コード例 #1
0
    def test_set_attr(self):
        # set data keys
        obj = Object({"a": 1, "const": 0}, const_attrs={"const"})
        obj.a = 1
        assert obj.a == 1
        obj.b = 1
        assert obj.b == 1

        # set const keys
        with pytest.raises(RuntimeError, match="is const"):
            obj.const = 1

        # set .call attribute
        obj.call = lambda _: "pong"
        assert obj("ping") == "pong"

        # set .data attribute
        obj.data = {}
        assert obj.a is None
        with pytest.raises(ValueError, match="must be a dictionary"):
            obj.data = None

        # set other attributes
        with pytest.raises(RuntimeError, match="should not set"):
            obj.__dict__ = {}
コード例 #2
0
ファイル: test_assigner.py プロジェクト: yueweizhizhu/machin
 def patch_gputil_get_gpus(self):
     return [
         Object({
             "memoryFree": gsize,
             "load": 0
         }) for gsize in self.virtual_gpus
     ]
コード例 #3
0
import os
import json
from unittest import mock


def get_config():
    c = Config()
    c.conf1 = 1
    c.conf2 = 2
    return c


@mock.patch(
    "machin.utils.conf.argparse.ArgumentParser.parse_args",
    return_value=Object(data={"conf": ["conf1=2", "conf3=3"]}),
)
def test_load_config_cmd(*_mock_classes):
    conf = load_config_cmd()
    assert conf["conf1"] == 2
    assert conf["conf2"] is None
    assert conf["conf3"] == 3

    conf = load_config_cmd(get_config())
    # configs from commandline precedes configs from the config file
    assert conf["conf1"] == 2
    assert conf["conf2"] == 2
    assert conf["conf3"] == 3


def test_load_config_file(tmpdir):
コード例 #4
0
 def patch_model_size_estimator(mocked_model, multiplier):
     return Object({"estimate_size": lambda: mocked_model.size * multiplier})
コード例 #5
0
 def patch_psutil_virtual_memory(self):
     return Object({"available": self.virtual_cpu * 1024 ** 2})
コード例 #6
0
class TestModelAssigner:
    # unit of size is MB
    virtual_gpus = []
    virtual_cpu = 0

    def patch_gputil_get_available(self, order):
        return list(range(len(self.virtual_gpus)))

    def patch_gputil_get_gpus(self):
        return [Object({"memoryFree": gsize, "load": 0}) for gsize in self.virtual_gpus]

    def patch_psutil_virtual_memory(self):
        return Object({"available": self.virtual_cpu * 1024 ** 2})

    @staticmethod
    def patch_model_size_estimator(mocked_model, multiplier):
        return Object({"estimate_size": lambda: mocked_model.size * multiplier})

