コード例 #1
0
ファイル: test3.py プロジェクト: uhqinli/luxpy
"""
import luxpy as lx  # package for color science calculations
import matplotlib.pyplot as plt  # package for plotting
import numpy as np  # fundamental package for scientific computing
import timeit  # package for timing functions

cieobs = '1964_10'  # set CIE observer, i.e. cmf set
ccts = [3000, 4000, 4500, 6000]  # define M = 4 CCTs
ref_types = ['BB', 'DL', 'cierf', 'DL']  # define reference illuminant types

# calculate reference illuminants:
REF = lx.cri_ref(ccts, ref_type=ref_types, norm_type='lambda', norm_f=600)

TCS8 = lx._CRI_RFL['cie-13.3-1995']['8']  # 8 TCS from CIE 13.3-1995
xyz_TCS8_REF = lx.spd_to_xyz(REF, cieobs=cieobs, rfl=TCS8, relative=True)
xyz_TCS8_REF_2, xyz_REF_2 = lx.spd_to_xyz(REF,
                                          cieobs=cieobs,
                                          rfl=TCS8,
                                          relative=True,
                                          out=2)

Yuv_REF_2 = lx.xyz_to_Yuv(xyz_REF_2)
axh = lx.plotSL(cspace = 'Yuv', cieobs = cieobs, show = False,\
                 BBL = True, DL = True, diagram_colors = True)

# Step 2:
Y, u, v = np.squeeze(lx.asplit(Yuv_REF_2))  # splits array along last axis

# Step 3:
lx.plot_color_data(u, v, formatstr='go', label='Yuv_REF_2')
コード例 #2
0
def xyz_to_rfl(xyz, rfl = None, out = 'rfl_est', \
                 refspd = None, D = None, cieobs = _CIEOBS, \
                 cspace = 'ipt', cspace_tf = {},\
                 k_neighbours = 4, verbosity = 0):
    """
    Approximate spectral reflectance of xyz based on k nearest neighbour 
    interpolation of samples from a standard reflectance set.
    
    Args:
        :xyz: 
            | ndarray with tristimulus values of target points.
        :rfl: 
            | ndarray, optional
            | Reflectance set for color coordinate to rfl mapping.
        :out: 
            | 'rfl_est' or str, optional
        :refspd: 
            | None, optional
            | Refer ence spectrum for color coordinate to rfl mapping.
            | None defaults to D65.
        :cieobs:
            | _CIEOBS, optional
            | CMF set used for calculation of xyz from spectral data.
        :cspace:
            | 'ipt',  optional
            | Color space for color coordinate to rfl mapping.
        :cspace_tf:
            | {}, optional
            | Dict with parameters for xyz_to_... and ..._to_xyz transform.
        :k_neighbours:
            | 4 or int, optional
            | Number of nearest neighbours for reflectance spectrum interpolation.
            | Neighbours are found using scipy.cKDTree
        :verbosity:
            | 0, optional
            | If > 0: make a plot of the color coordinates of original and 
              rendered image pixels.

    Returns:
        :returns: 
            | :rfl_est:
            | ndarrays with estimated reflectance spectra.
    """

    # get rfl set:
    if rfl is None:  # use IESTM30['4880'] set
        rfl = _CRI_RFL['ies-tm30']['4880']['5nm']

    # get Ref spd:
    if refspd is None:
        refspd = _CIE_ILLUMINANTS['D65'].copy()

    # Calculate lab-type coordinates of standard rfl set under refspd:
    xyz_rr, xyz_wr = spd_to_xyz(refspd,
                                relative=True,
                                rfl=rfl,
                                cieobs=cieobs,
                                out=2)
    cspace_tf_copy = cspace_tf.copy()
    cspace_tf_copy['xyzw'] = xyz_wr  # put correct white point in param. dict
    lab_rr = colortf(xyz_rr,
                     tf=cspace,
                     fwtf=cspace_tf_copy,
                     bwtf=cspace_tf_copy)[:, 0, :]

    # Convert xyz to lab-type values under refspd:
    lab = colortf(xyz, tf=cspace, fwtf=cspace_tf_copy, bwtf=cspace_tf_copy)

    # Find rfl (cfr. lab_rr) from rfl set that results in 'near' metameric
    # color coordinates for each value in lab_ur (i.e. smallest DE):
    # Construct cKDTree:
    tree = cKDTree(lab_rr, copy_data=True)

