=0)  # avoid looping if not necessary

    if (data.shape[0] > data.shape[1]):  # loop over shortest dim.
        flipaxis0and1 = True
        data = np.transpose(data, axes=(1, 0, 2))
    else:
        flipaxis0and1 = False

    dshape = list(data.shape)
    dshape[-1] = len(outin)  # requested number of correlates
    if (inputtype != 'xyz') & (direction == 'forward'):
        dshape[-2] = dshape[
            -2] - 1  # wavelength row doesn't count & only with forward can the input data be spectral

    camout = np.zeros(dshape)
    camout.fill(np.nan)

    for i in range(data.shape[0]):

        if (inputtype != 'xyz') & (direction == 'forward'):
            xyz = spd_to_xyz(data[i], cieobs='2006_10', relative=False)
            lms = np.dot(_CMF['2006_10']['M'], xyz.T).T  # convert to l,m,s
            rgb = (lms /
                   _CMF['2006_10']['K']) * k  # convert to rho, gamma, beta
        elif (inputtype == 'xyz') & (direction == 'forward'):
            rgb = np.dot(Mxyz2rgb, data[i].T).T

        if direction == 'forward':

            # apply cube-root compression:
            rgbc = rgb**(cp)

            # calculate achromatic and color difference signals, A, a, b:
            Aab = np.dot(MAab, rgbc.T).T
            A, a, b = asplit(Aab)
            A = cA * A
            a = ca * a
            b = cb * b

            # calculate colorfullness like signal M:
            M = cM * ((a**2.0 + b**2.0)**0.5)

            # calculate brightness Q:
            Q = A + cHK[0] * M**cHK[
                1]  # last term is contribution of Helmholtz-Kohlrausch effect on brightness

            # calculate saturation, s:
            s = M / Q

            # calculate amount of white, W:
            W = 100.0 / (1.0 + cW[0] * (s**cW[1]))

            #  adjust Q for size (fov) of stimulus (matter of debate whether to do this before or after calculation of s or W, there was no data on s, M or W for different sized stimuli: after)
            Q = Q * (fov / 10.0)**cfov

            # calculate hue, h and Hue quadrature, H:
            h = hue_angle(a, b, htype='deg')

            if 'H' in outin:
                H = hue_quadrature(h, unique_hue_data=unique_hue_data)
            else:
                H = None

            # calculate cart. co.:
            if 'aM' in outin:
                aM = M * np.cos(h * np.pi / 180.0)
                bM = M * np.sin(h * np.pi / 180.0)

            if 'aS' in outin:
                aS = s * np.cos(h * np.pi / 180.0)
                bS = s * np.sin(h * np.pi / 180.0)

            if 'aW' in outin:
                aW = W * np.cos(h * np.pi / 180.0)
                bW = W * np.sin(h * np.pi / 180.0)

            if (outin != ['Q', 'aW', 'bW']):
                camout[i] = eval('ajoin((' + ','.join(outin) + '))')
            else:
                camout[i] = ajoin((Q, aW, bW))

        elif direction == 'inverse':

            # get Q, M and a, b depending on input type:
            if 'aW' in outin:
                Q, a, b = asplit(data[i])
                Q = Q / (
                    (fov / 10.0)**cfov
                )  #adjust Q for size (fov) of stimulus back to that 10° ref
                W = (a**2.0 + b**2.0)**0.5
                s = (((100 / W) - 1.0) / cW[0])**(1.0 / cW[1])
                M = s * Q

            if 'aM' in outin:
                Q, a, b = asplit(data[i])
                Q = Q / (
                    (fov / 10.0)**cfov
                )  #adjust Q for size (fov) of stimulus back to that 10° ref
                M = (a**2.0 + b**2.0)**0.5

            if 'aS' in outin:
                Q, a, b = asplit(data[i])
                Q = Q / (
                    (fov / 10.0)**cfov
                )  #adjust Q for size (fov) of stimulus back to that 10° ref
                s = (a**2.0 + b**2.0)**0.5
                M = s * Q

            if 'h' in outin:
                Q, WsM, h = asplit(data[i])
                Q = Q / (
                    (fov / 10.0)**cfov
                )  #adjust Q for size (fov) of stimulus back to that 10° ref
                if 'W' in outin:
                    s = (((100.0 / WsM) - 1.0) / cW[0])**(1.0 / cW[1])
                    M = s * Q
                elif 's' in outin:
                    M = WsM * Q
                elif 'M' in outin:
                    M = WsM

