コード例 #1
0
def write_qa_prod(outroot, qaprod, indent=True):
    """Write QA for a given production

    Args:
        outroot : str
          filename without format extension
        qa_prod : QA_Prod object

    Returns:
        outfile: str
          output filename
    """
    from lvmutil.io import combine_dicts
    log=get_logger()
    outfile = outroot+'.json'
    outfile = makepath(outfile, 'qa')

    # Loop on exposures
    odict = {}
    for qaexp in qaprod.qa_exps:
        # Get the exposure dict
        idict = write_qa_exposure('foo', qaexp, ret_dict=True)
        odict = combine_dicts(odict, idict)
    ydict = yamlify(odict)  # This works well for JSON too
    # Simple json
    with open(outfile, 'wt') as fh:
        json.dump(ydict, fh, indent=indent)
    log.info('Wrote QA_Prod file: {:s}'.format(outfile))

    return outfile
コード例 #2
0
def write_qa_exposure(outroot, qaexp, ret_dict=False):
    """Write QA for a given exposure

    Args:
        outroot : str
          filename without format extension
        qa_exp : QA_Exposure object
        ret_dict : bool, optional
          Return dict only?  [for qa_prod, mainly]
    Returns:
        outfile or odict : str or dict
    """
    # Generate the dict
    odict = {qaexp.night: {qaexp.expid: {}}}
    odict[qaexp.night][qaexp.expid]['flavor'] = qaexp.flavor
    odict[qaexp.night][qaexp.expid]['meta'] = qaexp.meta
    cameras = list(qaexp.data['frames'].keys())
    for camera in cameras:
        odict[qaexp.night][qaexp.expid][camera] = qaexp.data['frames'][camera]
    # Return dict only?
    if ret_dict:
        return odict
    # Simple yaml
    ydict = yamlify(odict)
    outfile = outroot+'.yaml'
    outfile = makepath(outfile, 'qa')
    with open(outfile, 'w') as yamlf:
        yamlf.write( yaml.dump(ydict))#, default_flow_style=True) )

    return outfile
コード例 #3
0
ファイル: fibermap.py プロジェクト: sdss/lvmspec
def write_fibermap(outfile, fibermap, header=None):
    """Write fibermap binary table to outfile.

    Args:
        outfile (str): output filename
        fibermap: astropy Table of fibermap data
        header: header data to include in same HDU as fibermap

    Returns:
        write_fibermap (str): full path to filename of fibermap file written.
    """
    outfile = makepath(outfile)

    #- astropy.io.fits incorrectly generates warning about 2D arrays of strings
    #- Temporarily turn off warnings to avoid this; lvmspec.test.test_io will
    #- catch it if the arrays actually are written incorrectly.
    if header is not None:
        hdr = fitsheader(header)
    else:
        hdr = fitsheader(fibermap.meta)

    add_dependencies(hdr)

    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        write_bintable(outfile, fibermap, hdr, comments=fibermap_comments,
            extname="FIBERMAP", clobber=True)

    return outfile
コード例 #4
0
def write_qa_brick(outfile, qabrick):
    """Write QA for a given exposure

    Args:
        outfile : filename
        qabrick : QA_Brick object
            _data: dict of QA info
    """
    outfile = makepath(outfile, 'qa')

    # Simple yaml
    ydict = yamlify(qabrick.data)
    with open(outfile, 'w') as yamlf:
        yamlf.write( yaml.dump(ydict))#, default_flow_style=True) )

    return outfile
コード例 #5
0
def write_qa_frame(outfile, qaframe, verbose=False):
    """Write QA for a given frame

    Args:
        outfile : str
          filename
        qa_exp : QA_Frame object, with the following attributes
            qa_data: dict of QA info
    """
    log=get_logger()
    outfile = makepath(outfile, 'qa')

    # Generate the dict
    odict = {qaframe.night: {qaframe.expid: {qaframe.camera: {}, 'flavor': qaframe.flavor}}}
    odict[qaframe.night][qaframe.expid][qaframe.camera] = qaframe.qa_data
    ydict = yamlify(odict)
    # Simple yaml
    with open(outfile, 'w') as yamlf:
        yamlf.write( yaml.dump(ydict))#, default_flow_style=True) )
    if verbose:
        log.info("Wrote QA frame file: {:s}".format(outfile))

    return outfile
コード例 #6
0
def write_templates(outfile, flux, wave, meta):
    """Write out simulated galaxy templates.