    # Interpolate rfls using k nearest neightbours and inverse distance weigthing:
    d, inds = tree.query(lab, k=k_neighbours)
    if k_neighbours > 1:
        w = (1.0 / d**2)[:, :, None]  # inverse distance weigthing
        rfl_est = np.sum(w * rfl[inds + 1, :], axis=1) / np.sum(w, axis=1)
    else:
        rfl_est = rfl[inds + 1, :].copy()
    rfl_est = np.vstack((rfl[0], rfl_est))

    if (verbosity > 0) | ('xyz_est' in out.split(',')) | (
            'lab_est' in out.split(',')) | ('DEi_ab' in out.split(',')) | (
                'DEa_ab' in out.split(',')):
        xyz_est, _ = spd_to_xyz(refspd,
                                rfl=rfl_est,
                                relative=True,
                                cieobs=cieobs,
                                out=2)
        cspace_tf_copy = cspace_tf.copy()
        cspace_tf_copy[
            'xyzw'] = xyz_wr  # put correct white point in param. dict
        lab_est = colortf(xyz_est, tf=cspace, fwtf=cspace_tf_copy)[:, 0, :]
        DEi_ab = np.sqrt(((lab_est[:, 1:3] - lab[:, 1:3])**2).sum(axis=1))
        DEa_ab = DEi_ab.mean()

    if verbosity > 0:
        ax = plot_color_data(lab[...,1], lab[...,2], z = lab[...,0], \
                        show = False, cieobs = cieobs, cspace = cspace, \
                        formatstr = 'ro', label = 'Original')
        plot_color_data(lab_est[...,1], lab_est[...,2], z = lab_est[...,0], \
                        show = True, axh = ax, cieobs = cieobs, cspace = cspace, \
                        formatstr = 'bd', label = 'Rendered')

    if out == 'rfl_est':
        return rfl_est
    elif out == 'rfl_est,xyz_est':
        return rfl_est, xyz_est
    else:
        return eval(out)
コード例 #3
0
def xyz_to_rfl(xyz, CSF = None, rfl = None, out = 'rfl_est', \
                 refspd = None, D = None, cieobs = _CIEOBS, \
                 cspace = 'xyz', cspace_tf = {},\
                 interp_type = 'nd', k_neighbours = 4, verbosity = 0):
    """
    Approximate spectral reflectance of xyz values based on nd-dimensional linear interpolation 
    or k nearest neighbour interpolation of samples from a standard reflectance set.
    
    Args:
        :xyz: 
            | ndarray with xyz values of target points.
        :CSF:
            | None, optional
            | RGB camera response functions.
            | If None: input :xyz: contains raw rgb (float) values. Override :cspace:
            | argument and perform estimation directly in raw rgb space!!!
        :rfl: 
            | ndarray, optional
            | Reflectance set for color coordinate to rfl mapping.
        :out: 
            | 'rfl_est' or str, optional
        :refspd: 
            | None, optional
            | Refer ence spectrum for color coordinate to rfl mapping.
            | None defaults to D65.
        :cieobs:
            | _CIEOBS, optional
            | CMF set used for calculation of xyz from spectral data.
        :cspace:
            | 'xyz',  optional
            | Color space for color coordinate to rfl mapping.
            | Tip: Use linear space (e.g. 'xyz', 'Yuv',...) for (interp_type == 'nd'),
            |      and perceptually uniform space (e.g. 'ipt') for (interp_type == 'nearest')
        :cspace_tf:
            | {}, optional
            | Dict with parameters for xyz_to_cspace and cspace_to_xyz transform.
        :interp_type:
            | 'nd', optional
            | Options:
            | - 'nd': perform n-dimensional linear interpolation using Delaunay triangulation.
            | - 'nearest': perform nearest neighbour interpolation. 
        :k_neighbours:
            | 4 or int, optional
            | Number of nearest neighbours for reflectance spectrum interpolation.
            | Neighbours are found using scipy.spatial.cKDTree
        :verbosity:
            | 0, optional
            | If > 0: make a plot of the color coordinates of original and 
            | rendered image pixels.