            # calculate achromatic signal, A from Q and M:
            A = Q - cHK[0] * M**cHK[1]
            A = A / cA

            # calculate hue angle:
            h = hue_angle(a, b, htype='rad')

            # calculate a,b from M and h:
            a = (M / cM) * np.cos(h)
            b = (M / cM) * np.sin(h)
            a = a / ca
            b = b / cb

            # create Aab:
            Aab = ajoin((A, a, b))

            # calculate rgbc:
            rgbc = np.dot(invMAab, Aab.T).T

            # decompress rgbc to rgb:
            rgb = rgbc**(1 / cp)

            # convert rgb to xyz:
            xyz = np.dot(invMxyz2rgb, rgb.T).T

            camout[i] = xyz

    if flipaxis0and1 == True:  # loop over shortest dim.
        camout = np.transpose(camout, axes=(1, 0, 2))

    if camout.shape[0] == 1:
        camout = np.squeeze(camout, axis=0)

    return camout
コード例 #5
0
ファイル: sww2016_old.py プロジェクト: simongr2/luxpy
def cam_sww16(data, dataw = None, Yb = 20.0, Lw = 400.0, Ccwb = None, relative = True, \
              parameters = None, inputtype = 'xyz', direction = 'forward', \
              cieobs = '2006_10'):
    """
    A simple principled color appearance model based on a mapping 
    of the Munsell color system.
    
    | This function implements the JOSA A (parameters = 'JOSA') published model. 
    
    Args:
        :data: 
            | ndarray with input tristimulus values 
            | or spectral data 
            | or input color appearance correlates
            | Can be of shape: (N [, xM], x 3), whereby: 
            | N refers to samples and M refers to light sources.
            | Note that for spectral input shape is (N x (M+1) x wl) 
        :dataw: 
            | None or ndarray, optional
            | Input tristimulus values or spectral data of white point.
            | None defaults to the use of CIE illuminant C.
        :Yb: 
            | 20.0, optional
            | Luminance factor of background (perfect white diffuser, Yw = 100)
        :Lw:
            | 400.0, optional
            | Luminance (cd/m²) of white point.
        :Ccwb:
            | None,  optional
            | Degree of cognitive adaptation (white point balancing)
            | If None: use [..,..] from parameters dict.
        :relative:
            | True or False, optional
            | True: xyz tristimulus values are relative (Yw = 100)
        :parameters:
            | None or str or dict, optional
            | Dict with model parameters.
            |    - None: defaults to luxpy.cam._CAM_SWW_2016_PARAMETERS['JOSA']
            |    - str: 'best-fit-JOSA' or 'best-fit-all-Munsell'
            |    - dict: user defined model parameters 
            |            (dict should have same structure)
        :inputtype:
            | 'xyz' or 'spd', optional
            | Specifies the type of input: 
            |     tristimulus values or spectral data for the forward mode.
        :direction:
            | 'forward' or 'inverse', optional
            |   -'forward': xyz -> cam_sww_2016
            |   -'inverse': cam_sww_2016 -> xyz 
        :cieobs:
            | '2006_10', optional
            | CMF set to use to perform calculations where spectral data 
              is involved (inputtype == 'spd'; dataw = None)
            | Other options: see luxpy._CMF['types']
    
    Returns:
        :returns: 
            | ndarray with color appearance correlates (:direction: == 'forward')
            |  or 
            | XYZ tristimulus values (:direction: == 'inverse')
    
    Notes:
        | This function implements the JOSA A (parameters = 'JOSA') 
          published model. 
        | With:
        |    1. A correction for the parameter 
        |         in Eq.4 of Fig. 11: 0.952 --> -0.952 
        |         
        |     2. The delta_ac and delta_bc white-balance shifts in Eq. 5e & 5f 
        |         should be: -0.028 & 0.821 
        |  
        |     (cfr. Ccwb = 0.66 in: 
        |         ab_test_out = ab_test_int - Ccwb*ab_gray_adaptation_field_int))
             
