コード例 #1
0
ファイル: t11_capsule.py プロジェクト: yynnxu/Macadam
    def build_model(self, inputs, outputs):
        outputs_spati = L.SpatialDropout1D(self.dropout_spatial)(outputs)

        conv_pools = []
        for filter in self.filters_size:
            x = L.Conv1D(
                filters=self.filters_num,
                kernel_size=filter,
                padding="valid",
                kernel_initializer="normal",
                activation="relu",
            )(outputs_spati)
            capsule = Capsule_bojone(num_capsule=self.num_capsule,
                                     dim_capsule=self.dim_capsule,
                                     routings=self.routings,
                                     kernel_size=(filter, 1),
                                     share_weights=True)(x)
            conv_pools.append(capsule)
        capsule = L.Concatenate(axis=-1)(conv_pools)
        x = L.Flatten()(capsule)
        x = L.Dropout(self.dropout)(x)
        # dense-mid
        x = L.Dense(units=min(max(self.label, 64), self.embed_size),
                    activation=self.activate_mid)(x)
        x = L.Dropout(self.dropout)(x)
        # dense-end, 最后一层, dense到label
        self.outputs = L.Dense(units=self.label,
                               activation=self.activate_end)(x)
        self.model = M.Model(inputs=inputs, outputs=self.outputs)
        self.model.summary(132)
コード例 #2
0
 def build_model(self, inputs, outputs):
     """
     build_model.
     Args:
         inputs: tensor, input of model
         outputs: tensor, output of model
     Returns:
         None
     """
     embed_char = outputs[0]
     embed_word = outputs[1]
     if self.wclstm_embed_type == "ATTNENTION":
         x_word = L.TimeDistributed(
             SelfAttention(K.int_shape(embed_word)[-1]))(embed_word)
         x_word_shape = K.int_shape(x_word)
         x_word = L.Reshape(target_shape=(x_word_shape[:2],
                                          x_word_shape[2] *
                                          x_word_shape[3]))
         x_word = L.Dense(self.embed_size,
                          activation=self.activate_mid)(x_word)
     # elif self.wclstm_embed_type == "SHORT":
     else:
         x_word = L.Lambda(lambda x: x[:, :, 0, :])(embed_word)
     outputs_concat = L.Concatenate(axis=-1)([embed_char, x_word])
     # LSTM or GRU
     if self.rnn_type == "LSTM":
         rnn_cell = L.LSTM
     elif self.rnn_type == "CuDNNLSTM":
         rnn_cell = L.CuDNNLSTM
     elif self.rnn_type == "CuDNNGRU":
         rnn_cell = L.CuDNNGRU
     else:
         rnn_cell = L.GRU
     # Bi-LSTM-CRF
     for nrl in range(self.num_rnn_layers):
         x = L.Bidirectional(
             rnn_cell(
                 units=self.rnn_unit * (nrl + 1),
                 return_sequences=True,
                 activation=self.activate_mid,
             ))(outputs_concat)
         outputs = L.Dropout(self.dropout)(x)
     if self.use_crf:
         x = L.Dense(units=self.label,
                     activation=self.activate_end)(outputs)
         self.CRF = ConditionalRandomField(self.crf_lr_multiplier,
                                           name="crf_bert4keras")
         self.outputs = self.CRF(x)
         self.trans = K.eval(self.CRF.trans).tolist()
         self.loss = self.CRF.dense_loss if self.use_onehot else self.CRF.sparse_loss
         self.metrics = [
             self.CRF.dense_accuracy
             if self.use_onehot else self.CRF.sparse_accuracy
         ]
     else:
         self.outputs = L.TimeDistributed(
             L.Dense(units=self.label,
                     activation=self.activate_end))(outputs)
     self.model = M.Model(inputs, self.outputs)
     self.model.summary(132)
コード例 #3
0