    Returns:
        :returns: 
            | :rfl_est:
            | ndarrays with estimated reflectance spectra.
    """

    # get rfl set:
    if rfl is None:  # use IESTM30['4880'] set
        rfl = _CRI_RFL['ies-tm30']['4880']['5nm']

    wlr = rfl[0]

    # get Ref spd:
    if refspd is None:
        refspd = _CIE_ILLUMINANTS['D65'].copy()
    refspd = cie_interp(
        refspd, wlr,
        kind='linear')  # force spd to same wavelength range as rfl

    # Calculate rgb values of standard rfl set under refspd:
    if CSF is None:
        # Calculate lab coordinates:
        xyz_rr, xyz_wr = spd_to_xyz(refspd,
                                    relative=True,
                                    rfl=rfl,
                                    cieobs=cieobs,
                                    out=2)
        cspace_tf_copy = cspace_tf.copy()
        cspace_tf_copy[
            'xyzw'] = xyz_wr  # put correct white point in param. dict
        lab_rr = colortf(xyz_rr,
                         tf=cspace,
                         fwtf=cspace_tf_copy,
                         bwtf=cspace_tf_copy)[:, 0, :]
    else:
        # Calculate rgb coordinates from camera sensitivity functions
        rgb_rr = rfl_to_rgb(rfl, spd=refspd, CSF=CSF, wl=None)
        lab_rr = rgb_rr
        xyz = xyz
        lab_rr = np.round(lab_rr, _ROUNDING)  # speed up search

    # Convert xyz to lab-type values under refspd:
    if CSF is None:
        lab = colortf(xyz, tf=cspace, fwtf=cspace_tf_copy, bwtf=cspace_tf_copy)
    else:
        lab = xyz  # xyz contained rgb values !!!
        rgb = xyz
        lab = np.round(lab, _ROUNDING)  # speed up search

    if interp_type == 'nearest':
        # Find rfl (cfr. lab_rr) from rfl set that results in 'near' metameric
        # color coordinates for each value in lab_ur (i.e. smallest DE):
        # Construct cKDTree:
        tree = sp.spatial.cKDTree(lab_rr, copy_data=True)

        # Interpolate rfls using k nearest neightbours and inverse distance weigthing:
        d, inds = tree.query(lab, k=k_neighbours)
        if k_neighbours > 1:
            d += _EPS
            w = (1.0 / d**2)[:, :, None]  # inverse distance weigthing
            rfl_est = np.sum(w * rfl[inds + 1, :], axis=1) / np.sum(w, axis=1)
        else:
            rfl_est = rfl[inds + 1, :].copy()
    elif interp_type == 'nd':

        rfl_est = math.ndinterp1_scipy(lab_rr, rfl[1:], lab)

        _isnan = np.isnan(rfl_est[:, 0])

        if (
                _isnan.any()
        ):  #do nearest neigbour method for those that fail using Delaunay (i.e. ndinterp1_scipy)

            # Find rfl (cfr. lab_rr) from rfl set that results in 'near' metameric
            # color coordinates for each value in lab_ur (i.e. smallest DE):
            # Construct cKDTree:
            tree = sp.spatial.cKDTree(lab_rr, copy_data=True)

            # Interpolate rfls using k nearest neightbours and inverse distance weigthing:
            d, inds = tree.query(lab[_isnan, ...], k=k_neighbours)

            if k_neighbours > 1:
                d += _EPS
                w = (1.0 / d**2)[:, :, None]  # inverse distance weigthing
                rfl_est_isnan = np.sum(w * rfl[inds + 1, :], axis=1) / np.sum(
                    w, axis=1)
            else:
                rfl_est_isnan = rfl[inds + 1, :].copy()
            rfl_est[_isnan, :] = rfl_est_isnan

    else:
        raise Exception('xyz_to_rfl(): unsupported interp_type!')

    rfl_est[
        rfl_est <
        0] = 0  #can occur for points outside convexhull of standard rfl set.

    rfl_est = np.vstack((rfl[0], rfl_est))

    if ((verbosity > 0) | ('xyz_est' in out.split(',')) |
        ('lab_est' in out.split(',')) | ('DEi_ab' in out.split(',')) |
        ('DEa_ab' in out.split(','))) & (CSF is None):
        xyz_est, _ = spd_to_xyz(refspd,
                                rfl=rfl_est,
                                relative=True,
                                cieobs=cieobs,
                                out=2)
        cspace_tf_copy = cspace_tf.copy()
        cspace_tf_copy[
            'xyzw'] = xyz_wr  # put correct white point in param. dict
        lab_est = colortf(xyz_est, tf=cspace, fwtf=cspace_tf_copy)[:, 0, :]
        DEi_ab = np.sqrt(((lab_est[:, 1:3] - lab[:, 1:3])**2).sum(axis=1))
        DEa_ab = DEi_ab.mean()
    elif ((verbosity > 0) | ('xyz_est' in out.split(',')) |
          ('rgb_est' in out.split(',')) | ('DEi_rgb' in out.split(',')) |
          ('DEa_rgb' in out.split(','))) & (CSF is not None):
        rgb_est = rfl_to_rgb(rfl_est[1:], spd=refspd, CSF=CSF, wl=wlr)
        xyz_est = rgb_est
        DEi_rgb = np.sqrt(((rgb_est - rgb)**2).sum(axis=1))
        DEa_rgb = DEi_rgb.mean()

