コード例 #1
0
ファイル: Learner.py プロジェクト: Dyfine/InsightFace_Pytorch
    def save_state(self,
                   conf,
                   accuracy,
                   to_save_folder=False,
                   extra=None,
                   model_only=False):
        if to_save_folder:
            save_path = conf.save_path
        else:
            save_path = conf.model_path

        lz.mkdir_p(save_path, delete=False)

        torch.save(
            self.model.state_dict(),
            save_path / ('model_{}_accuracy:{}_step:{}_{}.pth'.format(
                get_time(), accuracy, self.step, extra)))
        if not model_only:
            torch.save(
                self.head.state_dict(),
                save_path / ('head_{}_accuracy:{}_step:{}_{}.pth'.format(
                    get_time(), accuracy, self.step, extra)))
            torch.save(
                self.optimizer.state_dict(),
                save_path / ('optimizer_{}_accuracy:{}_step:{}_{}.pth'.format(
                    get_time(), accuracy, self.step, extra)))
コード例 #2
0
def crop_face(args):
    assert osp.exists(args.data_dir), "The input dir not exist"
    root_folder_name = args.data_dir.split('/')[-1]
    dst_folder = args.data_dir.replace(root_folder_name, root_folder_name + '_OPPOFaces')
    lz.mkdir_p(dst_folder, delete=False)
    mtcnn = MTCNN()
    ind = 0
    all_img = []
    for imgfn in itertools.chain(
            glob.glob(args.data_dir + '/**/*.jpg', recursive=True),
            glob.glob(args.data_dir + '/**/*.JPEG', recursive=True)):
        ind += 1
        if ind % 10 == 0:
            print(f'proc {ind}, {imgfn}')
        dstimgfn = imgfn.replace(root_folder_name, root_folder_name + '_OPPOFaces')
        dst_folder = osp.dirname(dstimgfn)
        lz.mkdir_p(dst_folder, delete=False)
        img = cvb.read_img(imgfn)  # bgr
        img1 = Image.fromarray(img)
        face = mtcnn.align_best(img1, limit=None, min_face_size=16, imgfn=imgfn)
        face = np.asarray(face)  # bgr
        # face = cvb.bgr2rgb(face)  # rgb
        cvb.write_img(face, dstimgfn)
        all_img.append( dstimgfn)
    logging.info(f'finish crop all {ind} imgs')
    lz.msgpack_dump(all_img, dst_folder + '/' + 'all_imgs.pk')
    del mtcnn
    torch.cuda.empty_cache()
コード例 #3
0
def consumer(queue, lock):
    while True:
        imgfn, param, roi_box, dst_imgfn = queue.get()
        pts68 = [predict_68pts(param[i], roi_box[i]) for i in range(param.shape[0])]
        for img_fp, pts68_, dst in zip(imgfn, pts68, dst_imgfn):
            try:
                img_ori = cvb.read_img(img_fp)
                pts5 = to_landmark5(pts68_[:2, :].transpose())
                warped = preprocess(img_ori, landmark=pts5)
                # plt_imshow(warped, inp_mode='bgr');  plt.show()
                lz.mkdir_p(osp.dirname(dst), delete=False)
                cvb.write_img(warped, dst)
            except Exception as e:
                logging.warning(f'error occur {e}, pls check!')
                cvb.write_img(np.ones((112, 112, 3), np.uint8), dst)
コード例 #4
0
ファイル: tri_center_vid.py プロジェクト: luzai/reid
def run(_):
    cfgs = lz.load_cfg('./cfgs/single_ohnm.py')
    procs = []
    for args in cfgs.cfgs:
        if args.loss != 'trivid':
            print(f'skip {args.loss} {args.logs_dir}')
            continue
        if args.log_at is None:
            args.log_at = np.concatenate([
                range(0, 640, 31),
                range(args.epochs - 8, args.epochs, 1)
            ])
        args.logs_dir = lz.work_path + 'reid/work/' + args.logs_dir
        if osp.exists(args.logs_dir) and osp.exists(args.logs_dir + '/checkpoint.64.pth'):
            print(os.listdir(args.logs_dir))
            continue

