コード例 #1
0
def main(arglist):
    game_name = arglist.game_name
    # 'abs', 'one'
    reward_type = arglist.reward_type
    p = arglist.p
    agent_num = arglist.n
    u_range = 1.
    k = 0
    print(arglist.aux, 'arglist.aux')
    model_names_setting = arglist.model_names_setting.split('_')
    model_names = [model_names_setting[0]] + [model_names_setting[1]] * (agent_num - 1)
    model_name = '_'.join(model_names)
    path_prefix = game_name
    if game_name == 'pbeauty':
        env = PBeautyGame(agent_num=agent_num, reward_type=reward_type, p=p)
        path_prefix  = game_name + '-' + reward_type + '-' + str(p)
    elif 'matrix' in game_name:
        matrix_game_name = game_name.split('-')[-1]
        repeated = arglist.repeat
        max_step = arglist.max_path_length
        memory = arglist.memory
        env = MatrixGame(game=matrix_game_name, agent_num=agent_num,
                         action_num=2, repeated=repeated,
                         max_step=max_step, memory=memory,
                         discrete_action=False, tuple_obs=False)
        path_prefix = '{}-{}-{}-{}'.format(game_name, repeated, max_step, memory)

    elif 'diff' in game_name:
        diff_game_name = game_name.split('-')[-1]
        agent_num = 2
        env = DifferentialGame(diff_game_name, agent_num)

    elif 'particle' in game_name:
        particle_game_name = game_name.split('-')[-1]
        env, agent_num, model_name, model_names = get_particle_game(particle_game_name, arglist)

    elif 'alvi' in game_name:
        mat_scene = -1
        # Create environment and scenario characteristics
        env, scn = make_env(arglist.scenario, arglist, arglist.benchmark, mat_scene=mat_scene)

    now = datetime.datetime.now()
    timestamp = now.strftime('%Y-%m-%d %H:%M:%S.%f %Z')
    if 'CG' in model_name:
        model_name = model_name + '-{}'.format(arglist.mu)
    if not arglist.aux:
        model_name = model_name + '-{}'.format(arglist.aux)

    suffix = '{}/{}/{}/{}'.format(path_prefix, agent_num, model_name, timestamp)

    print(suffix)

    logger.add_tabular_output('./log/{}.csv'.format(suffix))
    snapshot_dir = './snapshot/{}'.format(suffix)
    policy_dir = './policy/{}'.format(suffix)
    os.makedirs(snapshot_dir, exist_ok=True)
    os.makedirs(policy_dir, exist_ok=True)
    logger.set_snapshot_dir(snapshot_dir)

    agents = []
    M = arglist.hidden_size
    batch_size = arglist.batch_size
    sampler = MASampler(agent_num=agent_num, joint=True, global_reward=arglist.global_reward, max_path_length=25, min_pool_size=100, batch_size=batch_size)

    base_kwargs = {
        'sampler': sampler,
        'epoch_length': 1,
        'n_epochs': arglist.max_steps,
        'n_train_repeat': 1,
        'eval_render': True,
        'eval_n_episodes': 10
    }

    with U.single_threaded_session():
        for i, model_name in enumerate(model_names):
            if 'PR2AC' in model_name:
                k = int(model_name[-1])
                g = False
                mu = arglist.mu
                if 'G' in model_name:
                    g = True
                agent = pr2ac_agent(model_name, i, env, M, u_range, base_kwargs, k=k, g=g, mu=mu, game_name=game_name, aux=arglist.aux)
            elif model_name == 'MASQL':
                agent = masql_agent(model_name, i, env, M, u_range, base_kwargs, game_name=game_name)
            elif model_name == 'MASAC':
                agent = masac_agent(model_name, i, env, M, u_range, base_kwargs, game_name=game_name)
            elif model_name == 'ROMMEO':
                agent = rom_agent(model_name, i, env, M, u_range, base_kwargs, game_name=game_name)
            else:
                if model_name == 'DDPG':
                    joint = False
                    opponent_modelling = False
                elif model_name == 'MADDPG':
                    joint = True
                    opponent_modelling = False
                elif model_name == 'DDPG-OM':
                    joint = True
                    opponent_modelling = True
                agent = ddpg_agent(joint, opponent_modelling, model_names, i, env, M, u_range, base_kwargs, game_name=game_name)

            agents.append(agent)

