コード例 #1
0
    def setUp(self):
        """Constructor for TestLinearRegression.

        Loads housing data, and creates training and testing data.

        """
        self.convert_numpy = ConvertNumpy()
        self.linear_regression = LinearRegression()
        self.predict_output = PredictOutput()
        self.residual_sum_squares = ResidualSumSquares()

        # Create a dictionary type to store relevant data types so that our pandas
        # will read the correct information
        dtype_dict = {'bathrooms': float, 'waterfront': int, 'sqft_above': int, 'sqft_living15': float,
                      'grade': int, 'yr_renovated': int, 'price': float, 'bedrooms': float, 'zipcode': str,
                      'long': float, 'sqft_lot15': float, 'sqft_living': float, 'floors': str, 'condition': int,
                      'lat': float, 'date': str, 'sqft_basement': int, 'yr_built': int, 'id': str, 'sqft_lot': int,
                      'view': int}

        # Create a kc_house that encompasses all test and train data
        self.kc_house = pd.read_csv('./unit_tests/test_data/regression/kc_house/kc_house_data.csv', dtype=dtype_dict)

        # Create a kc_house_test_frame that encompasses only train data
        self.kc_house_train = pd.read_csv('./unit_tests/test_data/regression/kc_house/kc_house_train_data.csv',
                                          dtype=dtype_dict)

        # Create a kc_house_frames that encompasses only test data
        self.kc_house_test = pd.read_csv('./unit_tests/test_data/regression/kc_house/kc_house_test_data.csv',
                                         dtype=dtype_dict)
コード例 #2
0
class TestLinearRegression(unittest.TestCase):

    """Test for LinearRegression.

    Uses housing data to test LinearRegression.

    Statics:
        _multiprocess_can_split_ (bool): Flag for nose tests to run tests in parallel.

    """

    _multiprocess_can_split_ = True

    def setUp(self):
        """Constructor for TestLinearRegression.

        Loads housing data, and creates training and testing data.

        """
        self.convert_numpy = ConvertNumpy()
        self.linear_regression = LinearRegression()
        self.predict_output = PredictOutput()
        self.residual_sum_squares = ResidualSumSquares()

        # Create a dictionary type to store relevant data types so that our pandas
        # will read the correct information
        dtype_dict = {'bathrooms': float, 'waterfront': int, 'sqft_above': int, 'sqft_living15': float,
                      'grade': int, 'yr_renovated': int, 'price': float, 'bedrooms': float, 'zipcode': str,
                      'long': float, 'sqft_lot15': float, 'sqft_living': float, 'floors': str, 'condition': int,
                      'lat': float, 'date': str, 'sqft_basement': int, 'yr_built': int, 'id': str, 'sqft_lot': int,
                      'view': int}

        # Create a kc_house that encompasses all test and train data
        self.kc_house = pd.read_csv('./unit_tests/test_data/regression/kc_house/kc_house_data.csv', dtype=dtype_dict)

        # Create a kc_house_test_frame that encompasses only train data
        self.kc_house_train = pd.read_csv('./unit_tests/test_data/regression/kc_house/kc_house_train_data.csv',
                                          dtype=dtype_dict)

        # Create a kc_house_frames that encompasses only test data
        self.kc_house_test = pd.read_csv('./unit_tests/test_data/regression/kc_house/kc_house_test_data.csv',
                                         dtype=dtype_dict)

    def test_01_gradient_descent(self):
        """Test gradient descent.

        Tests gradient descent and compare it to known values.

        """
        # We will use sqft_living for our features
        features = ['sqft_living']

        # Output will use price
        output = ['price']

        # Convert our pandas frame to numpy
        feature_matrix, output = self.convert_numpy.convert_to_numpy(self.kc_house_train, features, output, 1)

        # Create our initial weights
        initial_weights = np.array([-47000., 1.])

        # Step size
        step_size = 7e-12

        # Tolerance
        tolerance = 2.5e7

        # Compute our gradient descent value
        final_weights = self.linear_regression.gradient_descent(feature_matrix, output,
                                                                {"initial_weights": initial_weights,
                                                                 "step_size": step_size,
                                                                 "tolerance": tolerance})

        # Assert that the weights is correct
        self.assertEquals(round(-46999.887165546708, 3), round(final_weights[0], 3))
        self.assertEquals(round(281.91211917520917, 3), round(final_weights[1], 3))

    def test_02_gradient_descent_multiple(self):
        """Tests gradient descent on multiple features.

        Computes gradient descent on multiple input, and computes predicted model and RSS.

        """
        # We will use sqft_iving, and sqft_living15
        features = ['sqft_living', 'sqft_living15']

        # Output will be price
        output = ['price']

        # Convert our pandas frame to numpy
        feature_matrix, output = self.convert_numpy.convert_to_numpy(self.kc_house_train, features, output, 1)

        # Create our initial weights
        initial_weights = np.array([-100000., 1., 1.])

        # Step size
        step_size = 4e-12

        # Tolerance
        tolerance = 1e9

        # Compute our gradient descent value
        final_weights = self.linear_regression.gradient_descent(feature_matrix, output,
                                                                {"initial_weights": initial_weights,
                                                                 "step_size": step_size,
                                                                 "tolerance": tolerance})

        # We will use sqft_iving, and sqft_living15
        test_features = ['sqft_living', 'sqft_living15']

        # Output will be price
        test_output = ['price']

        # Convert our test pandas frame to numpy
        test_feature_matrix, test_output = self.convert_numpy.convert_to_numpy(self.kc_house_test, test_features,
                                                                               test_output, 1)

        # Predict the output of test features
        predicted_output = self.predict_output.regression(test_feature_matrix, final_weights)

        # Compute RSS
        rss = self.residual_sum_squares.residual_sum_squares_regression(test_output, predicted_output)

        # Assert that rss is correct
        self.assertEquals(round(270263443629803.41, -3), round(rss, -3))

    def test_03_gradient_ascent(self):
        """Test gradient ascent.

        Test gradient ascent and compare it to known values.

        """
        # We will use sqft_living for our features
        features = ['sqft_living']

        # Output will be price
        output = ['price']

        # Convert our pandas frame to numpy
        feature_matrix, output = self.convert_numpy.convert_to_numpy(self.kc_house_train, features, output, 1)

        # Create our initial weights
        initial_weights = np.array([-47000., 1.])

        # Step size
        step_size = 7e-12

        # Tolerance
        tolerance = 2.5e7

        # Compute our hill climbing value
        final_weights = self.linear_regression.gradient_ascent(feature_matrix, output,
                                                               {"initial_weights": initial_weights,
                                                                "step_size": step_size,
                                                                "tolerance": tolerance})

        # Assert that the weights is correct
        self.assertEquals(round(-47000.142201335177, 3), round(final_weights[0], 3))
        self.assertEquals(round(-352.86068692252599, 3), round(final_weights[1], 3))