        if not args.gpu_fix:
            args.gpu = lz.get_dev(n=len(args.gpu),
                                  ok=args.gpu_range,
                                  mem_thresh=[0.09, 0.09], sleep=32.3)
        lz.logging.info(f'use gpu {args.gpu}')
        # args.batch_size = 16
        # args.gpu = (3, )
        # args.epochs = 1
        # args.logs_dir+='.bak'

        if isinstance(args.gpu, int):
            args.gpu = [args.gpu]
        if not args.evaluate and not args.vis:
            assert args.logs_dir != args.resume
            lz.mkdir_p(args.logs_dir, delete=True)
            lz.pickle_dump(args, args.logs_dir + '/conf.pkl')
        if cfgs.no_proc:
            main(args)
        else:
            proc = mp.Process(target=main, args=(args,))
            proc.start()
            lz.logging.info('next')
            time.sleep(random.randint(39, 90))
            if not cfgs.parallel:
                proc.join()
            else:
                procs.append(proc)

    if cfgs.parallel:
        for proc in procs:
            proc.join()
コード例 #5
0
def run(_):
    cfgs = lz.load_cfg('./cfgs/single_ohnm.py')
    procs = []
    for args in cfgs.cfgs:
        if args.loss != 'tcx':
            print(f'skip {args.loss} {args.logs_dir}')
            continue
        # args.log_at = np.concatenate([
        #     args.log_at,
        #     range(args.epochs - 8, args.epochs, 1)
        # ])
        args.logs_dir = 'work/' + args.logs_dir
        if not args.gpu_fix:
            args.gpu = lz.get_dev(n=len(args.gpu),
                                  ok=args.gpu_range,
                                  mem=[0.12, 0.07],
                                  sleep=32.3)
        lz.logging.info(f'use gpu {args.gpu}')
        # args.batch_size = 16
        # args.gpu = (3, )
        # args.epochs = 1
        # args.logs_dir+='.bak'

        if isinstance(args.gpu, int):
            args.gpu = [args.gpu]
        if not args.evaluate:
            assert args.logs_dir != args.resume
            lz.mkdir_p(args.logs_dir, delete=True)
            lz.pickle_dump(args, args.logs_dir + '/conf.pkl')

        # main(args)
        proc = mp.Process(target=main, args=(args, ))
        proc.start()
        lz.logging.info('next')
        time.sleep(random.randint(39, 90))
        procs.append(proc)

    for proc in procs:
        proc.join()
コード例 #6
0
def do_align_by_list(inps):
    from lz import mkdir_p, cvb
    ind, tid, sid, fn, x, y, w, h, mtcnn = inps
    dst_dir = f'{dst}/{sid}/{tid}'
    dst_fn = f'{dst}/{sid}/{tid}/{ind}.png'
    if osp.exists(dst_fn): return

    # logging.info(f'{ind} start')
    x, y, w, h = list(map(int, [x, y, w, h]))
    imgp = img_path + fn
    assert osp.exists(imgp), imgp
    img = cvb.read_img(imgp)
    face = img[y:y + h, x:x + w, :]
    face_ali = alignface(face, mtcnn)