        sampler.initialize(env, agents)

        for agent in agents:
            agent._init_training()
        gt.rename_root('MARLAlgorithm')
        gt.reset()
        gt.set_def_unique(False)
        initial_exploration_done = False
        # noise = .1
        noise = .5
        alpha = .1


        for agent in agents:
            try:
                agent.policy.set_noise_level(noise)
            except:
                pass
        # alpha = .5
        for steps in gt.timed_for(range(base_kwargs['n_epochs'] + 1)):
            # alpha = .1 + np.exp(-0.1 * max(steps-10, 0)) * 500.
            logger.push_prefix('Epoch #%d | ' % steps)
            if steps % (25*1000) == 0:
                print(suffix)
            for t in range(base_kwargs['epoch_length']):
                # TODO.code consolidation: Add control interval to sampler
                if not initial_exploration_done:
                    if steps >= 1000:
                        initial_exploration_done = True
                sampler.sample()
                if not initial_exploration_done:
                    continue
                gt.stamp('sample')
                print('Sample Done')
                if steps == 1000:
                    noise = 0.1

                    for agent in agents:
                        try:
                            agent.policy.set_noise_level(noise)
                        except:
                            pass
                    # alpha = 10.
                if steps == 2000:
                    noise = 0.1
                    for agent in agents:
                        try:
                            agent.policy.set_noise_level(noise)
                        except:
                            pass
                    # alpha = .1
                if steps == 3000:
                    noise = 0.05
                    for agent in agents:
                        try:
                            agent.policy.set_noise_level(noise)
                        except:
                            pass
                if steps > base_kwargs['n_epochs'] / 6:
                    noise = 0.01
                    for agent in agents:
                        try:
                            agent.policy.set_noise_level(noise)
                        except:
                            pass
                if steps % arglist.training_interval != 0:
                    continue
                for j in range(base_kwargs['n_train_repeat']):
                    batch_n = []
                    recent_batch_n = []
                    indices = None
                    receent_indices = None
                    for i, agent in enumerate(agents):
                        if i == 0:
                            batch = agent.pool.random_batch(batch_size)
                            indices = agent.pool.indices
                            receent_indices = list(range(agent.pool._top-batch_size, agent.pool._top))

                        batch_n.append(agent.pool.random_batch_by_indices(indices))
                        recent_batch_n.append(agent.pool.random_batch_by_indices(receent_indices))

                    # print(len(batch_n))
                    target_next_actions_n = []
                    # try:
                    all_obs = np.array(np.concatenate([batch['observations'] for batch in batch_n], axis=-1))
                    all_next_obs = np.array(np.concatenate([batch['next_observations'] for batch in batch_n], axis=-1))
                    # print(all_obs[0])
                    for batch in batch_n:
                        # print('making all obs')
                        batch['all_observations'] = deepcopy(all_obs)
                        batch['all_next_observations'] = deepcopy(all_next_obs)
                    opponent_current_actions_n = []
                    for agent, batch in zip(agents, batch_n):
                        target_next_actions_n.append(agent.target_policy.get_actions(batch['next_observations']))
                        opponent_current_actions_n.append(agent.policy.get_actions(batch['observations']))

                    for i, agent in enumerate(agents):
                        batch_n[i]['opponent_current_actions'] = np.reshape(
                            np.delete(deepcopy(opponent_current_actions_n), i, 0), (-1, agent._opponent_action_dim))
                    # except:
                    #     pass


                    opponent_actions_n = np.array([batch['actions'] for batch in batch_n])
                    recent_opponent_actions_n = np.array([batch['actions'] for batch in recent_batch_n])

                    ####### figure out
                    recent_opponent_observations_n = []
                    for batch in recent_batch_n:
                        recent_opponent_observations_n.append(batch['observations'])