    References:
        1. `Smet, K. A. G., Webster, M. A., & Whitehead, L. A. (2016). 
        A simple principled approach for modeling and understanding uniform color metrics. 
        Journal of the Optical Society of America A, 33(3), A319–A331. 
        <https://doi.org/10.1364/JOSAA.33.00A319>`_

    """

    # get model parameters
    args = locals().copy()
    if parameters is None:
        parameters = _CAM_SWW16_PARAMETERS['JOSA']
    if isinstance(parameters, str):
        parameters = _CAM_SWW16_PARAMETERS[parameters]
    parameters = put_args_in_db(
        parameters,
        args)  #overwrite parameters with other (not-None) args input

    #unpack model parameters:
    Cc, Ccwb, Cf, Mxyz2lms, cLMS, cab_int, cab_out, calpha, cbeta, cga1, cga2, cgb1, cgb2, cl_int, clambda, lms0 = [
        parameters[x] for x in sorted(parameters.keys())
    ]

    # setup default adaptation field:
    if (dataw is None):
        dataw = _CIE_ILLUMINANTS['C'].copy()  # get illuminant C
        xyzw = spd_to_xyz(dataw, cieobs=cieobs,
                          relative=False)  # get abs. tristimulus values
        if relative == False:  #input is expected to be absolute
            dataw[1:] = Lw * dataw[
                1:] / xyzw[:, 1:2]  #dataw = Lw*dataw # make absolute
        else:
            dataw = dataw  # make relative (Y=100)
        if inputtype == 'xyz':
            dataw = spd_to_xyz(dataw, cieobs=cieobs, relative=relative)

    # precomputations:
    Mxyz2lms = np.dot(
        np.diag(cLMS),
        math.normalize_3x3_matrix(Mxyz2lms, np.array([[1, 1, 1]]))
    )  # normalize matrix for xyz-> lms conversion to ill. E weighted with cLMS
    invMxyz2lms = np.linalg.inv(Mxyz2lms)
    MAab = np.array([clambda, calpha, cbeta])
    invMAab = np.linalg.inv(MAab)

    #initialize data and camout:
    data = np2d(data).copy(
    )  # stimulus data (can be upto NxMx3 for xyz, or [N x (M+1) x wl] for spd))
    dataw = np2d(dataw).copy(
    )  # white point (can be upto Nx3 for xyz, or [(N+1) x wl] for spd)

    # make axis 1 of dataw have 'same' dimensions as data:
    if (data.ndim == 2):
        data = np.expand_dims(data, axis=1)  # add light source axis 1

    if inputtype == 'xyz':
        if dataw.shape[
                0] == 1:  #make dataw have same lights source dimension size as data
            dataw = np.repeat(dataw, data.shape[1], axis=0)
    else:
        if dataw.shape[0] == 2:
            dataw = np.vstack(
                (dataw[0], np.repeat(dataw[1:], data.shape[1], axis=0)))

    # Flip light source dim to axis 0:
    data = np.transpose(data, axes=(1, 0, 2))

    # Initialize output array:
    dshape = list(data.shape)
    dshape[-1] = 3  # requested number of correlates: l_int, a_int, b_int
    if (inputtype != 'xyz') & (direction == 'forward'):
        dshape[-2] = dshape[
            -2] - 1  # wavelength row doesn't count & only with forward can the input data be spectral
    camout = np.zeros(dshape)
    camout.fill(np.nan)

