def setUp(self): self.nspec = 5 self.nwave = 10 self.wave = np.arange(self.nwave) self.fiberflat = np.random.uniform(size=(self.nspec, self.nwave)) self.ivar = np.ones(self.fiberflat.shape) self.mask = np.zeros(self.fiberflat.shape, dtype=np.uint32) self.meanspec = np.random.uniform(size=self.nwave) self.ff = FiberFlat(self.wave, self.fiberflat, self.ivar, self.mask, self.meanspec)
def run_pa(self, frame, outputfile): from lvmspec.fiberflat import FiberFlat import lvmspec.io.fiberflat as ffIO from lvmspec.linalg import cholesky_solve nwave = frame.nwave nfibers = frame.nspec wave = frame.wave #- this will become part of output too flux = frame.flux sumFlux = np.zeros((nwave)) realFlux = np.zeros(flux.shape) ivar = frame.ivar * (frame.mask == 0) #deconv for fib in range(nfibers): Rf = frame.R[fib].todense() B = flux[fib] realFlux[fib] = cholesky_solve(Rf, B) sumFlux += realFlux[fib] #iflux=nfibers/sumFlux flat = np.zeros(flux.shape) flat_ivar = np.zeros(ivar.shape) avg = sumFlux / nfibers for fib in range(nfibers): Rf = frame.R[fib] # apply and reconvolute M = Rf.dot(avg) M0 = (M == 0) flat[fib] = (~M0) * flux[fib] / (M + M0) + M0 flat_ivar[fib] = ivar[fib] * M**2 fibflat = FiberFlat(frame.wave.copy(), flat, flat_ivar, frame.mask.copy(), avg) #fiberflat=compute_fiberflat(input_frame) ffIO.write_fiberflat(outputfile, fibflat, header=frame.meta) log.info("Wrote fiberflat file {}".format(outputfile))
def _write_fiberflat(self): """Write a fake fiberflat""" fiberflat = np.ones((self.nspec, self.nwave)) ivar = np.ones((self.nspec, self.nwave)) mask = np.zeros((self.nspec, self.nwave), dtype=int) meanspec = np.ones(self.nwave) ff = FiberFlat(self.wave, fiberflat, ivar, mask, meanspec) io.write_fiberflat(self.fiberflatfile, ff)
def get_fiberflat_from_frame(frame): from lvmspec.fiberflat import FiberFlat flux = frame.flux fiberflat = np.ones_like(flux) ffivar = 2 * np.ones_like(flux) fiberflat[0] *= 0.8 fiberflat[1] *= 1.2 ff = FiberFlat(frame.wave, fiberflat, ffivar) return ff
def test_apply_fiberflat_ivar(self): '''test error propagation in apply_fiberflat''' wave = np.arange(5000, 5010) nwave = len(wave) nspec = 3 flux = np.random.uniform(0.9, 1.0, size=(nspec, nwave)) ivar = np.ones_like(flux) origframe = Frame(wave, flux, ivar, spectrograph=0) fiberflat = np.ones_like(flux) ffmask = np.zeros_like(flux) fiberflat[0] *= 0.5 fiberflat[1] *= 1.5 #- ff with essentially no error ffivar = 1e20 * np.ones_like(flux) ff = FiberFlat(wave, fiberflat, ffivar) frame = copy.deepcopy(origframe) apply_fiberflat(frame, ff) self.assertTrue(np.allclose(frame.ivar, fiberflat**2)) #- ff with large error ffivar = np.ones_like(flux) ff = FiberFlat(wave, fiberflat, ffivar) frame = copy.deepcopy(origframe) apply_fiberflat(frame, ff) #- c = a/b #- (sigma_c/c)^2 = (sigma_a/a)^2 + (sigma_b/b)^2 var = frame.flux**2 * (1.0/(origframe.ivar * origframe.flux**2) + \ 1.0/(ff.ivar * ff.fiberflat**2)) self.assertTrue(np.allclose(frame.ivar, 1 / var)) #- ff.ivar=0 should result in frame.ivar=0, even if ff.fiberflat=0 too ffivar = np.ones_like(flux) ffivar[0, 0:5] = 0.0 fiberflat[0, 0:5] = 0.0 ff = FiberFlat(wave, fiberflat, ffivar) frame = copy.deepcopy(origframe) apply_fiberflat(frame, ff) self.assertTrue(np.all(frame.ivar[0, 0:5] == 0.0))