    _ = mkdir_p(dst_dir, delete=False)
    _ = cvb.write_img(face_ali, dst_fn)
コード例 #7
0
 def do_align_one(
     ind,
     val,
 ):
     tid = val['TEMPLATE_ID']
     sid = val['SUBJECT_ID']
     fn = val['FILENAME']
     dst_dir = f'{dst}/{sid}/{tid}'
     dst_fn = f'{dst}/{sid}/{tid}/{ind}.png'
     # if osp.exists(dst_fn): return
     x, y, w, h = val.iloc[-4:]
     x, y, w, h = list(map(int, [x, y, w, h]))
     imgp = img_path + fn
     assert osp.exists(imgp), imgp
     img = cvb.read_img(imgp)
     assert img is not None, 'impg'
     face = img[y:y + h, x:x + w, :]
     face_ali = alignface(face, mtcnn, img)
     _ = mkdir_p(dst_dir, delete=False)
     _ = cvb.write_img(face_ali, dst_fn)
コード例 #8
0
def crop_face(args):
    for k, v in default_args.items():
        setattr(args, k, v)
    assert osp.exists(args.data_dir), "The input dir not exist"
    root_folder_name = args.data_dir.split('/')[-1]
    src_folder = args.data_dir
    dst_folder = args.data_dir.replace(root_folder_name, root_folder_name + '_OPPOFaces')
    lz.mkdir_p(dst_folder, delete=False)
    ds = TestData(src_folder)
    loader = torch.utils.data.DataLoader(ds, batch_size=args.batch_size,
                                         num_workers=args.num_workers,
                                         shuffle=False,
                                         pin_memory=True,
                                         drop_last=False
                                         )
    # 1. load pre-tained model
    checkpoint_fp = 'models/phase1_wpdc_vdc.pth.tar'
    arch = 'mobilenet_1'
    
    checkpoint = torch.load(checkpoint_fp, map_location=lambda storage, loc: storage)['state_dict']
    model = getattr(mobilenet_v1, arch)(num_classes=62)  # 62 = 12(pose) + 40(shape) +10(expression)
    
    model_dict = model.state_dict()
    # because the model is trained by multiple gpus, prefix module should be removed
    for k in checkpoint.keys():
        model_dict[k.replace('module.', '')] = checkpoint[k]
    model.load_state_dict(model_dict)
    if args.mode == 'gpu':
        cudnn.benchmark = True
        model = model.cuda()
    model.eval()
    
    # 2. load dlib model for face detection and landmark used for face cropping
    queue = Queue()
    lock = Lock()
    consumers = []
    for i in range(args.num_consumers):
        p = Process(target=consumer, args=(queue, lock))
        p.daemon = True
        consumers.append(p)
    for c in consumers:
        c.start()
    # 3. forward
    ttl_nimgs = 0
    ttl_imgs = []
    data_meter = lz.AverageMeter()
    model_meter = lz.AverageMeter()
    post_meter = lz.AverageMeter()
    lz.timer.since_last_check('start crop face')
    for ind, data in enumerate(loader):
        