    # apply forward/inverse model for each row in data:
    for i in range(data.shape[0]):

        # stage 1: calculate photon rates of stimulus and adapting field, lmst & lmsf:
        if (inputtype != 'xyz'):
            if relative == True:
                xyzw_abs = spd_to_xyz(np.vstack((dataw[0], dataw[i + 1])),
                                      cieobs=cieobs,
                                      relative=False)
                dataw[i +
                      1] = Lw * dataw[i + 1] / xyzw_abs[0, 1]  # make absolute
            xyzw = spd_to_xyz(np.vstack((dataw[0], dataw[i + 1])),
                              cieobs=cieobs,
                              relative=False)
            lmsw = 683.0 * np.dot(Mxyz2lms, xyzw.T).T / _CMF[cieobs]['K']
            lmsf = (Yb / 100.0
                    ) * lmsw  # calculate adaptation field and convert to l,m,s
            if (direction == 'forward'):
                if relative == True:
                    data[i, 1:, :] = Lw * data[i, 1:, :] / xyzw_abs[
                        0, 1]  # make absolute
                xyzt = spd_to_xyz(data[i], cieobs=cieobs,
                                  relative=False) / _CMF[cieobs]['K']
                lmst = 683.0 * np.dot(Mxyz2lms, xyzt.T).T  # convert to l,m,s
            else:
                lmst = lmsf  # put lmsf in lmst for inverse-mode

        elif (inputtype == 'xyz'):
            if relative == True:
                dataw[i] = Lw * dataw[i] / 100.0  # make absolute
            lmsw = 683.0 * np.dot(
                Mxyz2lms, dataw[i].T).T / _CMF[cieobs]['K']  # convert to lms
            lmsf = (Yb / 100.0) * lmsw
            if (direction == 'forward'):
                if relative == True:
                    data[i] = Lw * data[i] / 100.0  # make absolute
                lmst = 683.0 * np.dot(
                    Mxyz2lms,
                    data[i].T).T / _CMF[cieobs]['K']  # convert to lms
            else:
                lmst = lmsf  # put lmsf in lmst for inverse-mode

        # stage 2: calculate cone outputs of stimulus lmstp
        lmstp = math.erf(Cc * (np.log(lmst / lms0) + Cf * np.log(lmsf / lms0)))
        lmsfp = math.erf(Cc * (np.log(lmsf / lms0) + Cf * np.log(lmsf / lms0)))
        lmstp = np.vstack(
            (lmsfp, lmstp)
        )  # add adaptation field lms temporarily to lmsp for quick calculation

        # stage 3: calculate optic nerve signals, lam*, alphp, betp:
        lstar, alph, bet = asplit(np.dot(MAab, lmstp.T).T)

        alphp = cga1[0] * alph
        alphp[alph < 0] = cga1[1] * alph[alph < 0]
        betp = cgb1[0] * bet
        betp[bet < 0] = cgb1[1] * bet[bet < 0]

        # stage 4: calculate recoded nerve signals, alphapp, betapp:
        alphpp = cga2[0] * (alphp + betp)
        betpp = cgb2[0] * (alphp - betp)

        # stage 5: calculate conscious color perception:
        lstar_int = cl_int[0] * (lstar + cl_int[1])
        alph_int = cab_int[0] * (np.cos(cab_int[1] * np.pi / 180.0) * alphpp -
                                 np.sin(cab_int[1] * np.pi / 180.0) * betpp)
        bet_int = cab_int[0] * (np.sin(cab_int[1] * np.pi / 180.0) * alphpp +
                                np.cos(cab_int[1] * np.pi / 180.0) * betpp)
        lstar_out = lstar_int

        if direction == 'forward':
            if Ccwb is None:
                alph_out = alph_int - cab_out[0]
                bet_out = bet_int - cab_out[1]
            else:
                Ccwb = Ccwb * np.ones((2))
                Ccwb[Ccwb < 0.0] = 0.0
                Ccwb[Ccwb > 1.0] = 1.0
                alph_out = alph_int - Ccwb[0] * alph_int[
                    0]  # white balance shift using adaptation gray background (Yb=20%), with Ccw: degree of adaptation
                bet_out = bet_int - Ccwb[1] * bet_int[0]

            camout[i] = np.vstack(
                (lstar_out[1:], alph_out[1:], bet_out[1:])
            ).T  # stack together and remove adaptation field from vertical stack
        elif direction == 'inverse':
            labf_int = np.hstack((lstar_int[0], alph_int[0], bet_int[0]))

