コード例 #1
0
    def unpack(self, file_index):
        treeevtorig = uproot.open(self.l_root[file_index])[self.n_treeevt]
        dfevtorig = treeevtorig.pandas.df(branches=self.v_evt)
        dfevtorig = selectdfrunlist(dfevtorig, self.runlist, "run_number")
        dfevtorig = selectdfquery(dfevtorig, self.s_cen_unp)
        dfevtorig = dfevtorig.reset_index(drop=True)
        pickle.dump(dfevtorig, openfile(self.l_evtorig[file_index], "wb"), protocol=4)
        dfevt = selectdfquery(dfevtorig, self.s_good_evt_unp)
        dfevt = dfevt.reset_index(drop=True)
        pickle.dump(dfevt, openfile(self.l_evt[file_index], "wb"), protocol=4)


        treereco = uproot.open(self.l_root[file_index])[self.n_treereco]
        dfreco = treereco.pandas.df(branches=self.v_all)
        dfreco = selectdfrunlist(dfreco, self.runlist, "run_number")
        dfreco = selectdfquery(dfreco, self.s_reco_unp)
        dfreco = pd.merge(dfreco, dfevt, on=self.v_evtmatch)
        isselacc = selectfidacc(dfreco.pt_cand.values, dfreco.y_cand.values)
        dfreco = dfreco[np.array(isselacc, dtype=bool)]
        if self.b_trackcuts is not None:
            dfreco = filter_bit_df(dfreco, self.v_bitvar, self.b_trackcuts)
        dfreco[self.v_isstd] = np.array(tag_bit_df(dfreco, self.v_bitvar,
                                                   self.b_std), dtype=int)
        dfreco = dfreco.reset_index(drop=True)
        if self.mcordata == "mc":
            dfreco[self.v_ismcsignal] = np.array(tag_bit_df(dfreco, self.v_bitvar,
                                                            self.b_mcsig), dtype=int)
            dfreco[self.v_ismcprompt] = np.array(tag_bit_df(dfreco, self.v_bitvar,
                                                            self.b_mcsigprompt), dtype=int)
            dfreco[self.v_ismcfd] = np.array(tag_bit_df(dfreco, self.v_bitvar,
                                                        self.b_mcsigfd), dtype=int)
            dfreco[self.v_ismcbkg] = np.array(tag_bit_df(dfreco, self.v_bitvar,
                                                         self.b_mcbkg), dtype=int)
        pickle.dump(dfreco, openfile(self.l_reco[file_index], "wb"), protocol=4)