ファイル: t03_textcnn.py プロジェクト: yynnxu/Macadam
 def build_model(self, inputs, outputs):
     embedding_reshape = L.Reshape(
         (self.length_max, self.embed_size, 1))(outputs)
     # 提取n-gram特征和最大池化, 一般不用平均池化
     conv_pools = []
     for filter in self.filters_size:
         conv = L.Conv2D(
             filters=self.filters_num,
             kernel_size=(filter, self.embed_size),
             padding='valid',
             kernel_initializer='normal',
             activation='tanh',
         )(embedding_reshape)
         pooled = L.MaxPool2D(
             pool_size=(self.length_max - filter + 1, 1),
             strides=(1, 1),
             padding='valid',
         )(conv)
         conv_pools.append(pooled)
     # 拼接
     x = L.Concatenate(axis=-1)(conv_pools)
     x = L.Dropout(self.dropout)(x)
     x = L.Flatten()(x)
     self.outputs = L.Dense(units=self.label,
                            activation=self.activate_end)(x)
     self.model = M.Model(inputs=inputs, outputs=self.outputs)
     self.model.summary(132)
コード例 #4
0
ファイル: t05_birnn.py プロジェクト: yynnxu/Macadam
 def build_model(self, inputs, outputs):
     x = None
     if self.rnn_type == "LSTM":
         rnn_cell = L.LSTM
     elif self.rnn_type == "CuDNNLSTM":
         rnn_cell = L.CuDNNLSTM
     elif self.rnn_type == "CuDNNGRU":
         rnn_cell = L.CuDNNGRU
     else:
         rnn_cell = L.GRU
     # Bi-RNN(LSTM/GRU)
     for _ in range(self.rnn_layer_repeat):
         x = L.Bidirectional(
             rnn_cell(units=self.rnn_unit,
                      return_sequences=True,
                      activation=self.activate_mid))(outputs)
         x = L.Dropout(self.dropout)(x)
     # dense-mid
     x = L.Flatten()(x)
     x = L.Dense(units=min(max(self.label, 128), self.embed_size),
                 activation=self.activate_mid)(x)
     x = L.Dropout(self.dropout)(x)
     # dense-end
     self.outputs = L.Dense(units=self.label,
                            activation=self.activate_end)(x)
     self.model = M.Model(inputs=inputs, outputs=self.outputs)
     self.model.summary(132)
コード例 #5
0
ファイル: t06_rcnn.py プロジェクト: yynnxu/Macadam
 def build_model(self, inputs, outputs):
     # rnn type, RNN的类型
     if self.rnn_type == "LSTM":
         layer_cell = L.LSTM
     else:
         layer_cell = L.GRU
     # backword, 反向
     x_backwords = layer_cell(
         units=self.rnn_unit,
         return_sequences=True,
         kernel_regularizer=keras.regularizers.l2(0.32 * 0.1),
         recurrent_regularizer=keras.regularizers.l2(0.32),
         go_backwards=True)(outputs)
     x_backwords_reverse = L.Lambda(lambda x: K.reverse(x, axes=1))(
         x_backwords)
     # fordword, 前向
     x_fordwords = layer_cell(
         units=self.rnn_unit,
         return_sequences=True,
         kernel_regularizer=keras.regularizers.l2(0.32 * 0.1),
         recurrent_regularizer=keras.regularizers.l2(0.32),
         go_backwards=False)(outputs)
     # concatenate, 拼接
     x_feb = L.Concatenate(axis=2)(
         [x_fordwords, outputs, x_backwords_reverse])
     # dropout, 随机失活
     x_feb = L.Dropout(self.dropout)(x_feb)
     # Concatenate, 拼接后的embedding_size
     dim_2 = K.int_shape(x_feb)[2]
     x_feb_reshape = L.Reshape((self.length_max, dim_2, 1))(x_feb)
     # n-gram, conv, maxpool, 使用n-gram进行卷积和池化
     conv_pools = []
     for filter in self.filters_size:
         conv = L.Conv2D(
             filters=self.filters_num,
             kernel_size=(filter, dim_2),
             padding='valid',
             kernel_initializer='normal',
             activation='relu',
         )(x_feb_reshape)
         pooled = L.MaxPooling2D(
             pool_size=(self.length_max - filter + 1, 1),
             strides=(1, 1),
             padding='valid',