            # get lstar_out, alph_out & bet_out for data:
            lstar_out, alph_out, bet_out = asplit(data[i])

            # stage 5 inverse:
            # undo cortical white-balance:
            if Ccwb is None:
                alph_int = alph_out + cab_out[0]
                bet_int = bet_out + cab_out[1]
            else:
                Ccwb = Ccwb * np.ones((2))
                Ccwb[Ccwb < 0.0] = 0.0
                Ccwb[Ccwb > 1.0] = 1.0
                alph_int = alph_out + Ccwb[0] * alph_int[
                    0]  #  inverse white balance shift using adaptation gray background (Yb=20%), with Ccw: degree of adaptation
                bet_int = bet_out + Ccwb[1] * bet_int[0]

            lstar_int = lstar_out
            alphpp = (1.0 / cab_int[0]) * (
                np.cos(-cab_int[1] * np.pi / 180.0) * alph_int -
                np.sin(-cab_int[1] * np.pi / 180.0) * bet_int)
            betpp = (1.0 / cab_int[0]) * (
                np.sin(-cab_int[1] * np.pi / 180.0) * alph_int +
                np.cos(-cab_int[1] * np.pi / 180.0) * bet_int)
            lstar_int = lstar_out
            lstar = (lstar_int / cl_int[0]) - cl_int[1]

            # stage 4 inverse:
            alphp = 0.5 * (alphpp / cga2[0] + betpp / cgb2[0]
                           )  # <-- alphpp = (Cga2.*(alphp+betp));
            betp = 0.5 * (alphpp / cga2[0] - betpp / cgb2[0]
                          )  # <-- betpp = (Cgb2.*(alphp-betp));

            # stage 3 invers:
            alph = alphp / cga1[0]
            bet = betp / cgb1[0]
            sa = np.sign(cga1[1])
            sb = np.sign(cgb1[1])
            alph[(sa * alphp) < 0.0] = alphp[(sa * alphp) < 0] / cga1[1]
            bet[(sb * betp) < 0.0] = betp[(sb * betp) < 0] / cgb1[1]
            lab = ajoin((lstar, alph, bet))

            # stage 2 inverse:
            lmstp = np.dot(invMAab, lab.T).T
            lmstp[lmstp < -1.0] = -1.0
            lmstp[lmstp > 1.0] = 1.0

            lmstp = math.erfinv(lmstp) / Cc - Cf * np.log(lmsf / lms0)
            lmst = np.exp(lmstp) * lms0

            # stage 1 inverse:
            xyzt = np.dot(invMxyz2lms, lmst.T).T

            if relative == True:
                xyzt = (100.0 / Lw) * xyzt

            camout[i] = xyzt

#    if flipaxis0and1 == True: # loop over shortest dim.
#        camout = np.transpose(camout, axes = (1,0,2))

# Flip light source dim back to axis 1:
    camout = np.transpose(camout, axes=(1, 0, 2))

    if camout.shape[0] == 1:
        camout = np.squeeze(camout, axis=0)

    return camout
コード例 #6
0
ファイル: cam18sl.py プロジェクト: simongr2/luxpy
def cam18sl(data,
            datab=None,
            Lb=[100],
            fov=10.0,
            inputtype='xyz',
            direction='forward',
            outin='Q,aS,bS',
            parameters=None):
    """
    Convert between CIE 2006 10°  XYZ tristimulus values (or spectral data) 
    and CAM18sl color appearance correlates.
    