def test_dimensions(self): #- check dimensionality mismatches with self.assertRaises(ValueError): FiberFlat(self.wave, self.wave, self.ivar, self.mask, self.meanspec) with self.assertRaises(ValueError): FiberFlat(self.wave, self.wave, self.ivar, self.mask, self.meanspec) with self.assertRaises(ValueError): FiberFlat(self.wave, self.fiberflat, self.ivar, self.mask, self.fiberflat) with self.assertRaises(ValueError): FiberFlat(self.wave, self.fiberflat[0:2], self.ivar, self.mask, self.meanspec) with self.assertRaises(ValueError): FiberFlat(self.fiberflat, self.fiberflat, self.ivar, self.mask, self.meanspec) with self.assertRaises(ValueError): FiberFlat(self.wave, self.fiberflat, self.wave, self.mask, self.meanspec) with self.assertRaises(ValueError): FiberFlat(self.wave, self.fiberflat, self.ivar, self.mask[0:2, :], self.meanspec) fibers = np.arange(self.nspec) FiberFlat(self.wave, self.fiberflat, self.ivar, self.mask, self.meanspec, fibers=fibers) with self.assertRaises(ValueError): FiberFlat(self.wave, self.fiberflat, self.ivar, self.mask, self.meanspec, fibers=fibers[1:])
def test_apply_fiberflat(self): '''test apply_fiberflat interface and changes to flux and mask''' wave = np.arange(5000, 5050) nwave = len(wave) nspec = 3 flux = np.random.uniform(size=(nspec, nwave)) ivar = np.ones_like(flux) frame = Frame(wave, flux, ivar, spectrograph=0) fiberflat = np.ones_like(flux) ffivar = 2 * np.ones_like(flux) ffmask = np.zeros_like(flux) fiberflat[0] *= 0.8 fiberflat[1] *= 1.2 fiberflat[2, 0:10] = 0 #- bad fiberflat ffivar[2, 10:20] = 0 #- bad fiberflat ffmask[2, 20:30] = 1 #- bad fiberflat ff = FiberFlat(wave, fiberflat, ffivar) origframe = copy.deepcopy(frame) apply_fiberflat(frame, ff) #- was fiberflat applied? self.assertTrue(np.all(frame.flux[0] == origframe.flux[0] / 0.8)) self.assertTrue(np.all(frame.flux[1] == origframe.flux[1] / 1.2)) self.assertTrue(np.all(frame.flux[2] == origframe.flux[2])) #- did mask get set? ii = (ff.fiberflat == 0) self.assertTrue(np.all((frame.mask[ii] & specmask.BADFIBERFLAT) != 0)) ii = (ff.ivar == 0) self.assertTrue(np.all((frame.mask[ii] & specmask.BADFIBERFLAT) != 0)) ii = (ff.mask != 0) self.assertTrue(np.all((frame.mask[ii] & specmask.BADFIBERFLAT) != 0)) #- Should fail if frame and ff don't have a common wavelength grid frame.wave = frame.wave + 0.1 with self.assertRaises(ValueError): apply_fiberflat(frame, ff)
def main(args): # Set up the logger if args.verbose: log = get_logger(DEBUG) else: log = get_logger() # Make sure all necessary environment variables are set setup_envs() # Initialize random number generator to use. np.random.seed(args.seed) random_state = np.random.RandomState(args.seed) # Derive spectrograph number from nstart if needed if args.spectrograph is None: args.spectrograph = args.nstart / args.n_fibers # Read fibermapfile to get object type, night and expid fibermap, objtype, night, expid = get_fibermap(args.fibermap, log=log, nspec=args.nspec) # Initialize the spectral simulator log.info("Initializing SpecSim with config {}".format(args.config)) lvmparams = load_lvmparams(config=args.config, telescope=args.telescope) qsim = get_simulator(args.config, num_fibers=1, params=lvmparams) if args.simspec: # Read the input file log.info('Reading input file {}'.format(args.simspec)) simspec = lvmsim.io.read_simspec(args.simspec) nspec = simspec.nspec if simspec.flavor == 'arc': # - TODO: do we need quickgen to support arcs? For full pipeline # - arcs are used to measure PSF but aren't extracted except for # - debugging. # - TODO: if we do need arcs, this needs to be redone. # - conversion from phot to flux doesn't include throughput, # - and arc lines are rebinned to nearest 0.2 A. # Create full wavelength and flux arrays for arc exposure wave_b = np.array(simspec.wave['b']) wave_r = np.array(simspec.wave['r']) wave_z = np.array(simspec.wave['z']) phot_b = np.array(simspec.phot['b'][0]) phot_r = np.array(simspec.phot['r'][0]) phot_z = np.array(simspec.phot['z'][0]) sim_wave = np.concatenate((wave_b, wave_r, wave_z)) sim_phot = np.concatenate((phot_b, phot_r, phot_z)) wavelengths = np.arange(3533., 9913.1, 0.2) phot = np.zeros(len(wavelengths)) for i in range(len(sim_wave)): wavelength = sim_wave[i] flux_index = np.argmin(abs(wavelength - wavelengths)) phot[flux_index] = sim_phot[i] # Convert photons to flux: following specter conversion method dw = np.gradient(wavelengths) exptime = 5. # typical BOSS exposure time in s fibarea = const.pi * (1.07e-2 / 2)**2 # cross-sectional fiber area in cm^2 hc = 1.e17 * const.h * const.c # convert to erg A spectra = (hc * exptime * fibarea * dw * phot) / wavelengths else: wavelengths = simspec.wave['brz'] spectra = simspec.flux if nspec < args.nspec: log.info("Only {} spectra in input file".format(nspec)) args.nspec = nspec else: # Initialize the output truth table. spectra = [] wavelengths = qsim.source.wavelength_out.to(u.Angstrom).value npix = len(wavelengths) truth = dict() meta = Table() truth['OBJTYPE'] = np.zeros(args.nspec, dtype=(str, 10)) truth['FLUX'] = np.zeros((args.nspec, npix)) truth['WAVE'] = wavelengths jj = list() for thisobj in set(true_objtype): ii = np.where(true_objtype == thisobj)[0] nobj = len(ii) truth['OBJTYPE'][ii] = thisobj log.info('Generating {} template'.format(thisobj)) # Generate the templates if thisobj == 'ELG': elg = lvmsim.templates.ELG(wave=wavelengths, add_SNeIa=args.add_SNeIa) flux, tmpwave, meta1 = elg.make_templates( nmodel=nobj, seed=args.seed, zrange=args.zrange_elg, sne_rfluxratiorange=args.sne_rfluxratiorange) elif thisobj == 'LRG': lrg = lvmsim.templates.LRG(wave=wavelengths, add_SNeIa=args.add_SNeIa) flux, tmpwave, meta1 = lrg.make_templates( nmodel=nobj, seed=args.seed, zrange=args.zrange_lrg, sne_rfluxratiorange=args.sne_rfluxratiorange) elif thisobj == 'QSO': qso = lvmsim.templates.QSO(wave=wavelengths) flux, tmpwave, meta1 = qso.make_templates( nmodel=nobj, seed=args.seed, zrange=args.zrange_qso) elif thisobj == 'BGS': bgs = lvmsim.templates.BGS(wave=wavelengths, add_SNeIa=args.add_SNeIa) flux, tmpwave, meta1 = bgs.make_templates( nmodel=nobj, seed=args.seed, zrange=args.zrange_bgs, rmagrange=args.rmagrange_bgs, sne_rfluxratiorange=args.sne_rfluxratiorange) elif thisobj == 'STD': fstd = lvmsim.templates.FSTD(wave=wavelengths) flux, tmpwave, meta1 = fstd.make_templates(nmodel=nobj, seed=args.seed) elif thisobj == 'QSO_BAD': # use STAR template no color cuts star = lvmsim.templates.STAR(wave=wavelengths) flux, tmpwave, meta1 = star.make_templates(nmodel=nobj, seed=args.seed) elif thisobj == 