    @pytest.mark.parametrize(
        "params,gpus,cpu,assignment,exception,match",
        [
            (
                {
                    "models": [
                        Object({"size": 10, "to": lambda *_: None}),
                        Object({"size": 10, "to": lambda *_: None}),
                    ],
                    "model_connection": {(0, 1): 1},
                    "devices": ["cuda:0", "cuda:1", "cpu"],
                    "model_size_multiplier": 1,
                    "max_mem_ratio": 0.7,
                    "cpu_weight": 0.1,
                    "connection_weight": 1,
                    "size_match_weight": 1e-2,
                    "complexity_match_weight": 10,
                    "entropy_weight": 1,
                    "iterations": 500,
                    "update_rate": 0.01,
                    "gpu_gpu_distance": 1,
                    "cpu_gpu_distance": 10,
                    "move_models": True,
                },
                [1000, 1000],
                1000,
                [["cuda:0", "cuda:1"], ["cuda:1", "cuda:0"]],
                None,
                None,
            ),
            (
                {
                    "models": [
                        Object({"size": 10, "to": lambda *_: None}),
                        Object({"size": 10, "to": lambda *_: None}),
                    ],
                    "model_connection": {(0, 1): 1},
                    "devices": ["cuda:0", "cuda:1", "cpu"],
                    "model_size_multiplier": 1,
                    "max_mem_ratio": 0.7,
                    "cpu_weight": 0.1,
                    "connection_weight": 10,
                    "size_match_weight": 1e-2,
                    "complexity_match_weight": 1,
                    "entropy_weight": 1,
                    "iterations": 500,
                    "update_rate": 0.01,
                    "gpu_gpu_distance": 1,
                    "cpu_gpu_distance": 10,
                    "move_models": True,
                },
                [1000, 1000],
                1000,
                [["cuda:0", "cuda:0"], ["cuda:1", "cuda:1"]],
                None,
                None,
            ),
            (
                {
                    "models": [
                        Object({"size": 600, "to": lambda *_: None}),
                        Object({"size": 600, "to": lambda *_: None}),
                    ],
                    "model_connection": {(0, 1): 1},
                    "devices": ["cuda:0", "cuda:1", "cpu"],
                    "model_size_multiplier": 1,
                    "max_mem_ratio": 0.7,
                    "cpu_weight": 0.1,
                    "connection_weight": 1,
                    "size_match_weight": 1e-2,
                    "complexity_match_weight": 10,
                    "entropy_weight": 1,
                    "iterations": 500,
                    "update_rate": 0.01,
                    "gpu_gpu_distance": 1,
                    "cpu_gpu_distance": 10,
                    "move_models": True,
                },
                [1000, 1000],
                1000,
                [["cuda:1", "cuda:0"], ["cuda:0", "cuda:1"]],
                None,
                None,
            ),
            (
                {
                    "models": [
                        Object({"size": 10, "to": lambda *_: None}),
                        Object({"size": 10, "to": lambda *_: None}),
                    ],
                    "model_connection": {(0, 1): 1},
                    "devices": ["cuda:0", "cuda:1", "cpu"],
                    "model_size_multiplier": 1,
                    "max_mem_ratio": 0.7,
                    "cpu_weight": 0.1,
                    "connection_weight": 1,
                    "size_match_weight": 1e-2,
                    "complexity_match_weight": 10,
                    "entropy_weight": 1,
                    "iterations": 500,
                    "update_rate": 0.01,
                    "gpu_gpu_distance": 1,
                    "cpu_gpu_distance": 10,
                    "move_models": True,
                },
                [1000],
                1000,
                [["cuda:0", "cuda:0"]],
                None,
                None,
            ),
            (
                {
                    "models": [
                        Object({"size": 10, "to": lambda *_: None}),
                        Object({"size": 10, "to": lambda *_: None}),
                    ],
                    "model_connection": {(0, 1): 1},
                    "devices": ["cuda:0", "cuda:1", "cpu"],
                    "model_size_multiplier": 1,
                    "max_mem_ratio": 0.7,
                    "cpu_weight": 0.1,
                    "connection_weight": 1,
                    "size_match_weight": 1e-2,
                    "complexity_match_weight": 10,
                    "entropy_weight": 1,
                    "iterations": 500,
                    "update_rate": 0.01,
                    "gpu_gpu_distance": 1,
                    "cpu_gpu_distance": 10,
                    "move_models": True,
                },
                [],
                1000,
                [["cpu", "cpu"]],
                None,
                None,
            ),
            (
                {
                    "models": [
                        Object({"size": 10, "to": lambda *_: None}),
                        Object({"size": 10, "to": lambda *_: None}),
                    ],
                    "model_connection": {(0, 1): 1},
                    "devices": None,
                    "model_size_multiplier": 1,
                    "max_mem_ratio": 0.7,
                    "cpu_weight": 0.1,
                    "connection_weight": 1,
                    "size_match_weight": 1e-2,
                    "complexity_match_weight": 10,
                    "entropy_weight": 1,
                    "iterations": 500,
                    "update_rate": 0.01,
                    "gpu_gpu_distance": 1,
                    "cpu_gpu_distance": 10,
                    "move_models": True,
                },
                [],
                1000,
                [["cpu", "cpu"]],
                None,
                None,
            ),
            (
                {
                    "models": [
                        Object({"size": 100, "to": lambda *_: None}),
                        Object({"size": 100, "to": lambda *_: None}),
                    ],
                    "model_connection": {(0, 1): 1},
                    "devices": ["cuda:0", "cuda:1", "cpu"],
                    "model_size_multiplier": 1,
                    "max_mem_ratio": 0.7,
                    "cpu_weight": 0.1,
                    "connection_weight": 1,
                    "size_match_weight": 1e-2,
                    "complexity_match_weight": 10,
                    "entropy_weight": 1,
                    "iterations": 500,
                    "update_rate": 0.01,
                    "gpu_gpu_distance": 1,
                    "cpu_gpu_distance": 10,
                    "move_models": True,
                },
                [10],
                10,
                None,
                RuntimeError,
                "Estimated model will use",
            ),
        ],
    )
    def test_assigner(self, params, gpus, cpu, assignment, exception, match):
        t.manual_seed(0)
        self.virtual_gpus = gpus
        self.virtual_cpu = cpu

        with mock.patch(
            "machin.parallel.assigner.GPUtil.getAvailable",
            self.patch_gputil_get_available,
        ) as _p1, mock.patch(
            "machin.parallel.assigner.GPUtil.getGPUs", self.patch_gputil_get_gpus
        ) as _p2, mock.patch(
            "machin.parallel.assigner.psutil.virtual_memory",
            self.patch_psutil_virtual_memory,
        ) as _p3, mock.patch(
            "machin.parallel.assigner.ModelSizeEstimator",
            self.patch_model_size_estimator,
        ) as _p4:
            if exception is not None:
                with pytest.raises(exception, match=match):
                    ModelAssigner(**params)
            else:
                assigner = ModelAssigner(**params)
                real_assignment = [str(dev) for dev in assigner.assignment]
                assert real_assignment in assignment
コード例 #7
0
 def test_set_item(self):
     obj = Object({"a": 1})
     obj["a"] = 2
     assert obj.a == 2
コード例 #8
0
 def test_get_item(self):
     obj = Object({"a": 1})
     assert obj["a"] == 1
コード例 #9
0
 def test_get_attr(self):
     obj = Object({"a": 1})
     with pytest.raises(AttributeError, match="Failed to find"):
         _ = obj.__some_invalid_special_attr__
     assert obj.a == 1
コード例 #10
0
 def test_call(self):
     obj = Object()
     obj("original_call")
     obj.call = lambda _: "pong"
     assert obj("ping") == "pong"
コード例 #11
0
 def test_init(self):
     obj = Object()
     assert obj.data == {}
     obj = Object({"a": 1})
     assert obj.data == {"a": 1}
コード例 #12
0
 def __init__(self):
     super().__init__()
     self.nn_model = NNModule()
     self.frame = Object({"optimizers": None, "lr_schedulers": None})