    Args:
        :data: 
            | ndarray of CIE 2006 10°  absolute XYZ tristimulus values or spectral data
            |  or color appearance attributes of stimulus
        :datab: 
            | ndarray of CIE 2006 10°  absolute XYZ tristimulus values or spectral data
            |  of stimulus background
        :Lb: 
            | [100], optional
            | Luminance (cd/m²) value(s) of background(s) calculated using the CIE 2006 10° CMFs 
            | (only used in case datab == None and the background is assumed to be an Equal-Energy-White)
        :fov: 
            | 10.0, optional
            | Field-of-view of stimulus (for size effect on brightness)
        :inputtpe:
            | 'xyz' or 'spd', optional
            | Specifies the type of input: 
            |     tristimulus values or spectral data for the forward mode.
        :direction:
            | 'forward' or 'inverse', optional
            |   -'forward': xyz -> cam18sl
            |   -'inverse': cam18sl -> xyz 
        :outin:
            | 'Q,aS,bS' or str, optional
            | 'Q,aS,bS' (brightness and opponent signals for saturation)
            |  other options: 'Q,aM,bM' (colorfulness) 
            |                 (Note that 'Q,aW,bW' would lead to a Cartesian 
            |                  a,b-coordinate system centered at (1,0))
            | Str specifying the type of 
            |     input (:direction: == 'inverse') and 
            |     output (:direction: == 'forward')
        :parameters:
            | None or dict, optional
            | Set of model parameters.
            |   - None: defaults to luxpy.cam._CAM18SL_PARAMETERS 
            |    (see references below)
    
    Returns:
        :returns: 
            | ndarray with color appearance correlates (:direction: == 'forward')
            |  or 
            | XYZ tristimulus values (:direction: == 'inverse')
            
    Notes:
        | * Instead of using the CIE 1964 10° CMFs in some places of the model,
        |   the CIE 2006 10° CMFs are used througout, making it more self_consistent.
        |   This has an effect on the k scaling factors (now different those in CAM15u) 
        |   and the illuminant E normalization for use in the chromatic adaptation transform.
        |   (see future erratum to Hermans et al., 2018)
        | * The paper also used an equation for the amount of white W, which is
        |   based on a Q value not expressed in 'bright' ('cA' = 0.937 instead of 123). 
        |   This has been corrected for in the luxpy version of the model, i.e.
        |   _CAM18SL_PARAMETERS['cW'][0] has been changed from 2.29 to 1/11672.
        |   (see future erratum to Hermans et al., 2018)
        | * Default output was 'Q,aW,bW' prior to March 2020, but since this
        |   is an a,b Cartesian system centered on (1,0), the default output
        |   has been changed to 'Q,aS,bS'.

    References: 
        1. `Hermans, S., Smet, K. A. G., & Hanselaer, P. (2018). 
        "Color appearance model for self-luminous stimuli."
        Journal of the Optical Society of America A, 35(12), 2000–2009. 
        <https://doi.org/10.1364/JOSAA.35.002000>`_ 
     """

    if parameters is None:
        parameters = _CAM18SL_PARAMETERS

    outin = outin.split(',')

    #unpack model parameters:
    cA, cAlms, cHK, cM, cW, ca, calms, cb, cblms, cfov, cieobs, k, naka, unique_hue_data = [
        parameters[x] for x in sorted(parameters.keys())
    ]

    # precomputations:
    Mlms2xyz = np.linalg.inv(_CMF[cieobs]['M'])
    MAab = np.array([cAlms, calms, cblms])
    invMAab = np.linalg.inv(MAab)

    #-------------------------------------------------
    # setup EEW reference field and default background field (Lr should be equal to Lb):
    # Get Lb values:
    if datab is not None:
        if inputtype != 'xyz':
            Lb = spd_to_xyz(datab, cieobs=cieobs, relative=False)[..., 1:2]
        else:
            Lb = datab[..., 1:2]
    else:
        if isinstance(Lb, list):
            Lb = np2dT(Lb)

    # Setup EEW ref of same luminance as datab:
    if inputtype == 'xyz':
        wlr = getwlr(_CAM18SL_WL3)
    else:
        if datab is None:
            wlr = data[0]  # use wlr of stimulus data
        else:
            wlr = datab[0]  # use wlr of background data
    datar = np.vstack((wlr, np.ones(
        (Lb.shape[0], wlr.shape[0]))))  # create eew
    xyzr = spd_to_xyz(datar, cieobs=cieobs,
                      relative=False)  # get abs. tristimulus values
    datar[1:] = datar[1:] / xyzr[..., 1:2] * Lb

    # Create datab if None:
    if (datab is None):
        if inputtype != 'xyz':
            datab = datar.copy()
        else:
            datab = spd_to_xyz(datar, cieobs=cieobs, relative=False)