    if verbosity > 0:
        if CSF is None:
            ax = plot_color_data(lab[...,1], lab[...,2], z = lab[...,0], \
                            show = False, cieobs = cieobs, cspace = cspace, \
                            formatstr = 'ro', label = 'Original')
            plot_color_data(lab_est[...,1], lab_est[...,2], z = lab_est[...,0], \
                            show = True, axh = ax, cieobs = cieobs, cspace = cspace, \
                            formatstr = 'bd', label = 'Rendered')
        else:
            n = 100  #min(rfl.shape[0]-1,rfl_est.shape[0]-1)
            s = np.random.permutation(rfl.shape[0] -
                                      1)[:min(n, rfl.shape[0] - 1)]
            st = np.random.permutation(rfl_est.shape[0] -
                                       1)[:min(n, rfl_est.shape[0] - 1)]
            fig = plt.figure()
            ax = np.zeros((3, ), dtype=np.object)
            ax[0] = fig.add_subplot(131)
            ax[1] = fig.add_subplot(132)
            ax[2] = fig.add_subplot(133, projection='3d')
            ax[0].plot(rfl[0], rfl[1:][s].T, linestyle='-')
            ax[0].set_title('Original RFL set (random selection of all)')
            ax[0].set_ylim([0, 1])
            ax[1].plot(rfl_est[0], rfl_est[1:][st].T, linestyle='--')
            ax[0].set_title('Estimated RFL set (random selection of targets)')
            ax[1].set_ylim([0, 1])
            ax[2].plot(rgb[st, 0],
                       rgb[st, 1],
                       rgb[st, 2],
                       'ro',
                       label='Original')
            ax[2].plot(rgb_est[st, 0],
                       rgb_est[st, 1],
                       rgb_est[st, 2],
                       'bd',
                       label='Rendered')
            ax[2].legend()
    if out == 'rfl_est':
        return rfl_est
    elif out == 'rfl_est,xyz_est':
        return rfl_est, xyz_est
    else:
        return eval(out)
コード例 #4
0
def xyz_to_rfl(xyz, rfl = None, out = 'rfl_est', \
                 refspd = None, D = None, cieobs = _CIEOBS, \
                 cspace = 'xyz', cspace_tf = {},\
                 interp_type = 'nd', k_neighbours = 4, verbosity = 0):
    """
    Approximate spectral reflectance of xyz based on nd-dimensional linear interpolation 
    or k nearest neighbour interpolation of samples from a standard reflectance set.
    
    Args:
        :xyz: 
            | ndarray with tristimulus values of target points.
        :rfl: 
            | ndarray, optional
            | Reflectance set for color coordinate to rfl mapping.
        :out: 
            | 'rfl_est' or str, optional
        :refspd: 
            | None, optional
            | Refer ence spectrum for color coordinate to rfl mapping.
            | None defaults to D65.
        :cieobs:
            | _CIEOBS, optional
            | CMF set used for calculation of xyz from spectral data.
        :cspace:
            | 'xyz',  optional
            | Color space for color coordinate to rfl mapping.
            | Tip: Use linear space (e.g. 'xyz', 'Yuv',...) for (interp_type == 'nd'),
            |      and perceptually uniform space (e.g. 'ipt') for (interp_type == 'nearest')
        :cspace_tf:
            | {}, optional
            | Dict with parameters for xyz_to_cspace and cspace_to_xyz transform.
        :interp_type:
            | 'nd', optional
            | Options:
            | - 'nd': perform n-dimensional linear interpolation using Delaunay triangulation.
            | - 'nearest': perform nearest neighbour interpolation. 
        :k_neighbours:
            | 4 or int, optional
            | Number of nearest neighbours for reflectance spectrum interpolation.
            | Neighbours are found using scipy.spatial.cKDTree
        :verbosity:
            | 0, optional
            | If > 0: make a plot of the color coordinates of original and 
            | rendered image pixels.