        if self.mcordata == "mc":
            treegen = uproot.open(self.l_root[file_index])[self.n_treegen]
            dfgen = treegen.pandas.df(branches=self.v_gen)
            dfgen = selectdfrunlist(dfgen, self.runlist, "run_number")
            dfgen = pd.merge(dfgen, dfevtorig, on=self.v_evtmatch)
            dfgen = selectdfquery(dfgen, self.s_gen_unp)
            dfgen[self.v_isstd] = np.array(tag_bit_df(dfgen, self.v_bitvar,
                                                      self.b_std), dtype=int)
            dfgen[self.v_ismcsignal] = np.array(tag_bit_df(dfgen, self.v_bitvar,
                                                           self.b_mcsig), dtype=int)
            dfgen[self.v_ismcprompt] = np.array(tag_bit_df(dfgen, self.v_bitvar,
                                                           self.b_mcsigprompt), dtype=int)
            dfgen[self.v_ismcfd] = np.array(tag_bit_df(dfgen, self.v_bitvar,
                                                       self.b_mcsigfd), dtype=int)
            dfgen[self.v_ismcbkg] = np.array(tag_bit_df(dfgen, self.v_bitvar,
                                                        self.b_mcbkg), dtype=int)
            dfgen = dfgen.reset_index(drop=True)
            pickle.dump(dfgen, openfile(self.l_gen[file_index], "wb"), protocol=4)
コード例 #2
0
def skimmer(filein, filevt, fileout, skimming_sel, var_evt_match, param_case,
            presel_reco, sel_cent, skimming2_dotrackpid, runlist):
    df = pickle.load(open(filein, "rb"))
    dfevt = pickle.load(open(filevt, "rb"))
    if "Evt" not in filein:
        df = pd.merge(df, dfevt, on=var_evt_match)
    if skimming_sel is not None:
        df = df.query(skimming_sel)
    if runlist is not None:
        array_run = df.run_number.values
        isgoodrun = select_runs(runlist, array_run)
        df = df[np.array(isgoodrun, dtype=bool)]
    if "Reco" in filein:
        if skimming2_dotrackpid is True:
            df = filter_df_cand(df, param_case, 'presel_track_pid')
        if presel_reco is not None:
            df = df.query(presel_reco)
        array_pt = df.pt_cand.values
        array_y = df.y_cand.values
        isselacc = selectfidacc(array_pt, array_y)
        df = df[np.array(isselacc, dtype=bool)]
    if sel_cent is not None:
        df = df.query(sel_cent)
    df.to_pickle(fileout)
コード例 #3
0
    def unpack(self, file_index):
        treeevtorig = uproot.open(self.l_root[file_index])[self.n_treeevt]
        dfevtorig = treeevtorig.pandas.df(branches=self.v_evt)
        dfevtorig = selectdfrunlist(dfevtorig, self.runlist, "run_number")
        dfevtorig = selectdfquery(dfevtorig, self.s_cen_unp)
        dfevtorig = dfevtorig.reset_index(drop=True)
        pickle.dump(dfevtorig, openfile(self.l_evtorig[file_index], "wb"), protocol=4)
        dfevt = selectdfquery(dfevtorig, self.s_good_evt_unp)
        dfevt = dfevt.reset_index(drop=True)
        pickle.dump(dfevt, openfile(self.l_evt[file_index], "wb"), protocol=4)


        treereco = uproot.open(self.l_root[file_index])[self.n_treereco]
        dfreco = treereco.pandas.df(branches=self.v_all)
        dfreco = selectdfrunlist(dfreco, self.runlist, "run_number")
        dfreco = selectdfquery(dfreco, self.s_reco_unp)
        dfreco = pd.merge(dfreco, dfevt, on=self.v_evtmatch)
        isselacc = selectfidacc(dfreco.pt_cand.values, dfreco.y_cand.values)
        dfreco = dfreco[np.array(isselacc, dtype=bool)]
        arraysub = [0 for ival in range(len(dfreco))]
        n_tracklets_corr = dfreco["n_tracklets_corr"].values
        n_tracklets_corr_sub = None
        for iprong in range(self.nprongs):
            spdhits_thisprong = dfreco["spdhits_prong%s" % iprong].values
            ntrackletsthisprong = [1 if spdhits_thisprong[index] == 3 else 0 \
                                   for index in range(len(dfreco))]
            arraysub = np.add(ntrackletsthisprong, arraysub)
        n_tracklets_corr_sub = np.subtract(n_tracklets_corr, arraysub)

        dfreco["n_tracklets_corr_sub"] = n_tracklets_corr_sub
        if self.b_trackcuts is not None:
            dfreco = filter_bit_df(dfreco, self.v_bitvar, self.b_trackcuts)
        dfreco[self.v_isstd] = np.array(tag_bit_df(dfreco, self.v_bitvar,
                                                   self.b_std), dtype=int)
        dfreco = dfreco.reset_index(drop=True)
        if self.mcordata == "mc":
            dfreco[self.v_ismcsignal] = np.array(tag_bit_df(dfreco, self.v_bitvar,
                                                            self.b_mcsig), dtype=int)
            dfreco[self.v_ismcprompt] = np.array(tag_bit_df(dfreco, self.v_bitvar,
                                                            self.b_mcsigprompt), dtype=int)
            dfreco[self.v_ismcfd] = np.array(tag_bit_df(dfreco, self.v_bitvar,
                                                        self.b_mcsigfd), dtype=int)
            dfreco[self.v_ismcbkg] = np.array(tag_bit_df(dfreco, self.v_bitvar,
                                                         self.b_mcbkg), dtype=int)
        pickle.dump(dfreco, openfile(self.l_reco[file_index], "wb"), protocol=4)

