コード例 #1
0
ファイル: text_teaser.py プロジェクト: zhiyuanding/Macropodus
 def summarize(self, text, num=320, title=None):
     # 切句
     if type(text) == str:
         self.sentences = cut_sentence(text)
     elif type(text) == list:
         self.sentences = text
     else:
         raise RuntimeError("text type must be list or str")
     self.title = title
     if self.title:
         self.title = macropodus_cut(title)
     # 切词
     sentences_cut = [[word for word in macropodus_cut(extract_chinese(sentence))
                          if word.strip()] for sentence in self.sentences]
     # 去除停用词等
     self.sentences_cut = [list(filter(lambda x: x not in self.stop_words, sc)) for sc in sentences_cut]
     # 词频统计
     self.words = []
     for sen in self.sentences_cut:
         self.words = self.words + sen
     self.word_count = dict(Counter(self.words))
     # word_count_rank = sorted(word_count.items(), key=lambda f:f[1], reverse=True)
     # self.word_freqs = [{'word':wcr[0], 'freq':wcr[1]} for wcr in word_count_rank]
     # 按频次计算词语的得分, 得到self.word_freq=[{'word':, 'freq':, 'score':}]
     self.word_freqs = {}
     self.len_words = len(self.words)
     for k, v in self.word_count.items():
         self.word_freqs[k] = v * 0.5 / self.len_words
     # 句子位置打分
     scores_posi = self.score_position()
     res_rank = {}
     self.res_score = []
     for i in range(len(sentences_cut)):
         sen = self.sentences[i] # 句子
         sen_cut = self.sentences_cut[i] # 句子中的词语
         score_sbs = self.score_sbs(sen_cut) # 句子中的词语打分1
         score_dbs = self.score_dbs(sen_cut) # 句子中的词语打分2
         score_word = (score_sbs + score_dbs) * 10.0 / 2.0 # 句子中的词语打分mix
         score_length = self.score_length(sen) # 句子文本长度打分
         score_posi = scores_posi[i]
         if self.title: # 有标题的文本打分合并
             score_title = self.score_title(sen_cut)
             score_total = (score_title * 0.5 + score_word * 2.0 + score_length * 0.5 + score_posi * 1.0) / 4.0
             # 可查阅各部分得分统计
             self.res_score.append(["score_total", "score_sbs", "score_dbs", "score_word", "score_length", "score_posi", "score_title", "sentences"])
             self.res_score.append([score_total, score_sbs, score_dbs, score_word, score_length, score_posi, score_title, self.sentences[i]])
         else: # 无标题的文本打分合并
             score_total = (score_word * 2.0 + score_length * 0.5 + score_posi * 1.0) / 3.5
             self.res_score.append(["score_total", "score_sbs", "score_dbs", "score_word", "score_length", "score_posi", "sentences"])
             self.res_score.append([score_total, score_sbs, score_dbs, score_word, score_length, score_posi, self.sentences[i].strip()])
         res_rank[self.sentences[i].strip()] = score_total
     # 最小句子数
     num_min = min(num, int(len(self.word_count) * 0.6))
     score_sen = [(rc[1], rc[0]) for rc in sorted(res_rank.items(), key=lambda d: d[1], reverse=True)][0:num_min]
     return score_sen
コード例 #2
0
ファイル: embedding.py プロジェクト: zhiyuanding/Macropodus
 def sentence2idx(self, text):
     text = extract_chinese(str(text).upper())
     if self.level_type == 'char':
         text = list(text)
     elif self.level_type == 'word':
         text = macropodus_cut(text)
     else:
         raise RuntimeError(
             "your input level_type is wrong, it must be 'word' or 'char'")
     text = [text_one for text_one in text]
     len_leave = self.len_max - len(text)
     if len_leave >= 0:
         text_index = [
             self.token2idx[text_char]
             if text_char in self.token2idx else self.token2idx['[UNK]']
             for text_char in text
         ] + [self.token2idx['[PAD]'] for i in range(len_leave)]
     else:
         text_index = [
             self.token2idx[text_char]
             if text_char in self.token2idx else self.token2idx['[UNK]']
             for text_char in text[0:self.len_max]
         ]
     input_mask = min(len(text), self.len_max)
     return [text_index, input_mask]
コード例 #3
0
    def deal_corpus(self):
        token2idx = self.ot_dict.copy()
        count = 3
        if 'term' in self.corpus_path:
            with open(file=self.corpus_path, mode='r', encoding='utf-8') as fd:
                while True:
                    term_one = fd.readline()
                    if not term_one:
                        break
                    term_one = term_one.strip()
                    if term_one not in token2idx:
                        count = count + 1
                        token2idx[term_one] = count

        elif 'corpus' in self.corpus_path:
            with open(file=self.corpus_path, mode='r', encoding='utf-8') as fd:
                terms = fd.readlines()
                for term_one in terms:
                    if self.level_type == 'char':
                        text = list(term_one.replace(' ', '').strip())
                    elif self.level_type == 'word':
                        text = macropodus_cut(term_one)
                    else:
                        raise RuntimeError("your input level_type is wrong, it must be 'word' or 'char'")
                    for text_one in text:
                        if term_one not in token2idx:
                            count = count + 1
                            token2idx[text_one] = count
        else:
            raise RuntimeError("your input corpus_path is wrong, it must be 'dict' or 'corpus'")
        self.token2idx = token2idx
        self.idx2token = {}
        for key, value in self.token2idx.items():
            self.idx2token[value] = key
コード例 #4
0
def _build_corpus(sentences):
    """Construct corpus from provided sentences.