        data_meter.update(lz.timer.since_last_check(verbose=False))
        if (data['finish'] == 1).all().item():
            logging.info('finish')
            break
        if ind % 10 == 0:
            logging.info(
                f'proc batch {ind}, data time: {data_meter.avg:.2f}, model: {model_meter.avg:.2f}, post: {post_meter.avg:.2f}')
        mask = data['finish'] == 0
        input = data['img'][mask]
        input_np = input.numpy()
        roi_box = data['roi_box'][mask].numpy()
        imgfn = np.asarray(data['imgfn'])[mask.numpy().astype(bool)]
        dst_imgfn = [img_fp.replace(root_folder_name, root_folder_name + '_OPPOFaces') for img_fp in imgfn]
        ttl_imgs.extend(dst_imgfn)
        ttl_nimgs += mask.sum().item()
        with torch.no_grad():
            if args.mode == 'gpu':
                input = input.cuda()
            param = model(input)
            param = param.squeeze().cpu().numpy().astype(np.float32)
        model_meter.update(lz.timer.since_last_check(verbose=False))
        queue.put((imgfn, param, roi_box, dst_imgfn))
        # pts68 = [predict_68pts(param[i], roi_box[i]) for i in range(param.shape[0])]
        # pts68_proc = [predict_68pts(param[i], [0, 0, STD_SIZE, STD_SIZE]) for i in range(param.shape[0])]
        # for img_fp, pts68_, pts68_proc_, img_, dst in zip(imgfn, pts68, pts68_proc, input_np, dst_imgfn):
        #     ## this may need opt to async read write
        #     img_ori = cvb.read_img(img_fp)
        #     pts5 = to_landmark5(pts68_[:2, :].transpose())
        #     warped = preprocess(img_ori, landmark=pts5)
        #     # plt_imshow(warped, inp_mode='bgr');  plt.show()
        #     lz.mkdir_p(osp.dirname(dst), delete=False)
        #     cvb.write_img(warped, dst)
        #
        #     ## this may cause black margin
        #     # pts5 = to_landmark5(pts68_proc_[:2, :].transpose())
        #     # warped = preprocess(to_img(img_), landmark=pts5)
        #     # # plt_imshow(warped, inp_mode='bgr'); plt.show()
        #     # dst = img_fp.replace(root_folder_name, root_folder_name + '_OPPOFaces')
        #     # cvb.write_img(warped, dst)
        #     if args.dump_res:
        #         img_ori = cvb.read_img(img_fp)
        #         pts_res = [pts68_]
        #         dst = img_fp.replace(root_folder_name, root_folder_name + '_kpts.demo')
        #         lz.mkdir_p(osp.dirname(dst), delete=False)
        #         draw_landmarks(img_ori, pts_res,
        #                        wfp=dst,
        #                        show_flg=args.show_flg)
        post_meter.update(lz.timer.since_last_check(verbose=False))
    lz.msgpack_dump(ttl_imgs, dst_folder + '/' + 'all_imgs.pk')
    del model, input
    torch.cuda.empty_cache()
    while not queue.empty():
        time.sleep(1)
コード例 #9
0
ファイル: Learner.py プロジェクト: Dyfine/InsightFace_Pytorch
    def __init__(self, conf, inference=False, need_loader=True):
        print(conf)
        if conf.use_mobilfacenet:
            # self.model = MobileFaceNet(conf.embedding_size).to(conf.device)
            self.model = torch.nn.DataParallel(
                MobileFaceNet(conf.embedding_size)).cuda()
            print('MobileFaceNet model generated')
        else:
            # self.model = Backbone(conf.net_depth, conf.drop_ratio, conf.net_mode).to(conf.device)
            self.model = torch.nn.DataParallel(
                Backbone(conf.net_depth, conf.drop_ratio,
                         conf.net_mode)).cuda()
            print('{}_{} model generated'.format(conf.net_mode,
                                                 conf.net_depth))

        if not inference:
            self.milestones = conf.milestones
            if need_loader:
                # self.loader, self.class_num = get_train_loader(conf)

                self.dataset = Dataset2()
                self.loader = DataLoader(self.dataset,
                                         batch_size=conf.batch_size,
                                         num_workers=conf.num_workers,
                                         shuffle=True,
                                         pin_memory=True)

                # self.loader = Loader2(conf)
                self.class_num = 85164
                print(self.class_num, 'classes, load ok ')
            else:
                import copy
                conf_t = copy.deepcopy(conf)
                conf_t.data_mode = 'emore'
                self.loader, self.class_num = get_train_loader(conf_t)
                print(self.class_num)
                self.class_num = 85164
            lz.mkdir_p(conf.log_path, delete=True)
            self.writer = SummaryWriter(conf.log_path)
            self.step = 0
            if conf.loss == 'arcface':
                self.head = Arcface(embedding_size=conf.embedding_size,
                                    classnum=self.class_num).to(conf.device)
            elif conf.loss == 'softmax':
                self.head = MySoftmax(embedding_size=conf.embedding_size,
                                      classnum=self.class_num).to(conf.device)
            else:
                raise ValueError(f'{conf.loss}')

            print('two model heads generated')

            paras_only_bn, paras_wo_bn = separate_bn_paras(self.model)