         )(conv)
         conv_pools.append(pooled)
     # concatenate, 拼接TextCNN
     x = L.Concatenate()(conv_pools)
     x = L.Dropout(self.dropout)(x)
     # dense-mid, 中间全连接到中间的隐藏元
     x = L.Flatten()(x)
     x = L.Dense(units=min(max(self.label, 64), self.embed_size),
                 activation=self.activate_mid)(x)
     x = L.Dropout(self.dropout)(x)
     # dense-end, 最后一层, dense到label
     self.outputs = L.Dense(units=self.label,
                            activation=self.activate_end)(x)
     self.model = M.Model(inputs=inputs, outputs=self.outputs)
     self.model.summary(132)
コード例 #6
0
 def build_model(self, inputs, outputs):
     x_m = L.GlobalMaxPooling1D()(outputs)
     x_g = L.GlobalAveragePooling1D()(outputs)
     x = L.Concatenate()([x_g, x_m])
     x = L.Dense(min(max(self.label, 128), self.embed_size), activation=self.activate_mid)(x)
     x = L.Dropout(self.dropout)(x)
     self.outputs = L.Dense(units=self.label, activation=self.activate_end)(x)
     self.model = M.Model(inputs=inputs, outputs=self.outputs)
     self.model.summary(132)
コード例 #7
0
 def build_model(self, inputs, outputs):
     x = L.Dense(units=self.label, activation=self.activate_mid)(outputs)
     self.CRF = ConditionalRandomField(self.crf_lr_multiplier,
                                       name="crf_bert4keras")
     self.outputs = self.CRF(x)
     self.model = M.Model(inputs, self.outputs)
     self.model.summary(132)
     self.trans = K.eval(self.CRF.trans).tolist()
     self.loss = self.CRF.dense_loss if self.use_onehot else self.CRF.sparse_loss
     self.metrics = [
         self.CRF.dense_accuracy
         if self.use_onehot else self.CRF.sparse_accuracy
     ]
コード例 #8
0
ファイル: t01_finetune.py プロジェクト: sumerzhang/Macadam
 def build_model(self, inputs, outputs):
     if self.embed_type in ["xlnet"]:
         # x = L.Lambda(lambda x: x[:, -2:-1, :])(outputs)  # xlnet获取CLS
         x = L.Lambda(lambda x: x[:, -1], name="Token-CLS")(outputs)
     else:
         # x = L.Lambda(lambda x: x[:, 0:1, :])(outputs)  # bert-like获取CLS
         x = L.Lambda(lambda x: x[:, 0], name="Token-CLS")(outputs)
     # x = L.Flatten()(x)
     # 最后就是softmax
     self.outputs = L.Dense(
         self.label,
         activation=self.activate_end,
         kernel_initializer=keras.initializers.TruncatedNormal(
             stddev=0.02))(x)
     self.model = M.Model(inputs, self.outputs)
     self.model.summary(132)
コード例 #9
0
 def build_model(self, inputs, outputs):
     x = L.SpatialDropout1D(self.dropout_spatial)(outputs)
     x = SelfAttention(K.int_shape(outputs)[-1])(x)
     x_max = L.GlobalMaxPooling1D()(x)
     x_avg = L.GlobalAveragePooling1D()(x)
     x = L.Concatenate()([x_max, x_avg])
     x = L.Dropout(self.dropout)(x)
     x = L.Flatten()(x)
     # dense-mid
     x = L.Dense(units=min(max(self.label, 64), self.embed_size),
                 activation=self.activate_mid)(x)
     x = L.Dropout(self.dropout)(x)
     # dense-end, 最后一层, dense到label
     self.outputs = L.Dense(units=self.label,
                            activation=self.activate_end)(x)
     self.model = M.Model(inputs=inputs, outputs=self.outputs)
     self.model.summary(132)
コード例 #10
0
ファイル: t08_crnn.py プロジェクト: yynnxu/Macadam
 def build_model(self, inputs, outputs):
     # rnn type, RNN的类型
     if self.rnn_unit == "LSTM":
         layer_cell = L.LSTM
     elif self.rnn_unit == "CuDNNLSTM":
         layer_cell = L.CuDNNLSTM
     elif self.rnn_unit == "CuDNNGRU":
         layer_cell = L.CuDNNGRU
     else:
         layer_cell = L.GRU
     # embedding遮挡
     embedding_output_spatial = L.SpatialDropout1D(
         self.dropout_spatial)(outputs)
     # CNN
     convs = []
     for kernel_size in self.filters_size:
         conv = L.Conv1D(
             self.filters_num,
             kernel_size=kernel_size,
             strides=1,
             padding='SAME',
             kernel_regularizer=keras.regularizers.l2(self.l2),
             bias_regularizer=keras.regularizers.l2(self.l2),
         )(embedding_output_spatial)
         convs.append(conv)
     x = L.Concatenate(axis=1)(convs)
     # Bi-LSTM, 论文中使用的是LSTM
     x = L.Bidirectional(
         layer_cell(units=self.rnn_unit,
                    return_sequences=True,
                    activation='relu',
                    kernel_regularizer=keras.regularizers.l2(self.l2),
                    recurrent_regularizer=keras.regularizers.l2(
                        self.l2)))(x)
     x = L.Dropout(self.dropout)(x)
     x = L.Flatten()(x)
     # dense-mid
     x = L.Dense(units=min(max(self.label, 64), self.embed_size),
                 activation=self.activate_mid)(x)
     x = L.Dropout(self.dropout)(x)
     # dense-end, 最后一层, dense到label
     self.outputs = L.Dense(units=self.label,
                            activation=self.activate_end)(x)
     self.model = M.Model(inputs=inputs, outputs=self.outputs)
     self.model.summary(132)
コード例 #11
0
ファイル: t09_deepmoji.py プロジェクト: yynnxu/Macadam
    def build_model(self, inputs, outputs):
        # rnn type, RNN的类型
        if self.rnn_unit == "LSTM":
            layer_cell = L.LSTM
        elif self.rnn_unit == "CuDNNLSTM":
            layer_cell = L.CuDNNLSTM
        elif self.rnn_unit == "CuDNNGRU":
            layer_cell = L.CuDNNGRU
        else:
            layer_cell = L.GRU

        x = L.Activation(self.activate_mid)(outputs)
        # embedding遮挡
        x = L.SpatialDropout1D(self.dropout_spatial)(x)

        lstm_0_output = L.Bidirectional(layer_cell(
            units=self.rnn_unit,
            return_sequences=True,
            activation='relu',
            kernel_regularizer=keras.regularizers.l2(self.l2),
            recurrent_regularizer=keras.regularizers.l2(self.l2)),
                                        name="bi_lstm_0")(x)
        lstm_1_output = L.Bidirectional(layer_cell(
            units=self.rnn_unit,
            return_sequences=True,
            activation='relu',
            kernel_regularizer=keras.regularizers.l2(self.l2),
            recurrent_regularizer=keras.regularizers.l2(self.l2)),
                                        name="bi_lstm_1")(lstm_0_output)
        x = L.Concatenate()([lstm_1_output, lstm_0_output, x])
        x = AttentionWeightedAverage(name='attlayer',
                                     return_attention=False)(x)
        x = L.Dropout(self.dropout)(x)
        x = L.Flatten()(x)
        # dense-mid
        x = L.Dense(units=min(max(self.label, 64), self.embed_size),
                    activation=self.activate_mid)(x)
        x = L.Dropout(self.dropout)(x)
        # dense-end, 最后一层, dense到label
        self.outputs = L.Dense(units=self.label,
                               activation=self.activate_end)(x)
        self.model = M.Model(inputs=inputs, outputs=self.outputs)
        self.model.summary(132)
コード例 #12
0
ファイル: t07_dcnn.py プロジェクト: yynnxu/Macadam
 def build_model(self, inputs, outputs):
     # rnn type, RNN的类型
     pools = []
     for i in range(len(self.filters_size)):
         # 第一个, 宽卷积, 动态k-max池化
         conv_1 = wide_convolution(
             name="wide_convolution_{}".format(i),
             filter_num=self.filters_num,
             filter_size=self.filters_size[i][0])(outputs)
         top_k_1 = select_k(self.length_max, len(self.filters_size[i]),
                            1)  # 求取k
         dynamic_k_max_pooled_1 = dynamic_k_max_pooling(
             top_k=top_k_1)(conv_1)
         # 第二个, 宽卷积, 动态k-max池化
