コード例 #1
0
def magic(adata):
    from magic import MAGIC

    X, libsize = scprep.normalize.library_size_normalize(
        adata.obsm["train"], rescale=1, return_library_size=True)
    X = scprep.transform.sqrt(X)
    Y = MAGIC().fit_transform(X, genes="all_genes")
    Y = scprep.utils.matrix_transform(Y, np.square)
    Y = scprep.utils.matrix_vector_elementwise_multiply(Y, libsize, axis=0)
    adata.obsm["denoised"] = Y
    return adata
コード例 #2
0
    def run_magic(self,
                  n_pca_components=20,
                  random_pca=True,
                  t=6,
                  k=30,
                  ka=10,
                  epsilon=1,
                  rescale_percent=99):

        MAGICed = [x for x in self.operation.history if 'MAGIC' in x]

        if MAGICed:
            print('already ran MAGIC on the current data')
            return

        else:
            pca_data = self.run_pca(n_pca_components,
                                    random_pca,
                                    no_effect=True)

            new_data = MAGIC.magic(self.data.values,
                                   pca_data.data.values,
                                   t=t,
                                   k=k,
                                   ka=ka,
                                   epsilon=epsilon,
                                   rescale=rescale_percent)
            new_data = pd.DataFrame(new_data,
                                    index=self.data.index,
                                    columns=self.data.columns)

            # Construct class object
            par = '-'.join(
                (str(n_pca_components), str(random_pca), str(t), str(k),
                 str(ka), str(epsilon), str(rescale_percent)))
            self.data = new_data
            self.operation.add('MAGIC', par)
コード例 #3
0
def magic(
    adata: AnnData,
    name_list: Union[str, Sequence[str], None] = None,
    k: int = 10,
    a: int = 15,
    t: str = 'auto',
    n_pca: int = 100,
    knn_dist: str = 'euclidean',
    random_state: Optional[Union[int, RandomState]] = None,
    n_jobs: Optional[int] = None,
    verbose: bool = False,
    copy: Optional[bool] = None,
    **kwargs,
) -> Optional[AnnData]:
    """\
    Markov Affinity-based Graph Imputation of Cells (MAGIC) API [vanDijk18]_.

    MAGIC is an algorithm for denoising and transcript recover of single cells
    applied to single-cell sequencing data. MAGIC builds a graph from the data
    and uses diffusion to smooth out noise and recover the data manifold.

    More information and bug reports
    `here <https://github.com/KrishnaswamyLab/MAGIC>`__. For help, visit
    <https://krishnaswamylab.org/get-help>.

    Parameters
    ----------
    adata
        An anndata file with `.raw` attribute representing raw counts.
    name_list
        Denoised genes to return. The default `'all_genes'`/`None`
        may require a large amount of memory if the input data is sparse.
        Another possibility is `'pca_only'`.
    k
        number of nearest neighbors on which to build kernel
    a
        sets decay rate of kernel tails.
        If None, alpha decaying kernel is not used
    t
        power to which the diffusion operator is powered.
        This sets the level of diffusion. If 'auto', t is selected
        according to the Procrustes disparity of the diffused data
    n_pca
        Number of principal components to use for calculating
        neighborhoods. For extremely large datasets, using
        n_pca < 20 allows neighborhoods to be calculated in
        roughly log(n_samples) time.
    knn_dist
        recommended values: 'euclidean', 'cosine', 'precomputed'
        Any metric from `scipy.spatial.distance` can be used
        distance metric for building kNN graph. If 'precomputed',
        `data` should be an n_samples x n_samples distance or
        affinity matrix
    random_state
        Random seed. Defaults to the global `numpy` random number generator
    n_jobs
        Number of threads to use in training. All cores are used by default.
    verbose
        If `True` or an integer `>= 2`, print status messages.
        If `None`, `sc.settings.verbosity` is used.
    copy
        If true, a copy of anndata is returned. If `None`, `copy` is True if
        `genes` is not `'all_genes'` or `'pca_only'`. `copy` may only be False
        if `genes` is `'all_genes'` or `'pca_only'`, as the resultant data
        will otherwise have different column names from the input data.
    kwargs
        Additional arguments to `magic.MAGIC`

    Returns
    -------
    If `copy` is True, AnnData object is returned.