'MWS_STAR' or thisobj == 'MWS': mwsstar = lvmsim.templates.MWS_STAR(wave=wavelengths) flux, tmpwave, meta1 = mwsstar.make_templates(nmodel=nobj, seed=args.seed) elif thisobj == 'WD': wd = lvmsim.templates.WD(wave=wavelengths) flux, tmpwave, meta1 = wd.make_templates(nmodel=nobj, seed=args.seed) elif thisobj == 'SKY': flux = np.zeros((nobj, npix)) meta1 = Table(dict(REDSHIFT=np.zeros(nobj, dtype=np.float32))) elif thisobj == 'TEST': flux = np.zeros((args.nspec, npix)) indx = np.where(wave > 5800.0 - 1E-6)[0][0] ref_integrated_flux = 1E-10 ref_cst_flux_density = 1E-17 single_line = (np.arange(args.nspec) % 2 == 0).astype( np.float32) continuum = (np.arange(args.nspec) % 2 == 1).astype(np.float32) for spec in range(args.nspec): flux[spec, indx] = single_line[ spec] * ref_integrated_flux / np.gradient(wavelengths)[ indx] # single line flux[spec] += continuum[ spec] * ref_cst_flux_density # flat continuum meta1 = Table( dict(REDSHIFT=np.zeros(args.nspec, dtype=np.float32), LINE=wave[indx] * np.ones(args.nspec, dtype=np.float32), LINEFLUX=single_line * ref_integrated_flux, CONSTFLUXDENSITY=continuum * ref_cst_flux_density)) else: log.fatal('Unknown object type {}'.format(thisobj)) sys.exit(1) # Pack it in. truth['FLUX'][ii] = flux meta = vstack([meta, meta1]) jj.append(ii.tolist()) # Sanity check on units; templates currently return ergs, not 1e-17 ergs... # assert (thisobj == 'SKY') or (np.max(truth['FLUX']) < 1e-6) # Sort the metadata table. jj = sum(jj, []) meta_new = Table() for k in range(args.nspec): index = int(np.where(np.array(jj) == k)[0]) meta_new = vstack([meta_new, meta[index]]) meta = meta_new # Add TARGETID and the true OBJTYPE to the metadata table. meta.add_column( Column(true_objtype, dtype=(str, 10), name='TRUE_OBJTYPE')) meta.add_column(Column(targetids, name='TARGETID')) # Rename REDSHIFT -> TRUEZ anticipating later table joins with zbest.Z meta.rename_column('REDSHIFT', 'TRUEZ') # ---------- end simspec # explicitly set location on focal plane if needed to support airmass # variations when using specsim v0.5 if qsim.source.focal_xy is None: qsim.source.focal_xy = (u.Quantity(0, 'mm'), u.Quantity(100, 'mm')) # Set simulation parameters from the simspec header or lvmparams bright_objects = ['bgs', 'mws', 'bright', 'BGS', 'MWS', 'BRIGHT_MIX'] gray_objects = ['gray', 'grey'] if args.simspec is None: object_type = objtype flavor = None elif simspec.flavor == 'science': object_type = None flavor = simspec.header['PROGRAM'] else: object_type = None flavor = simspec.flavor log.warning( 'Maybe using an outdated simspec file with flavor={}'.format( flavor)) # Set airmass if args.airmass is not None: qsim.atmosphere.airmass = args.airmass elif args.simspec and 'AIRMASS' in simspec.header: qsim.atmosphere.airmass = simspec.header['AIRMASS'] else: qsim.atmosphere.airmass = 1.25 # Science Req. Doc L3.3.2 # Set site location if args.location is not None: qsim.observation.observatory = args.location else: qsim.observation.observatory = 'APO' # Set exptime if args.exptime is not None: qsim.observation.exposure_time = args.exptime * u.s elif args.simspec and 'EXPTIME' in simspec.header: qsim.observation.exposure_time = simspec.header['EXPTIME'] * u.s elif objtype in bright_objects: qsim.observation.exposure_time = lvmparams['exptime_bright'] * u.s else: qsim.observation.exposure_time = lvmparams['exptime_dark'] * u.s # Set Moon Phase if args.moon_phase is not None: qsim.atmosphere.moon.moon_phase = args.moon_phase elif args.simspec and 'MOONFRAC' in simspec.header: qsim.atmosphere.moon.moon_phase = simspec.header['MOONFRAC'] elif flavor in bright_objects or object_type in bright_objects: qsim.atmosphere.moon.moon_phase = 0.7 elif flavor in gray_objects: qsim.atmosphere.moon.moon_phase = 0.1 else: qsim.atmosphere.moon.moon_phase = 0.5 # Set Moon Zenith if args.moon_zenith is not None: qsim.atmosphere.moon.moon_zenith = args.moon_zenith * u.deg elif args.simspec and 'MOONALT' in simspec.header: qsim.atmosphere.moon.moon_zenith = simspec.header['MOONALT'] * u.deg elif flavor in bright_objects or object_type in bright_objects: qsim.atmosphere.moon.moon_zenith = 30 * u.deg elif flavor in gray_objects: qsim.atmosphere.moon.moon_zenith = 80 * u.deg else: qsim.atmosphere.moon.moon_zenith = 100 * u.deg # Set Moon - Object Angle if args.moon_angle is not None: qsim.atmosphere.moon.separation_angle = args.moon_angle * u.deg elif args.simspec and 'MOONSEP' in simspec.header: qsim.atmosphere.moon.separation_angle = simspec.header[ 'MOONSEP'] * u.deg elif flavor in bright_objects or object_type in bright_objects: qsim.atmosphere.moon.separation_angle = 50 * u.deg elif flavor in gray_objects: qsim.atmosphere.moon.separation_angle = 60 * u.deg else: qsim.atmosphere.moon.separation_angle = 60 * u.deg # Initialize per-camera output arrays that will be saved waves, trueflux, noisyflux, obsivar, resolution, sflux = {}, {}, {}, {}, {}, {} maxbin = 0 nmax = args.nspec for camera in qsim.instrument.cameras: # Lookup this camera's resolution matrix and convert to the sparse format used in lvmspec. R = Resolution(camera.get_output_resolution_matrix()) resolution[camera.name] = np.tile(R.to_fits_array(), [args.nspec, 1, 1]) waves[camera.name] = (camera.output_wavelength.to( u.Angstrom).value.astype(np.float32)) nwave = len(waves[camera.name]) maxbin = max(maxbin, len(waves[camera.name])) nobj = np.zeros((nmax, 3, maxbin)) # object photons nsky = np.zeros((nmax, 3, maxbin)) # sky photons nivar = np.zeros((nmax, 3, maxbin)) # inverse variance (object+sky) cframe_observedflux = np.zeros( (nmax, 3, maxbin)) # calibrated object flux cframe_ivar = np.zeros( (nmax, 3, maxbin)) # inverse variance of calibrated object flux cframe_rand_noise = np.zeros( (nmax, 3, maxbin)) # random Gaussian noise to calibrated flux sky_ivar = np.zeros((nmax, 3, maxbin)) # inverse variance of sky sky_rand_noise = np.zeros( (nmax, 3, maxbin)) # random Gaussian noise to sky only frame_rand_noise = np.zeros( (nmax, 3, maxbin)) # random Gaussian noise to nobj+nsky trueflux[camera.name] = np.empty( (args.nspec, nwave)) # calibrated flux noisyflux[camera.name] = np.empty( (args.nspec, nwave)) # observed flux with noise obsivar[camera.name] = np.empty( (args.nspec, nwave)) # inverse variance of flux if args.simspec: dw = np.gradient(simspec.wave[camera.name]) else: sflux = np.empty((args.nspec, npix)) # - Check if input simspec is for a continuum flat lamp instead of science # - This does not convolve to per-fiber resolution if args.simspec: if simspec.flavor == 'flat': log.info("Simulating