    Parameters
    ----------
    sentences : list of :class:`~gensim.summarization.syntactic_unit.SyntacticUnit`
        Given sentences.

    Returns
    -------
    list of list of (int, int)
        Corpus built from sentences.

    """
    split_tokens = [macropodus_cut(sentence) for sentence in sentences]
    dictionary = Dictionary(split_tokens)
    return [dictionary.doc2bow(token) for token in split_tokens]
コード例 #5
0
 def summarize(self, text, num=320):
     """
         根据词语意义确定中心句
     :param text: str
     :param num: int
     :return: list
     """
     # 切句
     if type(text) == str:
         self.sentences = cut_sentence(text)
     elif type(text) == list:
         self.sentences = text
     else:
         raise RuntimeError("text type must be list or str")
     # 切词
     sentences_cut = [[word for word in macropodus_cut(extract_chinese(sentence))
                       if word.strip()] for sentence in self.sentences]
     # 去除停用词等
     self.sentences_cut = [list(filter(lambda x: x not in self.stop_words, sc)) for sc in sentences_cut]
     # 词频统计
     self.words = []
     for sen in self.sentences_cut:
         self.words = self.words + sen
     self.word_count = dict(Counter(self.words))
     self.word_count_rank = sorted(self.word_count.items(), key=lambda f: f[1], reverse=True)
     # 最小句子数
     num_min = min(num, int(len(self.word_count)*0.6))
     # 词语排序, 按照词频
     self.word_rank = [wcr[0] for wcr in self.word_count_rank][0:num_min]
     res_sentence = []
     # 抽取句子, 顺序, 如果词频高的词语在句子里, 则抽取
     for word in self.word_rank:
         for i in range(0, len(self.sentences)):
             # 当返回关键句子到达一定量, 则结束返回
             if len(res_sentence) < num_min:
                 added = False
                 for sent in res_sentence:
                     if sent == self.sentences[i]: added = True
                 if (added == False and word in self.sentences[i]):
                     res_sentence.append(self.sentences[i])
                     break
     # 只是计算各得分,没什么用
     len_sentence = len(self.sentences)
     res_sentence = [(1-1/(len_sentence+len_sentence/(k+1)), rs) for k, rs in enumerate(res_sentence)]
     return res_sentence
コード例 #6
0
    def summarize(self, text, num=8, alpha=0.6):
        """

        :param text: str
        :param num: int
        :return: list
        """
        # 切句
        if type(text) == str:
            self.sentences = cut_sentence(text)
        elif type(text) == list:
            self.sentences = text
        else:
            raise RuntimeError("text type must be list or str")
        # 切词
        sentences_cut = [[word for word in macropodus_cut(extract_chinese(sentence))
                          if word.strip()] for sentence in self.sentences]
        # 去除停用词等
        self.sentences_cut = [list(filter(lambda x: x not in self.stop_words, sc)) for sc in sentences_cut]
        self.sentences_cut = [" ".join(sc) for sc in self.sentences_cut]
        # # 计算每个句子的词语个数
        # sen_word_len = [len(sc)+1 for sc in sentences_cut]
        # 计算每个句子的tfidf
        sen_tfidf = tfidf_fit(self.sentences_cut)
        # 矩阵中两两句子相似度
        SimMatrix = (sen_tfidf * sen_tfidf.T).A # 例如: SimMatrix[1, 3]  # "第2篇与第4篇的相似度"
        # 输入文本句子长度
        len_sen = len(self.sentences)
        # 句子标号
        sen_idx = [i for i in range(len_sen)]
        summary_set = []
        mmr = {}
        for i in range(len_sen):
            if not self.sentences[i] in summary_set:
                sen_idx_pop = copy.deepcopy(sen_idx)
                sen_idx_pop.pop(i)
                # 两两句子相似度
                sim_i_j = [SimMatrix[i, j] for j in sen_idx_pop]
                score_tfidf = sen_tfidf[i].toarray()[0].sum() # / sen_word_len[i], 如果除以词语个数就不准确
                mmr[self.sentences[i]] = alpha * score_tfidf - (1 - alpha) * max(sim_i_j)
                summary_set.append(self.sentences[i])
        score_sen = [(rc[1], rc[0]) for rc in sorted(mmr.items(), key=lambda d: d[1], reverse=True)]
        if len(mmr) > num:
            score_sen = score_sen[0:num]
        return score_sen
コード例 #7
0
ファイル: embedding.py プロジェクト: zhiyuanding/Macropodus
    def deal_corpus(self):
        import json

        token2idx = self.ot_dict.copy()
        if 'term' in self.corpus_path:
            with open(file=self.corpus_path, mode='r', encoding='utf-8') as fd:
                while True:
                    term_one = fd.readline()
                    if not term_one:
                        break
                    if term_one not in token2idx:
                        token2idx[term_one] = len(token2idx)
        elif os.path.exists(self.corpus_path):
            with open(file=self.corpus_path, mode='r', encoding='utf-8') as fd:
                terms = fd.readlines()
                for line in terms:
                    ques_label = json.loads(line.strip())
                    term_one = ques_label["question"]
                    term_one = "".join(term_one)
                    if self.level_type == 'char':
                        text = list(term_one.replace(' ', '').strip())
                    elif self.level_type == 'word':
                        text = macropodus_cut(term_one)
                    elif self.level_type == 'ngram':
                        text = get_ngrams(term_one, ns=self.ngram_ns)
                    else:
                        raise RuntimeError(
                            "your input level_type is wrong, it must be 'word', 'char', 'ngram'"
                        )
                    for text_one in text:
                        if text_one not in token2idx:
                            token2idx[text_one] = len(token2idx)
        else:
            raise RuntimeError(
                "your input corpus_path is wrong, it must be 'dict' or 'corpus'"
            )
        self.token2idx = token2idx
        self.idx2token = {}
        for key, value in self.token2idx.items():
            self.idx2token[value] = key
コード例 #8
0
 def pinyin(self, text):
     """
         中文(大陆)转拼音
     :param text: str, like "大漠帝国"
     :return: list, like ["da", "mo", "di", "guo"]
     """
     res_pinyin = []
     # 只选择中文(zh), split筛选
     text_re = re_zh_cn.split(text)
     for tr in text_re:
         if re_zh_cn.match(tr):
             # 切词
             tr_cut = macropodus_cut(tr)
             for trc in tr_cut:  # 切词后的词语
                 # get words from dict of default
                 trc_pinyin = self.dict_pinyin.get(trc)
                 if trc_pinyin: res_pinyin += trc_pinyin
                 else:  # 单个字的问题
                     for trc_ in trc:
                         # get trem from dict of default
                         trc_pinyin = self.dict_pinyin.get(trc_)
                         if trc_pinyin: res_pinyin += trc_pinyin
     return res_pinyin
コード例 #9
0
    def summarize(self, text, num=8, topic_min=6, judge_topic=None):
        """
            LDA
        :param text: str
        :param num: int
        :param topic_min: int 
        :param judge_topic: boolean
        :return: 
        """
        # 切句
        if type(text) == str:
            self.sentences = cut_sentence(text)
        elif type(text) == list:
            self.sentences = text
        else:
            raise RuntimeError("text type must be list or str")
        len_sentences_cut = len(self.sentences)
        # 切词
        sentences_cut = [[
            word for word in macropodus_cut(extract_chinese(sentence))
            if word.strip()
        ] for sentence in self.sentences]
        # 去除停用词等
        self.sentences_cut = [
            list(filter(lambda x: x not in self.stop_words, sc))
            for sc in sentences_cut
        ]
        self.sentences_cut = [" ".join(sc) for sc in self.sentences_cut]
        # # 计算每个句子的tf
        # vector_c = CountVectorizer(ngram_range=(1, 2), stop_words=self.stop_words)
        # tf_ngram = vector_c.fit_transform(self.sentences_cut)
        # 计算每个句子的tfidf
        tf_ngram = tfidf_fit(self.sentences_cut)
        # 主题数, 经验判断