                    current_actions = [agents[i].policy.get_actions(batch_n[i]['next_observations'])[0][0] for i in range(agent_num)]
                    all_actions_k = []
                    for i, agent in enumerate(agents):
                        if isinstance(agent, MAVBAC):
                            if agent._k > 0:
                                batch_actions_k = agent.policy.get_all_actions(batch_n[i]['next_observations'])
                                actions_k = [a[0][0] for a in batch_actions_k]
                                all_actions_k.append(';'.join(list(map(str, actions_k))))
                    if len(all_actions_k) > 0:
                        with open('{}/all_actions.csv'.format(policy_dir), 'a') as f:
                            f.write(','.join(list(map(str, all_actions_k))) + '\n')
                    with open('{}/policy.csv'.format(policy_dir), 'a') as f:
                        f.write(','.join(list(map(str, current_actions)))+'\n')
                    # print('============')
                    for i, agent in enumerate(agents):
                        try:
                            batch_n[i]['next_actions'] = deepcopy(target_next_actions_n[i])
                        except:
                            pass
                        batch_n[i]['opponent_actions'] = np.reshape(np.delete(deepcopy(opponent_actions_n), i, 0), (-1, agent._opponent_action_dim))
                        if agent.joint:
                            if agent.opponent_modelling:
                                batch_n[i]['recent_opponent_observations'] = recent_opponent_observations_n[i]
                                batch_n[i]['recent_opponent_actions'] = np.reshape(np.delete(deepcopy(recent_opponent_actions_n), i, 0), (-1, agent._opponent_action_dim))
                                batch_n[i]['opponent_next_actions'] = agent.opponent_policy.get_actions(batch_n[i]['next_observations'])
                            else:
                                batch_n[i]['opponent_next_actions'] = np.reshape(np.delete(deepcopy(target_next_actions_n), i, 0), (-1, agent._opponent_action_dim))

                        if isinstance(agent, MAVBAC) or isinstance(agent, MASQL) or isinstance(agent, ROMMEO):
                            agent._do_training(iteration=t + steps * agent._epoch_length, batch=batch_n[i], annealing=alpha)
                        else:
                            agent._do_training(iteration=t + steps * agent._epoch_length, batch=batch_n[i])
                gt.stamp('train')
            sampler.terminate()
コード例 #2
0
def main(arglist):
    game_name = arglist.game_name
    # 'abs', 'one'
    reward_type = arglist.reward_type
    p = arglist.p
    agent_num = arglist.n
    u_range = 1.
    k = 0
    print(arglist.aux, 'arglist.aux')
    model_names_setting = arglist.model_names_setting.split('_')
    model_names = [model_names_setting[0]] + [model_names_setting[1]] * (agent_num - 1)
    model_name = '_'.join(model_names)
    path_prefix = game_name
    if game_name == 'pbeauty':
        env = PBeautyGame(agent_num=agent_num, reward_type=reward_type, p=p)
        path_prefix  = game_name + '-' + reward_type + '-' + str(p)
    elif 'matrix' in game_name:
        matrix_game_name = game_name.split('-')[-1]
        repeated = arglist.repeat
        max_step = arglist.max_path_length
        memory = arglist.memory
        env = MatrixGame(game=matrix_game_name, agent_num=agent_num,
                         action_num=2, repeated=repeated,
                         max_step=max_step, memory=memory,
                         discrete_action=False, tuple_obs=False)
        path_prefix = '{}-{}-{}-{}'.format(game_name, repeated, max_step, memory)

    elif 'particle' in game_name:
        particle_game_name = game_name.split('-')[-1]
        env, agent_num, model_name, model_names = get_particle_game(particle_game_name, arglist)

    now = datetime.datetime.now()
    timestamp = now.strftime('%Y-%m-%d %H:%M:%S.%f %Z')
    if 'CG' in model_name:
        model_name = model_name + '-{}'.format(arglist.mu)
    if not arglist.aux:
        model_name = model_name + '-{}'.format(arglist.aux)

    suffix = '{}/{}/{}/{}'.format(path_prefix, agent_num, model_name, timestamp)

    print(suffix)

    logger.add_tabular_output('./log/{}.csv'.format(suffix))
    snapshot_dir = './snapshot/{}'.format(suffix)
    policy_dir = './policy/{}'.format(suffix)
    os.makedirs(snapshot_dir, exist_ok=True)
    os.makedirs(policy_dir, exist_ok=True)
    logger.set_snapshot_dir(snapshot_dir)

    agents = []
    M = arglist.hidden_size
    batch_size = arglist.batch_size
    sampler = MASampler(agent_num=agent_num, joint=True, max_path_length=30, min_pool_size=100, batch_size=batch_size)

    base_kwargs = {
        'sampler': sampler,
        'epoch_length': 1,
        'n_epochs': arglist.max_steps,
        'n_train_repeat': 1,
        'eval_render': True,
        'eval_n_episodes': 10
    }

