コード例 #1
0
def load_dataset(config):
    """Load dataset following instruction in `config`."""
    if dataset_is_mnist_family(config['dataset']):
        crop_width = config.get('crop_width', None)  # unused
        img_width = config.get('img_width', None)  # unused

        scratch = config.get('scratch', get_default_scratch())
        basepath = os.path.join(scratch, config['dataset'].lower())
        data_path = os.path.join(basepath, 'data')
        save_path = os.path.join(basepath, 'ckpts')

        tf.gfile.MakeDirs(data_path)
        tf.gfile.MakeDirs(save_path)

        # black-on-white MNIST (harder to learn than white-on-black MNIST)
        # Running locally (pre-download data locally)
        mnist_train, mnist_eval, mnist_test = local_mnist.read_data_sets(
            data_path, one_hot=True)

        train_data = np.concatenate([mnist_train.images, mnist_eval.images],
                                    axis=0)
        attr_train = np.concatenate([mnist_train.labels, mnist_eval.labels],
                                    axis=0)
        eval_data = mnist_test.images
        attr_eval = mnist_test.labels

        attribute_names = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']

    elif config['dataset'] == 'CELEBA':
        crop_width = config['crop_width']
        img_width = config['img_width']
        postfix = '_crop_%d_res_%d.npy' % (crop_width, img_width)

        # Load Data
        scratch = config.get('scratch', get_default_scratch())
        basepath = os.path.join(scratch, 'celeba')
        data_path = os.path.join(basepath, 'data')
        save_path = os.path.join(basepath, 'ckpts')

        (train_data, eval_data, _, attr_train, attr_eval, _,
         attribute_names) = _load_celeba(data_path, postfix)
    else:
        raise NotImplementedError

    return ObjectBlob(
        crop_width=crop_width,
        img_width=img_width,
        basepath=basepath,
        data_path=data_path,
        save_path=save_path,
        train_data=train_data,
        attr_train=attr_train,
        eval_data=eval_data,
        attr_eval=attr_eval,
        attribute_names=attribute_names,
    )
コード例 #2
0
ファイル: common.py プロジェクト: adarob/magenta
def load_dataset(config):
  """Load dataset following instruction in `config`."""
  if dataset_is_mnist_family(config['dataset']):
    crop_width = config.get('crop_width', None)  # unused
    img_width = config.get('img_width', None)  # unused

    scratch = config.get('scratch', get_default_scratch())
    basepath = os.path.join(scratch, config['dataset'].lower())
    data_path = os.path.join(basepath, 'data')
    save_path = os.path.join(basepath, 'ckpts')

    tf.gfile.MakeDirs(data_path)
    tf.gfile.MakeDirs(save_path)

    # black-on-white MNIST (harder to learn than white-on-black MNIST)
    # Running locally (pre-download data locally)
    mnist_train, mnist_eval, mnist_test = local_mnist.read_data_sets(
        data_path, one_hot=True)

    train_data = np.concatenate([mnist_train.images, mnist_eval.images], axis=0)
    attr_train = np.concatenate([mnist_train.labels, mnist_eval.labels], axis=0)
    eval_data = mnist_test.images
    attr_eval = mnist_test.labels

    attribute_names = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']

  elif config['dataset'] == 'CELEBA':
    crop_width = config['crop_width']
    img_width = config['img_width']
    postfix = '_crop_%d_res_%d.npy' % (crop_width, img_width)

    # Load Data
    scratch = config.get('scratch', get_default_scratch())
    basepath = os.path.join(scratch, 'celeba')
    data_path = os.path.join(basepath, 'data')
    save_path = os.path.join(basepath, 'ckpts')

    (train_data, eval_data, _, attr_train, attr_eval, _,
     attribute_names) = _load_celeba(data_path, postfix)
  else:
    raise NotImplementedError

  return ObjectBlob(
      crop_width=crop_width,
      img_width=img_width,
      basepath=basepath,
      data_path=data_path,
      save_path=save_path,
      train_data=train_data,
      attr_train=attr_train,
      eval_data=eval_data,
      attr_eval=attr_eval,
      attribute_names=attribute_names,
  )