         conv_2 = wide_convolution(
             name="wide_convolution_{}_{}".format(i, i),
             filter_num=self.filters_num,
             filter_size=self.filters_size[i][1])(dynamic_k_max_pooled_1)
         top_k_2 = select_k(self.length_max, len(self.filters_size[i]), 2)
         dynamic_k_max_pooled_2 = dynamic_k_max_pooling(
             top_k=top_k_2)(conv_2)
         # 第三层, 宽卷积, Fold层, 动态k-max池化
         conv_3 = wide_convolution(
             name="wide_convolution_{}_{}_{}".format(i, i, i),
             filter_num=self.filters_num,
             filter_size=self.filters_size[i][2])(dynamic_k_max_pooled_2)
         fold_conv_3 = prem_fold()(conv_3)
         top_k_3 = select_k(self.length_max, len(self.filters_size[i]),
                            3)  # 求取k
         dynamic_k_max_pooled_3 = dynamic_k_max_pooling(
             top_k=top_k_3)(fold_conv_3)
         pools.append(dynamic_k_max_pooled_3)
     pools_concat = L.Concatenate(axis=1)(pools)
     pools_concat_dropout = L.Dropout(self.dropout)(pools_concat)
     x = L.Flatten()(pools_concat_dropout)
     # dense-end, 最后一层, dense到label
     self.outputs = L.Dense(units=self.label,
                            activation=self.activate_end)(x)
     self.model = M.Model(inputs=inputs, outputs=self.outputs)
     self.model.summary(132)
コード例 #13
0
 def build_model(self, inputs, outputs):
     """
     build_model.
     Args:
         inputs: tensor, input of model
         outputs: tensor, output of model
     Returns:
         None
     """
     # CuDNNGRU or GRU
     x = None
     if self.rnn_type.upper() == "CUDNNGRU":
         rnn_cell = L.CuDNNGRU
     else:
         rnn_cell = L.GRU
     # Bi-GRU
     for nrl in range(self.num_rnn_layers):
         x = L.Bidirectional(
             rnn_cell(
                 units=self.rnn_unit,
                 return_sequences=True,
                 activation=self.activate_mid,
             ))(outputs)
         x = L.Dropout(self.dropout)(x)
     if self.use_crf:
         x = L.Dense(units=self.label, activation=self.activate_end)(x)
         self.CRF = ConditionalRandomField(self.crf_lr_multiplier,
                                           name="crf_bert4keras")
         self.outputs = self.CRF(x)
         self.trans = K.eval(self.CRF.trans).tolist()
         self.loss = self.CRF.dense_loss if self.use_onehot else self.CRF.sparse_loss
         self.metrics = [
             self.CRF.dense_accuracy
             if self.use_onehot else self.CRF.sparse_accuracy
         ]
     else:
         self.outputs = L.TimeDistributed(
             L.Dense(units=self.label, activation=self.activate_end))(x)
     self.model = M.Model(inputs, self.outputs)
     self.model.summary(132)
コード例 #14
0
ファイル: t04_charcnn.py プロジェクト: yynnxu/Macadam
 def build_model(self, inputs, outputs):
     x = None
     # cnn + pool
     for char_cnn_size in self.char_cnn_layers:
         x = L.Convolution1D(
             filters=char_cnn_size[0],
             kernel_size=char_cnn_size[1],
         )(outputs)
         x = L.ThresholdedReLU(self.threshold)(x)
         if char_cnn_size[2] != -1:
             x = L.MaxPooling1D(pool_size=char_cnn_size[2], strides=1)(x)
     x = L.Flatten()(x)
     # full-connect 2
     for full in self.full_connect_layers:
         x = L.Dense(units=full, )(x)
         x = L.ThresholdedReLU(self.threshold)(x)
         x = L.Dropout(self.dropout)(x)
     # dense label
     self.outputs = L.Dense(units=self.label,
                            activation=self.activate_end)(x)
     self.model = M.Model(inputs=inputs, outputs=self.outputs)
     self.model.summary(132)
コード例 #15
0
ファイル: s05_bilstm_lan.py プロジェクト: yynnxu/Macadam
 def build_model(self, inputs, outputs):
     """
     build_model.