        if self.mcordata == "mc":
            treegen = uproot.open(self.l_root[file_index])[self.n_treegen]
            dfgen = treegen.pandas.df(branches=self.v_gen)
            dfgen = selectdfrunlist(dfgen, self.runlist, "run_number")
            dfgen = pd.merge(dfgen, dfevtorig, on=self.v_evtmatch)
            dfgen = selectdfquery(dfgen, self.s_gen_unp)
            dfgen[self.v_isstd] = np.array(tag_bit_df(dfgen, self.v_bitvar,
                                                      self.b_std), dtype=int)
            dfgen[self.v_ismcsignal] = np.array(tag_bit_df(dfgen, self.v_bitvar,
                                                           self.b_mcsig), dtype=int)
            dfgen[self.v_ismcprompt] = np.array(tag_bit_df(dfgen, self.v_bitvar,
                                                           self.b_mcsigprompt), dtype=int)
            dfgen[self.v_ismcfd] = np.array(tag_bit_df(dfgen, self.v_bitvar,
                                                       self.b_mcsigfd), dtype=int)
            dfgen[self.v_ismcbkg] = np.array(tag_bit_df(dfgen, self.v_bitvar,
                                                        self.b_mcbkg), dtype=int)
            dfgen = dfgen.reset_index(drop=True)
            pickle.dump(dfgen, openfile(self.l_gen[file_index], "wb"), protocol=4)
コード例 #4
0
    def unpack(self, file_index):
        treeevtorig = uproot.open(self.l_root[file_index])[self.n_treeevt]
        try:
            dfevtorig = treeevtorig.pandas.df(branches=self.v_evt)
        except Exception as e:  # pylint: disable=broad-except
            print('Missing variable in the event root tree', str(e))
            print('Missing variable in the candidate root tree')
            print('I am sorry, I am dying ...\n \n \n')
            sys.exit()

        dfevtorig = selectdfquery(dfevtorig, self.s_cen_unp)
        dfevtorig = dfevtorig.reset_index(drop=True)
        pickle.dump(dfevtorig,
                    openfile(self.l_evtorig[file_index], "wb"),
                    protocol=4)
        dfevt = selectdfquery(dfevtorig, self.s_good_evt_unp)
        dfevt = dfevt.reset_index(drop=True)
        pickle.dump(dfevt, openfile(self.l_evt[file_index], "wb"), protocol=4)

        treereco = uproot.open(self.l_root[file_index])[self.n_treereco]
        try:
            dfreco = treereco.pandas.df(branches=self.v_all)
        except Exception as e:  # pylint: disable=broad-except
            print('Missing variable in the candidate root tree')
            print('I am sorry, I am dying ...\n \n \n')
            sys.exit()
        dfreco = selectdfquery(dfreco, self.s_reco_unp)
        dfreco = pd.merge(dfreco, dfevt, on=self.v_evtmatch)
        isselacc = selectfidacc(dfreco.pt_cand.values, dfreco.y_cand.values)
        dfreco = dfreco[np.array(isselacc, dtype=bool)]
        arraysub = [0 for ival in range(len(dfreco))]
        n_tracklets_corr = dfreco["n_tracklets_corr"].values
        n_tracklets_corr_shm = dfreco["n_tracklets_corr_shm"].values
        n_tracklets_corr_sub = None
        n_tracklets_corr_shm_sub = None
        for iprong in range(self.nprongs):
            if self.prongformultsub[iprong] == 0:
                continue
            #print("considering prong %d for sub" % iprong)
            spdhits_thisprong = dfreco["spdhits_prong%s" % iprong].values
            ntrackletsthisprong = [1 if spdhits_thisprong[index] == 3 else 0 \
                                   for index in range(len(dfreco))]
            arraysub = np.add(ntrackletsthisprong, arraysub)
        n_tracklets_corr_sub = np.subtract(n_tracklets_corr, arraysub)
        n_tracklets_corr_shm_sub = np.subtract(n_tracklets_corr_shm, arraysub)