flat lamp exposure") for i, camera in enumerate(qsim.instrument.cameras): channel = camera.name assert camera.output_wavelength.unit == u.Angstrom num_pixels = len(waves[channel]) dw = np.gradient(simspec.wave[channel]) meanspec = resample_flux( waves[channel], simspec.wave[channel], np.average(simspec.phot[channel] / dw, axis=0)) fiberflat = random_state.normal(loc=1.0, scale=1.0 / np.sqrt(meanspec), size=(nspec, num_pixels)) ivar = np.tile(meanspec, [nspec, 1]) mask = np.zeros((simspec.nspec, num_pixels), dtype=np.uint32) for kk in range((args.nspec + args.nstart - 1) // args.n_fibers + 1): camera = channel + str(kk) outfile = lvmspec.io.findfile('fiberflat', night, expid, camera) start = max(args.n_fibers * kk, args.nstart) end = min(args.n_fibers * (kk + 1), nmax) if (args.spectrograph <= kk): log.info( "Writing files for channel:{}, spectrograph:{}, spectra:{} to {}" .format(channel, kk, start, end)) ff = FiberFlat(waves[channel], fiberflat[start:end, :], ivar[start:end, :], mask[start:end, :], meanspec, header=dict(CAMERA=camera)) write_fiberflat(outfile, ff) filePath = lvmspec.io.findfile("fiberflat", night, expid, camera) log.info("Wrote file {}".format(filePath)) sys.exit(0) # Repeat the simulation for all spectra scale = 1e-17 fluxunits = scale * u.erg / (u.s * u.cm**2 * u.Angstrom) for j in range(args.nspec): thisobjtype = objtype[j] sys.stdout.flush() if flavor == 'arc': qsim.source.update_in('Quickgen source {0}'.format, 'perfect', wavelengths * u.Angstrom, spectra * fluxunits) else: qsim.source.update_in('Quickgen source {0}'.format(j), thisobjtype.lower(), wavelengths * u.Angstrom, spectra[j, :] * fluxunits) qsim.source.update_out() qsim.simulate() qsim.generate_random_noise(random_state) for i, output in enumerate(qsim.camera_output): assert output['observed_flux'].unit == 1e17 * fluxunits # Extract the simulation results needed to create our uncalibrated # frame output file. num_pixels = len(output) nobj[j, i, :num_pixels] = output['num_source_electrons'][:, 0] nsky[j, i, :num_pixels] = output['num_sky_electrons'][:, 0] nivar[j, i, :num_pixels] = 1.0 / output['variance_electrons'][:, 0] # Get results for our flux-calibrated output file. cframe_observedflux[ j, i, :num_pixels] = 1e17 * output['observed_flux'][:, 0] cframe_ivar[ j, i, :num_pixels] = 1e-34 * output['flux_inverse_variance'][:, 0] # Fill brick arrays from the results. camera = output.meta['name'] trueflux[camera][j][:] = 1e17 * output['observed_flux'][:, 0] noisyflux[camera][j][:] = 1e17 * ( output['observed_flux'][:, 0] + output['flux_calibration'][:, 0] * output['random_noise_electrons'][:, 0]) obsivar[camera][j][:] = 1e-34 * output['flux_inverse_variance'][:, 0] # Use the same noise realization in the cframe and frame, without any # additional noise from sky subtraction for now. frame_rand_noise[ j, i, :num_pixels] = output['random_noise_electrons'][:, 0] cframe_rand_noise[j, i, :num_pixels] = 1e17 * ( output['flux_calibration'][:, 0] * output['random_noise_electrons'][:, 0]) # The sky output file represents a model fit to ~40 sky fibers. # We reduce the variance by a factor of 25 to account for this and # give the sky an independent (Gaussian) noise realization. sky_ivar[ j, i, :num_pixels] = 25.0 / (output['variance_electrons'][:, 