     Args:
         inputs: tensor, input of model
         outputs: tensor, output of model
     Returns:
         None
     """
     # LSTM or GRU
     if self.rnn_type == "LSTM":
         rnn_cell = L.LSTM
     elif self.rnn_type == "CuDNNLSTM":
         rnn_cell = L.CuDNNLSTM
     elif self.rnn_type == "CuDNNGRU":
         rnn_cell = L.CuDNNGRU
     else:
         rnn_cell = L.GRU
     # Bi-LSTM-LAN
     for nrl in range(self.num_rnn_layers):
         x = L.Bidirectional(rnn_cell(units=self.rnn_unit*(nrl+1),
                                      return_sequences=True,
                                      activation=self.activate_mid,
                                      ))(outputs)
         x_att = SelfAttention(K.int_shape(x)[-1])(x)
         outputs = L.Concatenate()([x, x_att])
         outputs = L.Dropout(self.dropout)(outputs)
     if self.use_crf:
         x = L.Dense(units=self.label, activation=self.activate_end)(outputs)
         self.CRF = ConditionalRandomField(self.crf_lr_multiplier, name="crf_bert4keras")
         self.outputs = self.CRF(x)
         self.trans = K.eval(self.CRF.trans).tolist()
         self.loss = self.CRF.dense_loss if self.use_onehot else self.CRF.sparse_loss
         self.metrics = [self.CRF.dense_accuracy if self.use_onehot else self.CRF.sparse_accuracy]
     else:
         self.outputs = L.TimeDistributed(L.Dense(units=self.label, activation=self.activate_end))(outputs)
     self.model = M.Model(inputs, self.outputs)
     self.model.summary(132)
コード例 #16
0
ファイル: tet_embed+.py プロジェクト: sumerzhang/Macadam
logger.info("训练/验证语料读取完成")
# 数据预处理类初始化
preprocess_xy = ListPrerocessXY(embed,
                                train_data,
                                path_dir=path_model_dir,
                                length_max=length_max)

x = L.Lambda(lambda x: x[:, 0], name="Token-CLS")(embed.model.output)

# 最后就是softmax
outputs = L.Dense(
    len(preprocess_xy.l2i),
    activation="softmax",
    kernel_initializer=keras.initializers.TruncatedNormal(stddev=0.02))(x)
model = M.Model(embed.model.input, outputs)
model.summary(132)

model.compile(optimizer=O.Adam(lr=1e-5),
              loss="categorical_crossentropy",
              metrics=["accuracy"])

len_train_data = len(train_data)
lg_train = ListGenerator(train_data,
                         preprocess_xy,
                         batch_size=batch_size,
                         len_data=len_train_data)
lg_dev = None
# monitor是早停和保存模型的依据, "loss", "acc", "val_loss", "val_acc"等
monitor = "val_loss"
if dev_data:
コード例 #17
0
 def build_model(self, inputs, outputs):
     """
     build_model.