        dfreco["n_tracklets_corr_sub"] = n_tracklets_corr_sub
        dfreco["n_tracklets_corr_shm_sub"] = n_tracklets_corr_shm_sub
        if self.b_trackcuts is not None:
            dfreco = filter_bit_df(dfreco, self.v_bitvar, self.b_trackcuts)
        dfreco[self.v_isstd] = np.array(tag_bit_df(dfreco, self.v_bitvar,
                                                   self.b_std),
                                        dtype=int)
        dfreco = dfreco.reset_index(drop=True)
        if self.mcordata == "mc":
            dfreco[self.v_ismcsignal] = np.array(tag_bit_df(
                dfreco, self.v_bitvar, self.b_mcsig),
                                                 dtype=int)
            dfreco[self.v_ismcprompt] = np.array(tag_bit_df(
                dfreco, self.v_bitvar, self.b_mcsigprompt),
                                                 dtype=int)
            dfreco[self.v_ismcfd] = np.array(tag_bit_df(
                dfreco, self.v_bitvar, self.b_mcsigfd),
                                             dtype=int)
            dfreco[self.v_ismcbkg] = np.array(tag_bit_df(
                dfreco, self.v_bitvar, self.b_mcbkg),
                                              dtype=int)
        pickle.dump(dfreco,
                    openfile(self.l_reco[file_index], "wb"),
                    protocol=4)

        if self.mcordata == "mc":
            treegen = uproot.open(self.l_root[file_index])[self.n_treegen]
            dfgen = treegen.pandas.df(branches=self.v_gen)
            dfgen = pd.merge(dfgen, dfevtorig, on=self.v_evtmatch)
            dfgen = selectdfquery(dfgen, self.s_gen_unp)
            dfgen[self.v_isstd] = np.array(tag_bit_df(dfgen, self.v_bitvar,
                                                      self.b_std),
                                           dtype=int)
            dfgen[self.v_ismcsignal] = np.array(tag_bit_df(
                dfgen, self.v_bitvar, self.b_mcsig),
                                                dtype=int)
            dfgen[self.v_ismcprompt] = np.array(tag_bit_df(
                dfgen, self.v_bitvar, self.b_mcsigprompt),
                                                dtype=int)
            dfgen[self.v_ismcfd] = np.array(tag_bit_df(dfgen, self.v_bitvar,
                                                       self.b_mcsigfd),
                                            dtype=int)
            dfgen[self.v_ismcbkg] = np.array(tag_bit_df(
                dfgen, self.v_bitvar, self.b_mcbkg),
                                             dtype=int)
            dfgen = dfgen.reset_index(drop=True)
            pickle.dump(dfgen,
                        openfile(self.l_gen[file_index], "wb"),
                        protocol=4)
コード例 #5
0
    def unpack(self, file_index):
        treeevtorig = uproot.open(self.l_root[file_index])[self.n_treeevt]
        dfevtorig = treeevtorig.pandas.df(branches=self.v_evt)
        dfevtorig = selectdfrunlist(dfevtorig, self.runlist, "run_number")
        dfevtorig = selectdfquery(dfevtorig, self.s_cen_unp)
        dfevtorig = dfevtorig.reset_index(drop=True)
        pickle.dump(dfevtorig, openfile(self.l_evtorig[file_index], "wb"), protocol=4)
        dfevt = selectdfquery(dfevtorig, self.s_good_evt_unp)
        dfevt = dfevt.reset_index(drop=True)
        pickle.dump(dfevt, openfile(self.l_evt[file_index], "wb"), protocol=4)