    with U.single_threaded_session():
        for i, model_name in enumerate(model_names):
            if 'PR2AC' in model_name:
                k = int(model_name[-1])
                g = False
                mu = arglist.mu
                if 'G' in model_name:
                    g = True
                agent = pr2ac_agent(model_name, i, env, M, u_range, base_kwargs, k=k, g=g, mu=mu, game_name=game_name, aux=arglist.aux)
            elif model_name == 'MASQL':
                agent = masql_agent(model_name, i, env, M, u_range, base_kwargs, game_name=game_name)
            else:
                if model_name == 'DDPG':
                    joint = False
                    opponent_modelling = False
                elif model_name == 'MADDPG':
                    joint = True
                    opponent_modelling = False
                elif model_name == 'DDPG-OM' or model_name == 'DDPG-ToM':
                    joint = True
                    opponent_modelling = True
                agent = ddpg_agent(joint, opponent_modelling, model_names, i, env, M, u_range, base_kwargs, game_name=game_name)

            agents.append(agent)

        sampler.initialize(env, agents)

        for agent in agents:
            agent._init_training()
        gt.rename_root('MARLAlgorithm')
        gt.reset()
        gt.set_def_unique(False)
        initial_exploration_done = False
        # noise = .1
        noise = 1.
        alpha = .5


        for agent in agents:
            try:
                agent.policy.set_noise_level(noise)
            except:
                pass

        for epoch in gt.timed_for(range(base_kwargs['n_epochs'] + 1)):
            logger.push_prefix('Epoch #%d | ' % epoch)
            if epoch % 1 == 0:
                print(suffix)
            for t in range(base_kwargs['epoch_length']):
                # TODO.code consolidation: Add control interval to sampler
                if not initial_exploration_done:
                    if epoch >= 1000:
                        initial_exploration_done = True
                sampler.sample()
                # print('Sampling')
                if not initial_exploration_done:
                    continue
                gt.stamp('sample')
                # print('Sample Done')
                if epoch == base_kwargs['n_epochs']:
                    noise = 0.1

                    for agent in agents:
                        try:
                            agent.policy.set_noise_level(noise)
                        except:
                            pass
                    # alpha = .1
                if epoch > base_kwargs['n_epochs'] / 10:
                    noise = 0.1
                    for agent in agents:
                        try:
                            agent.policy.set_noise_level(noise)
                        except:
                            pass
                    # alpha = .1
                if epoch > base_kwargs['n_epochs'] / 5:
                    noise = 0.05
                    for agent in agents:
                        try:
                            agent.policy.set_noise_level(noise)
                        except:
                            pass
                if epoch > base_kwargs['n_epochs'] / 6:
                    noise = 0.01
                    for agent in agents:
                        try:
                            agent.policy.set_noise_level(noise)
                        except:
                            pass

                for j in range(base_kwargs['n_train_repeat']):
                    batch_n = []
                    recent_batch_n = []
                    indices = None
                    receent_indices = None
                    for i, agent in enumerate(agents):
                        if i == 0:
                            batch = agent.pool.random_batch(batch_size)
                            indices = agent.pool.indices
                            receent_indices = list(range(agent.pool._top-batch_size, agent.pool._top))

                        batch_n.append(agent.pool.random_batch_by_indices(indices))
                        recent_batch_n.append(agent.pool.random_batch_by_indices(receent_indices))

                    # print(len(batch_n))
                    target_next_actions_n = []
                    try:
                        for agent, batch in zip(agents, batch_n):
                            target_next_actions_n.append(agent._target_policy.get_actions(batch['next_observations']))
                    except:
                        pass


                    opponent_actions_n = np.array([batch['actions'] for batch in batch_n])
                    recent_opponent_actions_n = np.array([batch['actions'] for batch in recent_batch_n])