        topic_num = min(topic_min, int(len(sentences_cut) / 2))  # 设定最小主题数为3
        lda = LatentDirichletAllocation(n_topics=topic_num,
                                        max_iter=32,
                                        learning_method='online',
                                        learning_offset=50.,
                                        random_state=2019)
        res_lda_u = lda.fit_transform(tf_ngram.T)
        res_lda_v = lda.components_

        if judge_topic:
            ### 方案一, 获取最大那个主题的k个句子
            ##################################################################################
            topic_t_score = np.sum(res_lda_v, axis=-1)
            # 对每列(一个句子topic_num个主题),得分进行排序,0为最大
            res_nmf_h_soft = res_lda_v.argsort(axis=0)[-topic_num:][::-1]
            # 统计为最大每个主题的句子个数
            exist = (res_nmf_h_soft <= 0) * 1.0
            factor = np.ones(res_nmf_h_soft.shape[1])
            topic_t_count = np.dot(exist, factor)
            # 标准化
            topic_t_count /= np.sum(topic_t_count, axis=-1)
            topic_t_score /= np.sum(topic_t_score, axis=-1)
            # 主题最大个数占比, 与主题总得分占比选择最大的主题
            topic_t_tc = topic_t_count + topic_t_score
            topic_t_tc_argmax = np.argmax(topic_t_tc)
            # 最后得分选择该最大主题的
            res_nmf_h_soft_argmax = res_lda_v[topic_t_tc_argmax].tolist()
            res_combine = {}
            for l in range(len_sentences_cut):
                res_combine[self.sentences[l]] = res_nmf_h_soft_argmax[l]
            score_sen = [(rc[1], rc[0]) for rc in sorted(
                res_combine.items(), key=lambda d: d[1], reverse=True)]
            #####################################################################################
        else:
            ### 方案二, 获取最大主题概率的句子, 不分主题
            res_combine = {}
            for i in range(len_sentences_cut):
                res_row_i = res_lda_v[:, i]
                res_row_i_argmax = np.argmax(res_row_i)
                res_combine[self.sentences[i]] = res_row_i[res_row_i_argmax]
            score_sen = [(rc[1], rc[0]) for rc in sorted(
                res_combine.items(), key=lambda d: d[1], reverse=True)]
        num_min = min(num, int(len_sentences_cut * 0.6))
        return score_sen[0:num_min]
コード例 #10
0
 def keyword(self,
             text,
             num=6,
             score_min=0.025,
             win_size=3,
             type_sim="total",
             type_encode="avg",
             config={
                 "alpha": 0.86,
                 "max_iter": 100
             }):
     """
         关键词抽取, textrank of word2vec cosine
     :param text: str, doc. like "大漠帝国是历史上存在的国家吗?你知不知道?嗯。"
     :param num: int, length of sentence like 6
     :param win_size: int, windows size of combine. like 2
     :param type_sim: str, type of simiilarity. like "total", "cosine"
     :param config: dict, config of pagerank. like {"alpha": 0.86, "max_iter":100}
     :return: list, result of keyword. like [(0.020411696169510562, '手机'), (0.016149784106276977, '夏普')]
     """
     # 切句
     if type(text) == str:
         self.sentences = cut_sentence(text)
     elif type(text) == list:
         self.sentences = text
     else:
         raise RuntimeError("text type must be list or str")
     # macropodus_cut 切词
     self.macropodus_word = [
         macropodus_cut(sentence) for sentence in self.sentences
     ]
     # 去除停用词等
     self.sentences_word = [[
         w for w in mw if w not in self.stop_words.values()
     ] for mw in self.macropodus_word]
     # 构建图的顶点
     word2index = {}
     index2word = {}
     word_index = 0
     for sent_words in self.sentences_word:
         for word in sent_words:
             if not word in word2index:  # index
                 word2index[word] = word_index
                 index2word[word_index] = word
                 word_index += 1
     graph_words = np.zeros((word_index, word_index))
     # 构建图的边, 以两个词语的余弦相似度为基础
     for sent_words in self.sentences_word:
         for cw_1, cw_2 in self.cut_window(sent_words, win_size=win_size):