     Args:
         inputs: tensor, input of model
         outputs: tensor, output of model
     Returns:
         None
     """
     # LSTM or GRU
     if self.rnn_type == "LSTM":
         rnn_cell = L.LSTM
     elif self.rnn_type == "CuDNNLSTM":
         rnn_cell = L.CuDNNLSTM
     elif self.rnn_type == "CuDNNGRU":
         rnn_cell = L.CuDNNGRU
     else:
         rnn_cell = L.GRU
     # CNN-LSTM, 提取n-gram特征和最大池化, 一般不用平均池化
     conv_pools = []
     for i in range(len(self.filters_size)):
         conv = L.Conv1D(
             name="conv-{0}-{1}".format(i, self.filters_size[i]),
             kernel_size=self.filters_size[i],
             activation=self.activate_mid,
             filters=self.filters_num,
             padding='same',
         )(outputs)
         conv_rnn = L.Bidirectional(
             rnn_cell(
                 name="bi-lstm-{0}-{1}".format(i, self.filters_size[i]),
                 activation=self.activate_mid,
                 return_sequences=True,
                 units=self.rnn_unit,
             ))(conv)
         x_dropout = L.Dropout(rate=self.dropout,
                               name="dropout-{0}-{1}".format(
                                   i, self.filters_size[i]))(conv_rnn)
         conv_pools.append(x_dropout)
     # 拼接
     x = L.Concatenate(axis=-1)(conv_pools)
     x = L.Dropout(self.dropout)(x)
     # CRF or Dense
     if self.use_crf:
         x = L.Dense(units=self.label, activation=self.activate_end)(x)
         self.CRF = ConditionalRandomField(self.crf_lr_multiplier,
                                           name="crf_bert4keras")
         self.outputs = self.CRF(x)
         self.trans = K.eval(self.CRF.trans).tolist()
         self.loss = self.CRF.dense_loss if self.use_onehot else self.CRF.sparse_loss
         self.metrics = [
             self.CRF.dense_accuracy
             if self.use_onehot else self.CRF.sparse_accuracy
         ]
     else:
         self.outputs = L.TimeDistributed(
             L.Dense(units=self.label,
                     activation=self.activate_end,
                     name="dense-output"))(x)
     self.model = M.Model(inputs, self.outputs)
     self.model.summary(132)
コード例 #18
0
ファイル: s04_dgcnn.py プロジェクト: yynnxu/Macadam
 def build_model(self, inputs, outputs):
     """
     build_model.
     Args:
         inputs: tensor, input of model
         outputs: tensor, output of model
     Returns:
         None
     """
     # CNN, 提取n-gram特征和最大池化, DGCNN膨胀卷积(IDCNN)
     conv_pools = []
     for i in range(len(self.filters_size)):
         conv = L.Conv1D(
             name="conv-{0}-{1}".format(i, self.filters_size[i]),
             dilation_rate=self.atrous_rates[0],
             kernel_size=self.filters_size[i],
             activation=self.activate_mid,
             filters=self.filters_num,
             padding="SAME",
         )(outputs)
         for j in range(len(self.atrous_rates) - 1):
             conv = L.Conv1D(
                 name="conv-{0}-{1}-{2}".format(i, self.filters_size[i], j),
                 dilation_rate=self.atrous_rates[j],
                 kernel_size=self.filters_size[i],
                 activation=self.activate_mid,
                 filters=self.filters_num,
                 padding="SAME",
             )(conv)
             conv = L.Dropout(
                 name="dropout-{0}-{1}-{2}".format(i, self.filters_size[i],
                                                   j),
                 rate=self.dropout,
             )(conv)
         conv_pools.append(conv)
     # 拼接
     x = L.Concatenate(axis=-1)(conv_pools)
     x = L.Dropout(self.dropout)(x)
     # CRF or Dense
     if self.use_crf:
         x = L.Dense(units=self.label, activation=self.activate_end)(x)
         self.CRF = ConditionalRandomField(self.crf_lr_multiplier,
                                           name="crf_bert4keras")
         self.outputs = self.CRF(x)
         self.trans = K.eval(self.CRF.trans).tolist()
         self.loss = self.CRF.dense_loss if self.use_onehot else self.CRF.sparse_loss
         self.metrics = [
             self.CRF.dense_accuracy
             if self.use_onehot else self.CRF.sparse_accuracy
         ]
     else:
         x = L.Bidirectional(
             L.GRU(
                 activation=self.activate_mid,
                 return_sequences=True,
                 units=self.rnn_unit,
                 name="bi-gru",
             ))(x)
         self.outputs = L.TimeDistributed(
             L.Dense(
                 activation=self.activate_end,
                 name="dense-output",
                 units=self.label,
             ))(x)
     self.model = M.Model(inputs, self.outputs)
     self.model.summary(132)