                    ####### figure out
                    recent_opponent_observations_n = []
                    for batch in recent_batch_n:
                        recent_opponent_observations_n.append(batch['observations'])


                    current_actions = [agents[i]._policy.get_actions(batch_n[i]['next_observations'])[0][0] for i in range(agent_num)]
                    all_actions_k = []
                    for i, agent in enumerate(agents):
                        if isinstance(agent, MAVBAC):
                            if agent._k > 0:
                                batch_actions_k = agent._policy.get_all_actions(batch_n[i]['next_observations'])
                                actions_k = [a[0][0] for a in batch_actions_k]
                                all_actions_k.append(';'.join(list(map(str, actions_k))))
                    if len(all_actions_k) > 0:
                        with open('{}/all_actions.csv'.format(policy_dir), 'a') as f:
                            f.write(','.join(list(map(str, all_actions_k))) + '\n')
                    with open('{}/policy.csv'.format(policy_dir), 'a') as f:
                        f.write(','.join(list(map(str, current_actions)))+'\n')
                    # print('============')
                    for i, agent in enumerate(agents):
                        try:
                            batch_n[i]['next_actions'] = deepcopy(target_next_actions_n[i])
                        except:
                            pass
                        batch_n[i]['opponent_actions'] = np.reshape(np.delete(deepcopy(opponent_actions_n), i, 0), (-1, agent._opponent_action_dim))
                        if agent.joint:
                            if agent.opponent_modelling:
                                batch_n[i]['recent_opponent_observations'] = recent_opponent_observations_n[i]
                                batch_n[i]['recent_opponent_actions'] = np.reshape(np.delete(deepcopy(recent_opponent_actions_n), i, 0), (-1, agent._opponent_action_dim))
                                batch_n[i]['opponent_next_actions'] = agent.opponent_policy.get_actions(batch_n[i]['next_observations'])
                            else:
                                batch_n[i]['opponent_next_actions'] = np.reshape(np.delete(deepcopy(target_next_actions_n), i, 0), (-1, agent._opponent_action_dim))
                        if isinstance(agent, MAVBAC) or isinstance(agent, MASQL):
                            agent._do_training(iteration=t + epoch * agent._epoch_length, batch=batch_n[i], annealing=alpha)
                        else:
                            agent._do_training(iteration=t + epoch * agent._epoch_length, batch=batch_n[i])
                gt.stamp('train')

            # self._evaluate(epoch)

            # for agent in agents:
            #     params = agent.get_snapshot(epoch)
            #     logger.save_itr_params(epoch, params)
            # times_itrs = gt.get_times().stamps.itrs
            #
            # eval_time = times_itrs['eval'][-1] if epoch > 1 else 0
            # total_time = gt.get_times().total
            # logger.record_tabular('time-train', times_itrs['train'][-1])
            # logger.record_tabular('time-eval', eval_time)
            # logger.record_tabular('time-sample', times_itrs['sample'][-1])
            # logger.record_tabular('time-total', total_time)
            # logger.record_tabular('epoch', epoch)

            # sampler.log_diagnostics()

            # logger.dump_tabular(with_prefix=False)
            logger.pop_prefix()
            sampler.terminate()
コード例 #3
0
ファイル: base.py プロジェクト: ying-wen/gr2
    def _train(self, env, policy, initial_exploration_policy, pool):
        """Perform RL training.

        Args:
            env (`rllab.Env`): Environment used for training
            policy (`Policy`): Policy used for training
            initial_exploration_policy ('Policy'): Policy used for exploration
                If None, then all exploration is done using policy
            pool (`PoolBase`): Sample pool to add samples to
        """

        self._init_training(env, policy, pool)
        if initial_exploration_policy is None:
            self.sampler.initialize(env, policy, pool)
            initial_exploration_done = True
        else:
            self.sampler.initialize(env, initial_exploration_policy, pool)
            initial_exploration_done = False

        with self._sess.as_default():
            gt.rename_root('RLAlgorithm')
            gt.reset()
            gt.set_def_unique(False)

            for epoch in gt.timed_for(range(self._n_epochs + 1),
                                      save_itrs=True):
                logger.push_prefix('Epoch #%d | ' % epoch)

                for t in range(self._epoch_length):
                    # TODO.code consolidation: Add control interval to sampler
                    if not initial_exploration_done:
                        if self._epoch_length * epoch >= self._n_initial_exploration_steps:
                            self.sampler.set_policy(policy)
                            initial_exploration_done = True
                    self.sampler.sample()
                    if not self.sampler.batch_ready():
                        continue
                    gt.stamp('sample')

                    for i in range(self._n_train_repeat):
                        self._do_training(iteration=t +
                                          epoch * self._epoch_length,
                                          batch=self.sampler.random_batch())
                    gt.stamp('train')

                self._evaluate(epoch)

                params = self.get_snapshot(epoch)
                logger.save_itr_params(epoch, params)
                times_itrs = gt.get_times().stamps.itrs