             if cw_1 in word2index and cw_2 in word2index:
                 idx_1, idx_2 = word2index[cw_1], word2index[cw_2]
                 score_w2v_cosine = self.similarity(cw_1,
                                                    cw_2,
                                                    type_sim=type_sim,
                                                    type_encode=type_encode)
                 graph_words[idx_1][idx_2] = score_w2v_cosine
                 graph_words[idx_2][idx_1] = score_w2v_cosine
     # 构建相似度矩阵
     w2v_cosine_sim = nx.from_numpy_matrix(graph_words)
     # nx.pagerank
     sens_scores = nx.pagerank(w2v_cosine_sim, **config)
     # 得分排序
     sen_rank = sorted(sens_scores.items(),
                       key=lambda x: x[1],
                       reverse=True)
     # 保留topk个, 防止越界
     topk = min(len(sen_rank), num)
     # 返回原句子和得分
     return [(sr[1], index2word[sr[0]]) for sr in sen_rank
             if len(index2word[sr[0]]) > 1 and score_min <= sr[1]][0:topk]
コード例 #11
0
    def summarize(self, text, num=320, title=None):
        """
            文本句子排序
        :param docs: list
        :return: list
        """
        # 切句
        if type(text) == str:
            self.sentences = cut_sentence(text)
        elif type(text) == list:
            self.sentences = text
        else:
            raise RuntimeError("text type must be list or str")
        self.title = title
        if self.title:
            self.title = macropodus_cut(title)
        # 切词,含词性标注
        self.sentences_tag_cut = [jieba_tag_cut(extract_chinese(sentence)) for sentence in self.sentences]
        # 词语,不含词性标注
        sentences_cut = [[jc for jc in jtc.keys() ] for jtc in self.sentences_tag_cut]
        # 去除停用词等
        self.sentences_cut = [list(filter(lambda x: x not in self.stop_words, sc)) for sc in sentences_cut]
        # 词频统计
        self.words = []
        for sen in self.sentences_cut:
            self.words = self.words + sen
        self.word_count = dict(Counter(self.words))
        # 按频次计算词语的得分, 得到self.word_freq=[{'word':, 'freq':, 'score':}]
        self.word_freqs = {}
        self.len_words = len(self.words)
        for k, v in self.word_count.items():
            self.word_freqs[k] = v * 0.5 / self.len_words
        # uni_bi_tri_gram特征
        [gram_uni, gram_bi, gram_tri] = get_ngrams("".join(self.sentences), ns=[1, 2, 3])
        ngrams = gram_uni + gram_bi + gram_tri
        self.ngrams_count = dict(Counter(ngrams))
        # 句子位置打分
        scores_posi = self.score_position()
        # 句子长度打分
        scores_length = self.score_length()
        # 句子词性打分, 名词(1.2)-代词(0.8)-动词(1.0)
        scores_tag = self.score_tag()

        res_rank = {}
        self.res_score = []
        for i in range(len(sentences_cut)):
            sen_cut = self.sentences_cut[i]  # 句子中的词语
            # ngram得分
            [gram_uni_, gram_bi_, gram_tri_] = get_ngrams(self.sentences[i], ns=[1, 2, 3]) # gram_uni_bi_tri(self.sentences[i])
            n_gram_s = gram_uni_ + gram_bi_ + gram_tri_
            score_ngram = sum([self.ngrams_count[ngs] if ngs in self.ngrams_count else 0 for ngs in n_gram_s]) / (len(n_gram_s) + 1)
            # 句子中词语的平均长度
            score_word_length_avg = sum([len(sc) for sc in sen_cut])/(len(sen_cut)+1)
            score_posi = scores_posi[i]
            score_length = scores_length[i]
            score_tag = scores_tag[i]
            if self.title:  # 有标题的文本打分合并
                score_title = self.score_title(sen_cut)
                score_total = (score_title * 0.5 + score_ngram * 2.0 + score_word_length_avg * 0.5 +
                               score_length * 0.5 + score_posi * 1.0 + score_tag * 0.6) / 6.0
                # 可查阅各部分得分统计
                self.res_score.append(["score_title", "score_ngram", "score_word_length_avg",
                                       "score_length", "score_posi", "score_tag"])
                self.res_score.append([score_title, score_ngram, score_word_length_avg,