            if conf.use_mobilfacenet:
                self.optimizer = optim.SGD(
                    [{
                        'params': paras_wo_bn[:-1],
                        'weight_decay': 4e-5
                    }, {
                        'params': [paras_wo_bn[-1]] + [self.head.kernel],
                        'weight_decay': 4e-4
                    }, {
                        'params': paras_only_bn
                    }],
                    lr=conf.lr,
                    momentum=conf.momentum)
            else:
                self.optimizer = optim.SGD(
                    [{
                        'params': paras_wo_bn + [self.head.kernel],
                        'weight_decay': 5e-4
                    }, {
                        'params': paras_only_bn
                    }],
                    lr=conf.lr,
                    momentum=conf.momentum)
            print(self.optimizer)
            #             self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, patience=40, verbose=True)
            print('optimizers generated')
            self.board_loss_every = 100  # len(self.loader) // 100
            self.evaluate_every = len(self.loader) // 10
            self.save_every = len(self.loader) // 5
            self.agedb_30, self.cfp_fp, self.lfw, self.agedb_30_issame, self.cfp_fp_issame, self.lfw_issame = get_val_data(
                self.loader.dataset.root_path)
        else:
            self.threshold = conf.threshold
コード例 #10
0
    ])

    draw_ellipse = True
    i, j = np.indices(pij2d.shape)
    i = i.ravel()
    j = j.ravel()
    pij = pij2d.ravel().astype('float32')
    # Remove self-indices
    idx = i != j
    i, j, pij = i[idx], j[idx], pij[idx]

    n_topics = 2
    n_dim = 2
    print(n_points, n_dim, n_topics)

    lz.mkdir_p(root_path + '/work/' + path, delete=True)
    os.chdir(root_path + '/work/' + path)
    model = VTSNE(n_points, n_topics, n_dim)
    wrap = Wrapper(model, batchsize=4096, epochs=1)
    for itr in range(235):
        print(itr, end='  ')
        wrap.fit(pij, i, j)

        # Visualize the results
        embed = model.logits.weight.cpu().data.numpy()
        f = plt.figure()
        if not draw_ellipse:
            plt.scatter(embed[:, 0], embed[:, 1], c=y * 1.0 / y.max())
            plt.axis('off')
            plt.savefig('scatter_{:03d}.png'.format(itr), bbox_inches='tight')
            plt.close(f)
コード例 #11
0
ファイル: test.op.py プロジェクト: luzai/fcpth
parser.add_argument('--num_consumers', type=int, default=6)
parser.add_argument('--gpus', type=str, default="0")  # todo allow multiple gpu
args = parser.parse_args()

assert osp.exists(args.data_dir), "The input dir not exist"
root_folder_name = args.data_dir.split('/')[-1]
src_folder = args.data_dir.replace(root_folder_name, root_folder_name + '_OPPOFaces')
if not osp.exists(src_folder):
    logging.info('first crop face, an alternative way is run python crop_face_oppo.py --data_dir DATASET. ')
    from crop_face_oppo_fast import crop_face
    # from crop_face_oppo import crop_face
    
    crop_face(args)

dst_folder = args.data_dir.replace(root_folder_name, root_folder_name + '_OPPOFeatures')
lz.mkdir_p(dst_folder, delete=False)


class TestData(torch.utils.data.Dataset):
    def __init__(self, imgfn_iter):
        self.imgfn_iter = imgfn_iter
        try:
            self.imgfns = lz.msgpack_load(src_folder + '/all_imgs.pk')
        except:
            logging.info(
                "After crop_face_oppo.py runned, *_OPPOFaces/all_imgs.pk will be generetd, which logs img list. But, all_imgs.pk cannot be loaded, we are regenerating all img list now ...")
            self.imgfns = list(self.imgfn_iter)
        self.length = len(self.imgfns)
        # self.imgfn_iter is not thread safe
        # self.lock = torch.multiprocessing.Lock()
        # self.length = int(10 * 10 ** 6)  # assume ttl test img less than 10M