        fileevtroot = TFile.Open(self.l_evtorigroot[file_index], "recreate")
        hNorm = TH1F("hEvForNorm", ";;Normalisation", 2, 0.5, 2.5)
        hNorm.GetXaxis().SetBinLabel(1, "normsalisation factor")
        hNorm.GetXaxis().SetBinLabel(2, "selected events")
        nselevt = 0
        norm = 0
        # Handle silent weird behaviour of Pandas if dataframe is empty
        # Otherwise, if it is empty it might just silently return from this frunction for some
        # reason and everything what follows would just be skipped.
        if not dfevt.empty:
            nselevt = len(dfevt.query("is_ev_rej==0"))
            norm = getnormforselevt(dfevt)
        hNorm.SetBinContent(1, norm)
        hNorm.SetBinContent(2, nselevt)
        hNorm.Write()
        fileevtroot.Close()

        treereco = uproot.open(self.l_root[file_index])[self.n_treereco]
        dfreco = treereco.pandas.df(branches=self.v_all)
        dfreco = selectdfrunlist(dfreco, self.runlist, "run_number")
        dfreco = selectdfquery(dfreco, self.s_reco_unp)
        dfreco = pd.merge(dfreco, dfevt, on=self.v_evtmatch)
        isselacc = selectfidacc(dfreco.pt_cand.values, dfreco.y_cand.values)
        dfreco = dfreco[np.array(isselacc, dtype=bool)]
        if self.b_trackcuts is not None:
            dfreco = filter_bit_df(dfreco, self.v_bitvar, self.b_trackcuts)
        dfreco[self.v_isstd] = np.array(tag_bit_df(dfreco, self.v_bitvar,
                                                   self.b_std), dtype=int)
        dfreco = dfreco.reset_index(drop=True)
        if self.mcordata == "mc":
            dfreco[self.v_ismcsignal] = np.array(tag_bit_df(dfreco, self.v_bitvar,
                                                            self.b_mcsig), dtype=int)
            dfreco[self.v_ismcprompt] = np.array(tag_bit_df(dfreco, self.v_bitvar,
                                                            self.b_mcsigprompt), dtype=int)
            dfreco[self.v_ismcfd] = np.array(tag_bit_df(dfreco, self.v_bitvar,
                                                        self.b_mcsigfd), dtype=int)
            dfreco[self.v_ismcbkg] = np.array(tag_bit_df(dfreco, self.v_bitvar,
                                                         self.b_mcbkg), dtype=int)
        pickle.dump(dfreco, openfile(self.l_reco[file_index], "wb"), protocol=4)

        if self.mcordata == "mc":
            treegen = uproot.open(self.l_root[file_index])[self.n_treegen]
            dfgen = treegen.pandas.df(branches=self.v_gen)
            dfgen = selectdfrunlist(dfgen, self.runlist, "run_number")
            dfgen = pd.merge(dfgen, dfevtorig, on=self.v_evtmatch)
            dfgen = selectdfquery(dfgen, self.s_gen_unp)
            dfgen[self.v_isstd] = np.array(tag_bit_df(dfgen, self.v_bitvar,
                                                      self.b_std), dtype=int)
            dfgen[self.v_ismcsignal] = np.array(tag_bit_df(dfgen, self.v_bitvar,
                                                           self.b_mcsig), dtype=int)
            dfgen[self.v_ismcprompt] = np.array(tag_bit_df(dfgen, self.v_bitvar,
                                                           self.b_mcsigprompt), dtype=int)
            dfgen[self.v_ismcfd] = np.array(tag_bit_df(dfgen, self.v_bitvar,
                                                       self.b_mcsigfd), dtype=int)
            dfgen[self.v_ismcbkg] = np.array(tag_bit_df(dfgen, self.v_bitvar,
                                                        self.b_mcbkg), dtype=int)
            dfgen = dfgen.reset_index(drop=True)
            pickle.dump(dfgen, openfile(self.l_gen[file_index], "wb"), protocol=4)
コード例 #6
0
    def unpack(self, file_index):
        # Open root file and save event tree to dataframe
        treeevtorig = uproot.open(self.l_root[file_index])[self.n_treeevt]
        dfevtorig = treeevtorig.pandas.df(branches=self.v_evt)