                eval_time = times_itrs['eval'][-1] if epoch > 1 else 0
                total_time = gt.get_times().total
                logger.record_tabular('time-train', times_itrs['train'][-1])
                logger.record_tabular('time-eval', eval_time)
                logger.record_tabular('time-sample', times_itrs['sample'][-1])
                logger.record_tabular('time-total', total_time)
                logger.record_tabular('epoch', epoch)

                self.sampler.log_diagnostics()

                logger.dump_tabular(with_prefix=False)
                logger.pop_prefix()

                gt.stamp('eval')

            self.sampler.terminate()
コード例 #4
0
ファイル: run_Jbaseopt.py プロジェクト: Jarvis-K/rommeo
def objective(trail, arglist):
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True  # dynamically grow the memory used on the GPU
    sess = tf.Session(config=config)
    set_session(sess)
    game_name = arglist.game_name
    # 'abs', 'one'
    reward_type = arglist.reward_type
    p = arglist.p
    agent_num = arglist.n
    u_range = 1.
    k = 0
    print(arglist.aux, 'arglist.aux')
    model_names_setting = arglist.model_names_setting.split('_')
    model_names = [model_names_setting[0]]
    model_name = '_'.join(model_names)
    path_prefix = game_name
    if game_name == 'pbeauty':
        env = PBeautyGame(agent_num=agent_num, reward_type=reward_type, p=p)
        path_prefix = game_name + '-' + reward_type + '-' + str(p)
    elif 'matrix' in game_name:
        matrix_game_name = game_name.split('-')[-1]
        repeated = arglist.repeat
        max_step = arglist.max_path_length
        memory = arglist.memory
        env = MatrixGame(game=matrix_game_name,
                         agent_num=agent_num,
                         action_num=2,
                         repeated=repeated,
                         max_step=max_step,
                         memory=memory,
                         discrete_action=False,
                         tuple_obs=False)
        path_prefix = '{}-{}-{}-{}'.format(game_name, repeated, max_step,
                                           memory)

    elif 'diff' in game_name:
        diff_game_name = game_name.split('-')[-1]

        s2 = arglist.s2
        x2 = arglist.x2
        y2 = arglist.y2
        con = arglist.con
        env = JDifferentialGame(diff_game_name, 3, x2, y2, s2, con)
        agent_num = 1

    elif 'particle' in game_name:
        particle_game_name = game_name.split('-')[-1]
        env, agent_num, model_name, model_names = get_particle_game(
            particle_game_name, arglist)

    now = datetime.datetime.now()
    timestamp = now.strftime('%Y-%m-%d %H:%M:%S.%f %Z')
    if 'CG' in model_name:
        model_name = model_name + '-{}'.format(arglist.mu)
    if not arglist.aux:
        model_name = model_name + '-{}'.format(arglist.aux)

    suffix = '{}/{}/{}/{}'.format(path_prefix, agent_num, model_name,
                                  timestamp)

    print(suffix)

    logger.add_tabular_output('./log/{}.csv'.format(suffix))
    snapshot_dir = './snapshot/{}'.format(suffix)
    policy_dir = './policy/{}'.format(suffix)
    os.makedirs(snapshot_dir, exist_ok=True)
    os.makedirs(policy_dir, exist_ok=True)
    logger.set_snapshot_dir(snapshot_dir)

    agents = []
    M = arglist.hidden_size
    batch_size = arglist.batch_size

    sampler = JSampler(agent_num=agent_num,
                       joint=True,
                       global_reward=arglist.global_reward,
                       max_path_length=25,
                       min_pool_size=100,
                       batch_size=batch_size,
                       do_nego=arglist.do_nego)

    base_kwargs = {
        'sampler': sampler,
        'epoch_length': 1,
        'n_epochs': arglist.max_steps,
        'n_train_repeat': 1,
        'eval_render': True,
        'eval_n_episodes': 10
    }

    _alpha = trail.suggest_float("alpha", 1e-1, 10, log=True)
    lr = trail.suggest_float("lr", 1e-4, 1e-1, log=True)
    n_pars = trail.suggest_int("n_pars", 16, 64, log=True)
    result = 0.