                                       score_length, score_posi, score_tag, self.sentences[i]])
            else:  # 无标题的文本打分合并
                score_total = (score_ngram * 2.0 + score_word_length_avg * 0.5 + score_length * 0.5 +
                               score_posi * 1.0 + score_tag * 0.6) / 5.0
                # 可查阅各部分得分统计
                self.res_score.append(["score_ngram", "score_word_length_avg",
                                       "score_length", "score_posi", "score_tag"])
                self.res_score.append([score_ngram, score_word_length_avg,
                                       score_length, score_posi, score_tag, self.sentences[i]])
            res_rank[self.sentences[i].strip()] = score_total
        # 最小句子数
        num_min = min(num, int(len(self.word_count) * 0.6))
        res_rank_sort = sorted(res_rank.items(), key=lambda rr: rr[1], reverse=True)
        res_rank_sort_reverse = [(rrs[1], rrs[0]) for rrs in res_rank_sort][0:num_min]
        return res_rank_sort_reverse
コード例 #12
0
ファイル: topic_lsi.py プロジェクト: zhiyuanding/Macropodus
    def summarize(self, text, num=320, topic_min=5, judge_topic='all'):
        """
            
        :param text: 
        :param num: 
        :return: 
        """
        # 切句
        if type(text) == str:
            self.sentences = cut_sentence(text)
        elif type(text) == list:
            self.sentences = text
        else:
            raise RuntimeError("text type must be list or str")
        len_sentences_cut = len(self.sentences)
        # 切词
        sentences_cut = [[word for word in macropodus_cut(extract_chinese(sentence))
                          if word.strip()] for sentence in self.sentences]
        # 去除停用词等
        self.sentences_cut = [list(filter(lambda x: x not in self.stop_words, sc)) for sc in sentences_cut]
        self.sentences_cut = [" ".join(sc) for sc in self.sentences_cut]
        # 计算每个句子的tfidf
        sen_tfidf = tfidf_fit(self.sentences_cut)
        # 主题数, 经验判断
        topic_num = min(topic_min, int(len(sentences_cut)/2))  # 设定最小主题数为3
        svd_tfidf = TruncatedSVD(n_components=topic_num, n_iter=32)
        res_svd_u = svd_tfidf.fit_transform(sen_tfidf.T)
        res_svd_v = svd_tfidf.components_

        if judge_topic:
            ### 方案一, 获取最大那个主题的k个句子
            ##################################################################################
            topic_t_score = np.sum(res_svd_v, axis=-1)
            # 对每列(一个句子topic_num个主题),得分进行排序,0为最大
            res_nmf_h_soft = res_svd_v.argsort(axis=0)[-topic_num:][::-1]
            # 统计为最大每个主题的句子个数
            exist = (res_nmf_h_soft <= 0) * 1.0
            factor = np.ones(res_nmf_h_soft.shape[1])
            topic_t_count = np.dot(exist, factor)
            # 标准化
            topic_t_count /= np.sum(topic_t_count, axis=-1)
            topic_t_score /= np.sum(topic_t_score, axis=-1)
            # 主题最大个数占比, 与主题总得分占比选择最大的主题
            topic_t_tc = topic_t_count + topic_t_score
            topic_t_tc_argmax = np.argmax(topic_t_tc)
            # 最后得分选择该最大主题的
            res_nmf_h_soft_argmax = res_svd_v[topic_t_tc_argmax].tolist()
            res_combine = {}
            for l in range(len_sentences_cut):
                res_combine[self.sentences[l]] = res_nmf_h_soft_argmax[l]
            score_sen = [(rc[1], rc[0]) for rc in sorted(res_combine.items(), key=lambda d: d[1], reverse=True)]
            #####################################################################################
        else:
            ### 方案二, 获取最大主题概率的句子, 不分主题
            res_combine = {}
            for i in range(len_sentences_cut):
                res_row_i = res_svd_v[:, i]
                res_row_i_argmax = np.argmax(res_row_i)
                res_combine[self.sentences[i]] = res_row_i[res_row_i_argmax]
            score_sen = [(rc[1], rc[0]) for rc in sorted(res_combine.items(), key=lambda d: d[1], reverse=True)]
        num_min = min(num, int(len_sentences_cut * 0.6))
        return score_sen[0:num_min]