        # Only save events within the given run period & required centrality
        dfevtorig = selectdfrunlist(dfevtorig, self.runlist, "run_number")
        dfevtorig = selectdfquery(dfevtorig, self.s_cen_unp)

        # Reset dataframe index and save to "original" pickle file
        dfevtorig = dfevtorig.reset_index(drop=True)
        dfevtorig.to_pickle(self.l_evtorig[file_index])

        # Select "good" events and save to a second pickle file
        dfevt = selectdfquery(dfevtorig, self.s_good_evt_unp)
        dfevt = dfevt.reset_index(drop=True)
        dfevt.to_pickle(self.l_evt[file_index])

        # Open root file again, get the reconstructed tree into a dataframe
        treereco = uproot.open(self.l_root[file_index])[self.n_treereco]
        if not treereco:
            print('Couldn\'t find tree %s in file %s' % \
                  (self.n_treereco, self.l_root[file_index]))
        dfreco = treereco.pandas.df(branches=self.v_all)

        # Only save events within the given run period & required cuts
        dfreco = selectdfrunlist(dfreco, self.runlist, "run_number")
        dfreco = selectdfquery(dfreco, self.s_reco_unp)
        dfreco = pd.merge(dfreco, dfevt, on=self.v_evtmatch)

        if 'Jet' not in self.case:
            isselacc = selectfidacc(dfreco.pt_cand.values,
                                    dfreco.y_cand.values)
            dfreco = dfreco[np.array(isselacc, dtype=bool)]
            if self.b_trackcuts is not None:
                dfreco = filter_bit_df(dfreco, self.v_bitvar, self.b_trackcuts)
            dfreco[self.v_isstd] = np.array(tag_bit_df(dfreco, self.v_bitvar,
                                                       self.b_std),
                                            dtype=int)
            dfreco = dfreco.reset_index(drop=True)
            if self.mcordata == "mc":
                dfreco[self.v_ismcsignal] = np.array(tag_bit_df(
                    dfreco, self.v_bitvar, self.b_mcsig),
                                                     dtype=int)
                dfreco[self.v_ismcprompt] = np.array(tag_bit_df(
                    dfreco, self.v_bitvar, self.b_mcsigprompt),
                                                     dtype=int)
                dfreco[self.v_ismcfd] = np.array(tag_bit_df(
                    dfreco, self.v_bitvar, self.b_mcsigfd),
                                                 dtype=int)
                dfreco[self.v_ismcbkg] = np.array(tag_bit_df(
                    dfreco, self.v_bitvar, self.b_mcbkg),
                                                  dtype=int)

        # Save reconstructed data to another pickle file
        dfreco.to_pickle(self.l_reco[file_index])

        if self.mcordata == "mc":
            treegen = uproot.open(self.l_root[file_index])[self.n_treegen]
            dfgen = treegen.pandas.df(branches=self.v_gen)
            dfgen = selectdfrunlist(dfgen, self.runlist, "run_number")
            dfgen = pd.merge(dfgen, dfevtorig, on=self.v_evtmatch)
            dfgen = selectdfquery(dfgen, self.s_gen_unp)
            dfgen[self.v_isstd] = np.array(tag_bit_df(dfgen, self.v_bitvar,
                                                      self.b_std),
                                           dtype=int)
            dfgen[self.v_ismcsignal] = np.array(tag_bit_df(
                dfgen, self.v_bitvar, self.b_mcsig),
                                                dtype=int)
            dfgen[self.v_ismcprompt] = np.array(tag_bit_df(
                dfgen, self.v_bitvar, self.b_mcsigprompt),
                                                dtype=int)
            dfgen[self.v_ismcfd] = np.array(tag_bit_df(dfgen, self.v_bitvar,
                                                       self.b_mcsigfd),
                                            dtype=int)
            dfgen[self.v_ismcbkg] = np.array(tag_bit_df(
                dfgen, self.v_bitvar, self.b_mcbkg),
                                             dtype=int)
            dfgen = dfgen.reset_index(drop=True)
            dfgen.to_pickle(self.l_gen[file_index])