    with U.single_threaded_session():
        for i, model_name in enumerate(model_names):
            if 'PR2AC' in model_name:
                k = int(model_name[-1])
                g = False
                mu = arglist.mu
                if 'G' in model_name:
                    g = True
                agent = pr2ac_agent(model_name,
                                    i,
                                    env,
                                    M,
                                    u_range,
                                    base_kwargs,
                                    lr=lr,
                                    n_pars=n_pars,
                                    k=k,
                                    g=g,
                                    mu=mu,
                                    game_name=game_name,
                                    aux=arglist.aux)
            elif model_name == 'MASQL':
                agent = masql_agent(model_name,
                                    i,
                                    env,
                                    M,
                                    u_range,
                                    base_kwargs,
                                    lr=lr,
                                    n_pars=n_pars,
                                    game_name=game_name)
            elif model_name == 'JSQL':
                agent = jsql_agent(model_name,
                                   i,
                                   env,
                                   M,
                                   u_range,
                                   base_kwargs,
                                   lr=lr,
                                   n_pars=n_pars,
                                   game_name=game_name)
            elif model_name == 'GPF':
                agent = gpf_agent(model_name,
                                  i,
                                  env,
                                  M,
                                  u_range,
                                  base_kwargs,
                                  lr=lr,
                                  n_pars=n_pars,
                                  batch_size=batch_size,
                                  game_name=game_name)
            elif model_name == 'ROMMEO':
                agent = rom_agent(model_name,
                                  i,
                                  env,
                                  M,
                                  u_range,
                                  base_kwargs,
                                  game_name=game_name)
            else:
                if model_name == 'DDPG':
                    joint = False
                    opponent_modelling = False
                elif model_name == 'MADDPG':
                    joint = True
                    opponent_modelling = False
                elif model_name == 'DDPG-OM':
                    joint = True
                    opponent_modelling = True
                agent = ddpg_agent(joint,
                                   opponent_modelling,
                                   model_names,
                                   i,
                                   env,
                                   M,
                                   u_range,
                                   base_kwargs,
                                   lr=lr,
                                   game_name=game_name)

            agents.append(agent)

        sampler.initialize(env, agents)

        for agent in agents:
            agent._init_training()
        gt.rename_root('MARLAlgorithm')
        gt.reset()
        gt.set_def_unique(False)
        initial_exploration_done = False
        # noise = .1
        noise = .5

        for agent in agents:
            try:
                agent.policy.set_noise_level(noise)
            except:
                pass
        # alpha = .5
        for steps in gt.timed_for(range(base_kwargs['n_epochs'] + 1)):
            # import pdb; pdb.set_trace()
            alpha = _alpha + np.exp(-0.1 * max(steps - 10, 0)) * 500.
            # if steps > 100 and steps<150:
            #     alpha = .1 - 0.099 * steps/(150)
            # elif steps >= 150:
            #     alpha = 1e-3
            print('alpha', alpha)
            logger.push_prefix('Epoch #%d | ' % steps)
            if steps % (25 * 1000) == 0:
                print(suffix)
            for t in range(base_kwargs['epoch_length']):
                # TODO.code consolidation: Add control interval to sampler
                if not initial_exploration_done:
                    # if steps >= 1000:
                    if steps >= 10:
                        initial_exploration_done = True
                sampler.sample()
                if not initial_exploration_done:
                    continue
                gt.stamp('sample')
                print('Sample Done')
                if steps == 10000:
                    noise = 0.1

                    for agent in agents:
                        try:
                            agent.policy.set_noise_level(noise)
                        except:
                            pass
                    # alpha = 10.
                # if steps == 2000:
                if steps > base_kwargs['n_epochs'] / 10:
                    noise = 0.1
                    for agent in agents:
                        try:
                            agent.policy.set_noise_level(noise)
                        except:
                            pass
                    # alpha = .1
                if steps > base_kwargs['n_epochs'] / 5:
                    noise = 0.05
                    for agent in agents:
                        try:
                            agent.policy.set_noise_level(noise)
                        except:
                            pass
                if steps > base_kwargs['n_epochs'] / 6:
                    noise = 0.01
                    for agent in agents:
                        try:
                            agent.policy.set_noise_level(noise)
                        except:
                            pass
                if steps % arglist.training_interval != 0:
                    continue
                for j in range(base_kwargs['n_train_repeat']):
                    batch_n = []
                    recent_batch_n = []
                    indices = None
                    receent_indices = None
                    for i, agent in enumerate(agents):
                        if i == 0:
                            batch = agent.pool.random_batch(batch_size)
                            indices = agent.pool.indices
                            receent_indices = list(
                                range(agent.pool._top - batch_size,
                                      agent.pool._top))