    Args:
        outfile (str): Output file name.
        flux (numpy.ndarray): Flux vector (1e-17 erg/s/cm2/A)
        wave (numpy.ndarray): Wavelength vector (Angstrom).
        meta (astropy.table.Table): metadata table.

    """
    from astropy.io import fits
    from lvmspec.io.util import makepath

    # Create the path to OUTFILE if necessary.
    outfile = makepath(outfile)

    hx = fits.HDUList()
    hdu_wave = fits.PrimaryHDU(wave)
    hdu_wave.header['EXTNAME'] = 'WAVE'
    hdu_wave.header['BUNIT'] = 'Angstrom'
    hdu_wave.header['AIRORVAC'] = ('vac', 'Vacuum wavelengths')
    hx.append(hdu_wave)

    hdu_flux = fits.ImageHDU(flux)
    hdu_flux.header['EXTNAME'] = 'FLUX'
    hdu_flux.header['BUNIT'] = str(fluxunits)
    hx.append(hdu_flux)

    hdu_meta = fits.table_to_hdu(meta)
    hdu_meta.header['EXTNAME'] = 'METADATA'
    hx.append(hdu_meta)

    log.info('Writing {}'.format(outfile))
    try:
        hx.writeto(outfile, overwrite=True)
    except:
        hx.writeto(outfile, clobber=True)
コード例 #7
0
def main(args):

    # Set up the logger.
    if args.verbose:
        log = get_logger(DEBUG)
    else:
        log = get_logger()

    objtype = args.objtype.upper()

    log.debug('Using OBJTYPE {}'.format(objtype))
    log.debug('Simulating {:g} bricks each with {:g} spectra'.format(args.nbrick, args.nspec))

    # Draw priors uniformly given the input ranges.
    rand = np.random.RandomState(args.seed)
    exptime = rand.uniform(args.exptime_range[0], args.exptime_range[1], args.nbrick)
    airmass = rand.uniform(args.airmass_range[0], args.airmass_range[1], args.nbrick)
    moonphase = rand.uniform(args.moon_phase_range[0], args.moon_phase_range[1], args.nbrick)
    moonangle = rand.uniform(args.moon_angle_range[0], args.moon_angle_range[1], args.nbrick)
    moonzenith = rand.uniform(args.moon_zenith_range[0], args.moon_zenith_range[1], args.nbrick)

    # Build a metadata table with the simulation inputs.
    metafile = makepath(os.path.join(args.outdir, '{}-input.fits'.format(args.brickname)))
    metacols = [
        ('BRICKNAME', 'S20'),
        ('SEED', 'S20'),
        ('EXPTIME', 'f4'),
        ('AIRMASS', 'f4'),
        ('MOONPHASE', 'f4'),
        ('MOONANGLE', 'f4'),
        ('MOONZENITH', 'f4')]
    meta = Table(np.zeros(args.nbrick, dtype=metacols))
    meta['EXPTIME'].unit = 's'
    meta['MOONANGLE'].unit = 'deg'
    meta['MOONZENITH'].unit = 'deg'

    meta['BRICKNAME'] = ['{}-{:03d}'.format(args.brickname, ii) for ii in range(args.nbrick)]
    meta['EXPTIME'] = exptime
    meta['AIRMASS'] = airmass
    meta['MOONPHASE'] = moonphase
    meta['MOONANGLE'] = moonangle
    meta['MOONZENITH'] = moonzenith

    log.debug('Writing {}'.format(metafile))
    write_bintable(metafile, meta, extname='METADATA', clobber=True)