    Returns:
        :returns: 
            | :rfl_est:
            | ndarrays with estimated reflectance spectra.
    """

    # get rfl set:
    if rfl is None:  # use IESTM30['4880'] set
        rfl = _CRI_RFL['ies-tm30']['4880']['5nm']

    # get Ref spd:
    if refspd is None:
        refspd = _CIE_ILLUMINANTS['D65'].copy()

    # Calculate lab-type coordinates of standard rfl set under refspd:
    xyz_rr, xyz_wr = spd_to_xyz(refspd,
                                relative=True,
                                rfl=rfl,
                                cieobs=cieobs,
                                out=2)
    cspace_tf_copy = cspace_tf.copy()
    cspace_tf_copy['xyzw'] = xyz_wr  # put correct white point in param. dict
    lab_rr = colortf(xyz_rr,
                     tf=cspace,
                     fwtf=cspace_tf_copy,
                     bwtf=cspace_tf_copy)[:, 0, :]

    # Convert xyz to lab-type values under refspd:
    lab = colortf(xyz, tf=cspace, fwtf=cspace_tf_copy, bwtf=cspace_tf_copy)

    if interp_type == 'nearest':
        # Find rfl (cfr. lab_rr) from rfl set that results in 'near' metameric
        # color coordinates for each value in lab_ur (i.e. smallest DE):
        # Construct cKDTree:
        tree = sp.spatial.cKDTree(lab_rr, copy_data=True)

        # Interpolate rfls using k nearest neightbours and inverse distance weigthing:
        d, inds = tree.query(lab, k=k_neighbours)
        if k_neighbours > 1:
            d += _EPS
            w = (1.0 / d**2)[:, :, None]  # inverse distance weigthing
            rfl_est = np.sum(w * rfl[inds + 1, :], axis=1) / np.sum(w, axis=1)
        else:
            rfl_est = rfl[inds + 1, :].copy()
    elif interp_type == 'nd':
        rfl_est = math.ndinterp1_scipy(lab_rr, rfl[1:], lab)

        _isnan = np.isnan(rfl_est[:, 0])

        if (
                _isnan.any()
        ):  #do nearest neigbour method for those that fail using Delaunay (i.e. ndinterp1_scipy)

            # Find rfl (cfr. lab_rr) from rfl set that results in 'near' metameric
            # color coordinates for each value in lab_ur (i.e. smallest DE):
            # Construct cKDTree:
            tree = sp.spatial.cKDTree(lab_rr, copy_data=True)

            # Interpolate rfls using k nearest neightbours and inverse distance weigthing:
            d, inds = tree.query(lab[_isnan, ...], k=k_neighbours)
            if k_neighbours > 1:
                d += _EPS
                w = (1.0 / d**2)[:, :, None]  # inverse distance weigthing
                rfl_est_isnan = np.sum(w * rfl[inds + 1, :], axis=1) / np.sum(
                    w, axis=1)
            else:
                rfl_est_isnan = rfl[inds + 1, :].copy()
            rfl_est[_isnan, :] = rfl_est_isnan
    else:
        raise Exception('xyz_to_rfl(): unsupported interp_type!')

    rfl_est[
        rfl_est <
        0] = 0  #can occur for points outside convexhull of standard rfl set.

    rfl_est = np.vstack((rfl[0], rfl_est))

    if (verbosity > 0) | ('xyz_est' in out.split(',')) | (
            'lab_est' in out.split(',')) | ('DEi_ab' in out.split(',')) | (
                'DEa_ab' in out.split(',')):
        xyz_est, _ = spd_to_xyz(refspd,
                                rfl=rfl_est,
                                relative=True,
                                cieobs=cieobs,
                                out=2)
        cspace_tf_copy = cspace_tf.copy()
        cspace_tf_copy[
            'xyzw'] = xyz_wr  # put correct white point in param. dict
        lab_est = colortf(xyz_est, tf=cspace, fwtf=cspace_tf_copy)[:, 0, :]
        DEi_ab = np.sqrt(((lab_est[:, 1:3] - lab[:, 1:3])**2).sum(axis=1))
        DEa_ab = DEi_ab.mean()

    if verbosity > 0:
        ax = plot_color_data(lab[...,1], lab[...,2], z = lab[...,0], \
                        show = False, cieobs = cieobs, cspace = cspace, \
                        formatstr = 'ro', label = 'Original')
        plot_color_data(lab_est[...,1], lab_est[...,2], z = lab_est[...,0], \
                        show = True, axh = ax, cieobs = cieobs, cspace = cspace, \
                        formatstr = 'bd', label = 'Rendered')

    if out == 'rfl_est':
        return rfl_est
    elif out == 'rfl_est,xyz_est':
        return rfl_est, xyz_est
    else:
        return eval(out)