    # prepare data and datab for loop over backgrounds:
    # make axis 1 of datab have 'same' dimensions as data:
    if (data.ndim == 2):
        data = np.expand_dims(data, axis=1)  # add light source axis 1

    if inputtype == 'xyz':
        datar = spd_to_xyz(datar, cieobs=cieobs,
                           relative=False)  # convert to xyz!!
        if datab.shape[
                0] == 1:  #make datab and datar have same lights source dimension (used to store different backgrounds) size as data
            datab = np.repeat(datab, data.shape[1], axis=0)
            datar = np.repeat(datar, data.shape[1], axis=0)
    else:
        if datab.shape[0] == 2:
            datab = np.vstack(
                (datab[0], np.repeat(datab[1:], data.shape[1], axis=0)))
        if datar.shape[0] == 2:
            datar = np.vstack(
                (datar[0], np.repeat(datar[1:], data.shape[1], axis=0)))

    # Flip light source/ background dim to axis 0:
    data = np.transpose(data, axes=(1, 0, 2))

    #-------------------------------------------------

    #initialize camout:
    dshape = list(data.shape)
    dshape[-1] = len(outin)  # requested number of correlates
    if (inputtype != 'xyz') & (direction == 'forward'):
        dshape[-2] = dshape[
            -2] - 1  # wavelength row doesn't count & only with forward can the input data be spectral
    camout = np.zeros(dshape)
    camout.fill(np.nan)

    for i in range(data.shape[0]):

        # get rho, gamma, beta of background and reference white:
        if (inputtype != 'xyz'):
            xyzb = spd_to_xyz(np.vstack((datab[0], datab[i + 1:i + 2, :])),
                              cieobs=cieobs,
                              relative=False)
            xyzr = spd_to_xyz(np.vstack((datar[0], datar[i + 1:i + 2, :])),
                              cieobs=cieobs,
                              relative=False)
        else:
            xyzb = datab[i:i + 1, :]
            xyzr = datar[i:i + 1, :]

        lmsb = np.dot(_CMF[cieobs]['M'], xyzb.T).T  # convert to l,m,s
        rgbb = (lmsb / _CMF[cieobs]['K']) * k  # convert to rho, gamma, beta
        #lmsr = np.dot(_CMF[cieobs]['M'],xyzr.T).T # convert to l,m,s
        #rgbr = (lmsr / _CMF[cieobs]['K']) * k # convert to rho, gamma, beta
        #rgbr = rgbr/rgbr[...,1:2]*Lb[i] # calculated EEW cone excitations at same luminance values as background
        rgbr = np.ones(xyzr.shape) * Lb[
            i]  # explicitely equal EEW cone excitations at same luminance values as background

        if direction == 'forward':
            # get rho, gamma, beta of stimulus:
            if (inputtype != 'xyz'):
                xyz = spd_to_xyz(data[i], cieobs=cieobs, relative=False)
            elif (inputtype == 'xyz'):
                xyz = data[i]
            lms = np.dot(_CMF[cieobs]['M'], xyz.T).T  # convert to l,m,s
            rgb = (lms / _CMF[cieobs]['K']) * k  # convert to rho, gamma, beta

            # apply von-kries cat with D = 1:
            if (rgbb == 0).any():
                Mcat = np.eye(3)
            else:
                Mcat = np.diag((rgbr / rgbb)[0])
            rgba = np.dot(Mcat, rgb.T).T

            # apply naka-rushton compression:
            rgbc = naka_rushton(rgba,
                                n=naka['n'],
                                sig=naka['sig'](rgbr.mean()),
                                noise=naka['noise'],
                                scaling=naka['scaling'])

            #rgbc = np.ones(rgbc.shape)*rgbc.mean() # test if eew ends up at origin

            # calculate achromatic and color difference signals, A, a, b:
            Aab = np.dot(MAab, rgbc.T).T
            A, a, b = asplit(Aab)
            a = ca * a
            b = cb * b

            # calculate colorfullness like signal M:
            M = cM * ((a**2.0 + b**2.0)**0.5)

            # calculate brightness Q:
            Q = cA * (
                A + cHK[0] * M**cHK[1]
            )  # last term is contribution of Helmholtz-Kohlrausch effect on brightness