    # Generate each brick in turn.
    for ii in range(args.nbrick):
        thisbrick = meta['BRICKNAME'][ii]
        log.debug('Building brick {}'.format(thisbrick))

        brickargs = ['--brickname', thisbrick,
                     '--objtype', args.objtype,
                     '--nspec', '{}'.format(args.nspec),
                     '--outdir', os.path.join(args.brickdir, thisbrick),
                     '--outdir-truth', os.path.join(args.brickdir, thisbrick),
                     '--exptime', '{}'.format(exptime[ii]),
                     '--airmass', '{}'.format(airmass[ii]),
                     '--moon-phase', '{}'.format(moonphase[ii]),
                     '--moon-angle', '{}'.format(moonangle[ii]),
                     '--moon-zenith', '{}'.format(moonzenith[ii]),
                     '--zrange-bgs', '{}'.format(args.zrange_bgs[0]), '{}'.format(args.zrange_bgs[1]),
                     '--rmagrange-bgs', '{}'.format(args.rmagrange_bgs[0]), '{}'.format(args.rmagrange_bgs[1])]
        if args.seed is not None:
            brickargs.append('--seed')
            brickargs.append('{}'.format(args.seed))

        quickargs = quickbrick.parse(brickargs)
        if args.verbose:
            quickargs.verbose = True
        quickbrick.main(quickargs)
コード例 #8
0
ファイル: high_level.py プロジェクト: sdss/lvmsim
def main():
    '''Runs the process
    '''
    # Check environmental variables are set
    assert 'LVM_SPECTRO_DATA' in os.environ, 'Missing $LVM_SPECTRO_DATA environment variable'
    assert 'SPECPROD' in os.environ, 'Missing $SPECPROD environment variable'
    assert 'LVM_SPECTRO_REDUX' in os.environ, 'Missing $LVM_SPECTRO_REDUX environment variable'

    # Grab nights in data redux
    nights = glob.glob(dio_meta.specprod_root() + '/exposures/*')
    if len(nights) == 0:
        raise ValueError('No nights in exposures!')

    # Build up list of fibermap files
    fibermap_files = []
    for night in nights:
        onight = night[night.rfind('/'):]
        files = glob.glob(dio_meta.rawdata_root() + '/' + onight +
                          '/fibermap*')
        #
        fibermap_files += files

    # Get list of zbest files
    zbest_files = glob.glob(dio_meta.specprod_root() + '/bricks/*/zbest*')
    if len(zbest_files) == 0:
        raise ValueError('No redshifts?!')

    # Meta
    meta = get_meta()

    # Load+write table
    simtab_fil = dio_meta.specprod_root() + '/QA/sim_z_table.fits'
    dio_util.makepath(simtab_fil)
    simz_tab = dsqa_z.load_z(fibermap_files, zbest_files)
    simz_tab.meta = meta
    simz_tab.write(simtab_fil, overwrite=True)

    # Summary stats
    summ_file = dio_meta.specprod_root() + '/QA/sim_z_summ.yaml'
    dio_util.makepath(summ_file)
    summ_dict = dsqa_z.summ_stats(simz_tab)
    # Write
    with open(summ_file, 'w') as outfile:
        outfile.write(yaml.dump(meta))  #, default_flow_style=True) )
        outfile.write(yaml.dump(summ_dict, default_flow_style=False))
    #import pdb
    #pdb.set_trace()
    '''
    # Reorder + cut
    summ_tab=full_summ_tab['OBJTYPE', 'NTARG', 'N_SURVEY', 'EFF', 'MED_DZ', 'CAT_RATE', 'REQ_FINAL']
    # Write
    summ_tab.meta = meta
    summ_tab.write(summ_file,format='ascii.ecsv',
        formats=dict(MED_DZ='%8.6f',EFF='%5.3f',CAT_RATE='%6.4f'))#,clobber=True)
    '''

    # QA Figures
    fig_file = dio_meta.specprod_root() + '/QA/sim_z.pdf'
    dio_util.makepath(fig_file)
    pp = PdfPages(fig_file)
    # Summ
    dsqa_z.summ_fig(simz_tab, summ_dict, meta, pp=pp)
    for objtype in ['ELG', 'LRG', 'QSO_T', 'QSO_L']:
        dsqa_z.obj_fig(simz_tab, objtype, summ_dict, pp=pp)
    # All done
    pp.close()