                        batch_n.append(
                            agent.pool.random_batch_by_indices(indices))
                        recent_batch_n.append(
                            agent.pool.random_batch_by_indices(
                                receent_indices))

                    # print(len(batch_n))
                    target_next_actions_n = []
                    # try:
                    all_obs = np.array(
                        np.concatenate(
                            [batch['observations'] for batch in batch_n],
                            axis=-1))
                    all_next_obs = np.array(
                        np.concatenate(
                            [batch['next_observations'] for batch in batch_n],
                            axis=-1))
                    # print(all_obs[0])
                    for batch in batch_n:
                        # print('making all obs')
                        batch['all_observations'] = deepcopy(all_obs)
                        batch['all_next_observations'] = deepcopy(all_next_obs)
                    # opponent_current_actions_n = []
                    # for agent, batch in zip(agents, batch_n):
                    #     target_next_actions_n.append(agent.target_policy.get_actions(batch['next_observations']))
                    # opponent_current_actions_n.append(agent.policy.get_actions(batch['observations']))

                    # for i, agent in enumerate(agents):
                    #     batch_n[i]['opponent_current_actions'] = np.reshape(
                    #         np.delete(deepcopy(opponent_current_actions_n), i, 0), (-1, agent._opponent_action_dim))
                    # except:
                    #     pass

                    # opponent_actions_n = np.array([batch['actions'] for batch in batch_n])
                    # recent_opponent_actions_n = np.array([batch['actions'] for batch in recent_batch_n])

                    ####### figure out
                    # recent_opponent_observations_n = []
                    # for batch in recent_batch_n:
                    #     recent_opponent_observations_n.append(batch['observations'])

                    # current_actions = [agents[i].policy.get_actions(batch_n[i]['next_observations'])[0][0] for i in range(agent_num)]
                    # all_actions_k = []
                    # for i, agent in enumerate(agents):
                    #     if isinstance(agent, MAVBAC):
                    #         if agent._k > 0:
                    #             batch_actions_k = agent.policy.get_all_actions(batch_n[i]['next_observations'])
                    #             actions_k = [a[0][0] for a in batch_actions_k]
                    #             all_actions_k.append(';'.join(list(map(str, actions_k))))
                    # if len(all_actions_k) > 0:
                    #     with open('{}/all_actions.csv'.format(policy_dir), 'a') as f:
                    #         f.write(','.join(list(map(str, all_actions_k))) + '\n')
                    # with open('{}/policy.csv'.format(policy_dir), 'a') as f:
                    #     f.write(','.join(list(map(str, current_actions)))+'\n')
                    # print('============')
                    for i, agent in enumerate(agents):
                        # try:
                        #     batch_n[i]['next_actions'] = deepcopy(target_next_actions_n[i])
                        # except:
                        #     pass
                        # batch_n[i]['opponent_actions'] = np.reshape(np.delete(deepcopy(opponent_actions_n), i, 0), (-1, agent._opponent_action_dim))
                        # if agent.joint:
                        #     if agent.opponent_modelling:
                        #         batch_n[i]['recent_opponent_observations'] = recent_opponent_observations_n[i]
                        #         batch_n[i]['recent_opponent_actions'] = np.reshape(np.delete(deepcopy(recent_opponent_actions_n), i, 0), (-1, agent._opponent_action_dim))
                        #         batch_n[i]['opponent_next_actions'] = agent.opponent_policy.get_actions(batch_n[i]['next_observations'])
                        #     else:
                        #         batch_n[i]['opponent_next_actions'] = np.reshape(np.delete(deepcopy(target_next_actions_n), i, 0), (-1, agent._opponent_action_dim))

                        # if isinstance(agent, MAVBAC) or isinstance(agent, MASQL) or isinstance(agent, ROMMEO):
                        agent._do_training(iteration=t +
                                           steps * agent._epoch_length,
                                           batch=batch_n[i],
                                           annealing=alpha)
                        # else:
                        #     agent._do_training(iteration=t + steps * agent._epoch_length, batch=batch_n[i])
                gt.stamp('train')
            result = sampler.terminate()
            print('res is', result)
    clear_session()
    return result