            # calculate saturation, s:
            s = M / Q
            S = s  # make extra variable, jsut in case 'S' is called

            # calculate amount of white, W:
            W = 1 / (1.0 + cW[0] * (s**cW[1]))

            #  adjust Q for size (fov) of stimulus (matter of debate whether to do this before or after calculation of s or W, there was no data on s, M or W for different sized stimuli: after)
            Q = Q * (fov / 10.0)**cfov

            # calculate hue, h and Hue quadrature, H:
            h = hue_angle(a, b, htype='deg')
            if 'H' in outin:
                H = hue_quadrature(h, unique_hue_data=unique_hue_data)
            else:
                H = None

            # calculate cart. co.:
            if 'aM' in outin:
                aM = M * np.cos(h * np.pi / 180.0)
                bM = M * np.sin(h * np.pi / 180.0)

            if 'aS' in outin:
                aS = s * np.cos(h * np.pi / 180.0)
                bS = s * np.sin(h * np.pi / 180.0)

            if 'aW' in outin:
                aW = W * np.cos(h * np.pi / 180.0)
                bW = W * np.sin(h * np.pi / 180.0)

            if (outin != ['Q', 'as', 'bs']):
                camout[i] = eval('ajoin((' + ','.join(outin) + '))')
            else:
                camout[i] = ajoin((Q, aS, bS))

        elif direction == 'inverse':

            # get Q, M and a, b depending on input type:
            if 'aW' in outin:
                Q, a, b = asplit(data[i])
                Q = Q / (
                    (fov / 10.0)**cfov
                )  #adjust Q for size (fov) of stimulus back to that 10° ref
                W = (a**2.0 + b**2.0)**0.5
                s = (((1.0 / W) - 1.0) / cW[0])**(1.0 / cW[1])
                M = s * Q

            if 'aM' in outin:
                Q, a, b = asplit(data[i])
                Q = Q / (
                    (fov / 10.0)**cfov
                )  #adjust Q for size (fov) of stimulus back to that 10° ref
                M = (a**2.0 + b**2.0)**0.5

            if 'aS' in outin:
                Q, a, b = asplit(data[i])
                Q = Q / (
                    (fov / 10.0)**cfov
                )  #adjust Q for size (fov) of stimulus back to that 10° ref
                s = (a**2.0 + b**2.0)**0.5
                M = s * Q

            if 'h' in outin:
                Q, WsM, h = asplit(data[i])
                Q = Q / (
                    (fov / 10.0)**cfov
                )  #adjust Q for size (fov) of stimulus back to that 10° ref
                if 'W' in outin:
                    s = (((1.0 / WsM) - 1.0) / cW[0])**(1.0 / cW[1])
                    M = s * Q
                elif 's' in outin:
                    M = WsM * Q
                elif 'M' in outin:
                    M = WsM

            # calculate achromatic signal, A from Q and M:
            A = Q / cA - cHK[0] * M**cHK[1]

            # calculate hue angle:
            h = hue_angle(a, b, htype='rad')

            # calculate a,b from M and h:
            a = (M / cM) * np.cos(h)
            b = (M / cM) * np.sin(h)

            a = a / ca
            b = b / cb

            # create Aab:
            Aab = ajoin((A, a, b))

            # calculate rgbc:
            rgbc = np.dot(invMAab, Aab.T).T

            # decompress rgbc to (adapted) rgba :
            rgba = naka_rushton(rgbc,
                                n=naka['n'],
                                sig=naka['sig'](rgbr.mean()),
                                noise=naka['noise'],
                                scaling=naka['scaling'],
                                direction='inverse')

            # apply inverse von-kries cat with D = 1:
            rgb = np.dot(np.diag((rgbb / rgbr)[0]), rgba.T).T

            # convert rgb to lms to xyz:
            lms = rgb / k * _CMF[cieobs]['K']
            xyz = np.dot(Mlms2xyz, lms.T).T

            camout[i] = xyz

    camout = np.transpose(camout, axes=(1, 0, 2))

    if camout.shape[1] == 1:
        camout = np.squeeze(camout, axis=1)

    return camout