0] - output['num_source_electrons'][:, 0]) sky_rand_noise[j, i, :num_pixels] = random_state.normal( scale=1.0 / np.sqrt(sky_ivar[j, i, :num_pixels]), size=num_pixels) armName = {"b": 0, "r": 1, "z": 2} for channel in 'brz': # Before writing, convert from counts/bin to counts/A (as in Pixsim output) # Quicksim Default: # FLUX - input spectrum resampled to this binning; no noise added [1e-17 erg/s/cm2/s/Ang] # COUNTS_OBJ - object counts in 0.5 Ang bin # COUNTS_SKY - sky counts in 0.5 Ang bin num_pixels = len(waves[channel]) dwave = np.gradient(waves[channel]) nobj[:, armName[channel], :num_pixels] /= dwave frame_rand_noise[:, armName[channel], :num_pixels] /= dwave nivar[:, armName[channel], :num_pixels] *= dwave**2 nsky[:, armName[channel], :num_pixels] /= dwave sky_rand_noise[:, armName[channel], :num_pixels] /= dwave sky_ivar[:, armName[channel], :num_pixels] /= dwave**2 # Now write the outputs in DESI standard file system. None of the output file can have more than args.n_fibers spectra # Looping over spectrograph for ii in range((args.nspec + args.nstart - 1) // args.n_fibers + 1): start = max(args.n_fibers * ii, args.nstart) # first spectrum for a given spectrograph end = min(args.n_fibers * (ii + 1), nmax) # last spectrum for the spectrograph if (args.spectrograph <= ii): camera = "{}{}".format(channel, ii) log.info( "Writing files for channel:{}, spectrograph:{}, spectra:{} to {}" .format(channel, ii, start, end)) num_pixels = len(waves[channel]) # Write frame file framefileName = lvmspec.io.findfile("frame", night, expid, camera) frame_flux = nobj[start:end, armName[channel], :num_pixels] + \ nsky[start:end, armName[channel], :num_pixels] + \ frame_rand_noise[start:end, armName[channel], :num_pixels] frame_ivar = nivar[start:end, armName[channel], :num_pixels] # required for slicing the resolution metric, resolusion matrix has (nspec, ndiag, wave) # for example if nstart =400, nspec=150: two spectrographs: # 400-499=> 0 spectrograph, 500-549 => 1 sh1 = frame_flux.shape[0] if (args.nstart == start): resol = resolution[channel][:sh1, :, :] else: resol = resolution[channel][-sh1:, :, :] # must create lvmspec.Frame object frame = Frame(waves[channel], frame_flux, frame_ivar, resolution_data=resol, spectrograph=ii, fibermap=fibermap[start:end], meta=dict(CAMERA=camera, FLAVOR=simspec.flavor)) lvmspec.io.write_frame(framefileName, frame) framefilePath = lvmspec.io.findfile("frame", night, expid, camera) log.info("Wrote file {}".format(framefilePath)) if args.frameonly or simspec.flavor == 'arc': continue # Write cframe file cframeFileName = lvmspec.io.findfile("cframe", night, expid, camera) cframeFlux = cframe_observedflux[start:end, armName[channel], :num_pixels] + \ cframe_rand_noise[start:end, armName[channel], :num_pixels] cframeIvar = cframe_ivar[start:end, armName[channel], :num_pixels] # must create lvmspec.Frame object cframe = Frame(waves[channel], cframeFlux, cframeIvar, resolution_data=resol, spectrograph=ii, fibermap=fibermap[start:end], meta=dict(CAMERA=camera, FLAVOR=simspec.flavor)) lvmspec.io.frame.write_frame(cframeFileName, cframe) cframefilePath = lvmspec.io.findfile("cframe", night, expid, camera) log.info("Wrote file {}".format(cframefilePath)) # Write sky file skyfileName = lvmspec.io.findfile("sky", night, expid, camera) skyflux = nsky[start:end, armName[channel], :num_pixels] + \ sky_rand_noise[start:end, armName[channel], :num_pixels] skyivar = sky_ivar[start:end, armName[channel], :num_pixels] skymask = np.zeros(skyflux.shape, dtype=np.uint32) # must create lvmspec.Sky object skymodel = SkyModel(waves[channel], skyflux, skyivar, skymask, header=dict(CAMERA=camera)) lvmspec.io.sky.write_sky(skyfileName, skymodel) skyfilePath = lvmspec.io.findfile("sky", night, expid, camera) log.info("Wrote file {}".format(skyfilePath)) # Write calib file calibVectorFile = lvmspec.io.findfile("calib", night, expid, camera) flux = cframe_observedflux[start:end, armName[channel], :num_pixels] phot = nobj[start:end, armName[channel], :num_pixels] calibration = np.zeros_like(phot) jj = (flux > 0) calibration[jj] = phot[jj] / flux[jj] # - TODO: what should calibivar be? # - For now, model it as the noise of combining ~10 spectra calibivar = 10 / cframe_ivar[start:end, armName[channel], :num_pixels] # mask=(1/calibivar>0).astype(int)?? mask = np.zeros(calibration.shape, dtype=np.uint32) # write flux calibration fluxcalib = FluxCalib(waves[channel], calibration, calibivar, mask) write_flux_calibration(calibVectorFile, fluxcalib) calibfilePath = lvmspec.io.findfile("calib", night, expid, camera) log.info("Wrote file {}".format(calibfilePath))
class TestFiberFlatObject(unittest.TestCase): def setUp(self): self.nspec = 5 self.nwave = 10 self.wave = np.arange(self.nwave) self.fiberflat = np.random.uniform(size=(self.nspec, self.nwave)) self.ivar = np.ones(self.fiberflat.shape) self.mask = np.zeros(self.fiberflat.shape, dtype=np.uint32) self.meanspec = np.random.uniform(size=self.nwave) self.ff = FiberFlat(self.wave, self.fiberflat, self.ivar, self.mask, self.meanspec) def test_init(self): for key in ('wave', 'fiberflat', 'ivar', 'mask', 'meanspec'): x = self.ff.__getattribute__(key) y = self.__getattribute__(key) self.assertTrue(np.all(x == y), key) self.assertEqual(self.nspec, self.ff.nspec) self.assertEqual(self.nwave, self.ff.nwave) def test_dimensions(self): #- check dimensionality mismatches with self.assertRaises(ValueError): FiberFlat(self.wave, self.wave, self.ivar, self.mask, self.meanspec) with self.assertRaises(ValueError): FiberFlat(self.wave, self.wave, self.ivar, self.mask, self.meanspec) with self.assertRaises(ValueError): FiberFlat(self.wave, self.fiberflat, self.ivar, self.mask, self.fiberflat) with self.assertRaises(ValueError): FiberFlat(self.wave, self.fiberflat[0:2], self.ivar, self.mask, self.meanspec) with self.assertRaises(ValueError): FiberFlat(self.fiberflat, self.fiberflat, self.ivar, self.mask, self.meanspec) with self.assertRaises(ValueError): FiberFlat(self.wave, self.fiberflat, self.wave, self.mask, self.meanspec) with self.assertRaises(ValueError): FiberFlat(self.wave, self.fiberflat, self.ivar, self.mask[0:2, :], self.meanspec) fibers = np.arange(self.nspec) FiberFlat(self.wave, self.fiberflat, self.ivar, self.mask, self.meanspec, fibers=fibers) with self.assertRaises(ValueError): FiberFlat(self.wave, self.fiberflat, self.ivar, self.mask, self.meanspec, fibers=fibers[1:]) def test_slice(self): x = self.ff[1] x = self.ff[1:2] x = self.ff[[1, 2, 3]] x = self.ff[self.ff.fibers < 3]