    If `subset_genes` is not `all_genes`, PCA on MAGIC values of cells are
    stored in `adata.obsm['X_magic']` and `adata.X` is not modified.

    The raw counts are stored in `.raw` attribute of AnnData object.

    Examples
    --------
    >>> import scanpy as sc
    >>> import scanpy.external as sce
    >>> adata = sc.datasets.paul15()
    >>> sc.pp.normalize_per_cell(adata)
    >>> sc.pp.sqrt(adata)  # or sc.pp.log1p(adata)
    >>> adata_magic = sce.pp.magic(adata, name_list=['Mpo', 'Klf1', 'Ifitm1'], k=5)
    >>> adata_magic.shape
    (2730, 3)
    >>> sce.pp.magic(adata, name_list='pca_only', k=5)
    >>> adata.obsm['X_magic'].shape
    (2730, 100)
    >>> sce.pp.magic(adata, name_list='all_genes', k=5)
    >>> adata.X.shape
    (2730, 3451)
    """

    try:
        from magic import MAGIC
    except ImportError:
        raise ImportError(
            'Please install magic package via `pip install --user '
            'git+git://github.com/KrishnaswamyLab/MAGIC.git#subdirectory=python`'
        )

    start = logg.info('computing PHATE')
    all_or_pca = isinstance(name_list, (str, type(None)))
    if all_or_pca and name_list not in {"all_genes", "pca_only", None}:
        raise ValueError("Invalid string value for `name_list`: "
                         "Only `'all_genes'` and `'pca_only'` are allowed.")
    if copy is None:
        copy = not all_or_pca
    elif not all_or_pca and not copy:
        raise ValueError(
            "Can only perform MAGIC in-place with `name_list=='all_genes' or "
            f"`name_list=='pca_only'` (got {name_list}). Consider setting "
            "`copy=True`")
    adata = adata.copy() if copy else adata
    n_jobs = settings.n_jobs if n_jobs is None else n_jobs

    X_magic = MAGIC(
        k=k,
        a=a,
        t=t,
        n_pca=n_pca,
        knn_dist=knn_dist,
        random_state=random_state,
        n_jobs=n_jobs,
        verbose=verbose,
        **kwargs,
    ).fit_transform(adata, genes=name_list)
    logg.info(
        '    finished',
        time=start,
        deep=("added\n    'X_magic', PCA on MAGIC coordinates (adata.obsm)"
              if name_list == "pca_only" else ''))
    # update AnnData instance
    if name_list == "pca_only":
        # special case - update adata.obsm with smoothed values
        adata.obsm["X_magic"] = X_magic.X
    elif copy:
        # just return X_magic
        X_magic.raw = adata
        adata = X_magic
    else:
        # replace data with smoothed data
        adata.raw = adata
        adata.X = X_magic.X

    if copy:
        return adata
コード例 #4
0
ファイル: _magic.py プロジェクト: jeffhsu3/scanpy
def magic(
    adata: AnnData,
    name_list: Union[Literal['all_genes', 'pca_only'], Sequence[str], None] = None,
    *,
    knn: int = 5,
    decay: Optional[float] = 1,
    knn_max: Optional[int] = None,
    t: Union[Literal['auto'], int] = 3,
    n_pca: Optional[int] = 100,
    solver: Literal['exact', 'approximate'] = 'exact',
    knn_dist: str = 'euclidean',
    random_state: Optional[Union[int, RandomState]] = None,
    n_jobs: Optional[int] = None,
    verbose: bool = False,
    copy: Optional[bool] = None,
    **kwargs,
) -> Optional[AnnData]:
    """\
    Markov Affinity-based Graph Imputation of Cells (MAGIC) API [vanDijk18]_.

    MAGIC is an algorithm for denoising and transcript recover of single cells
    applied to single-cell sequencing data. MAGIC builds a graph from the data
    and uses diffusion to smooth out noise and recover the data manifold.

    The algorithm implemented here has changed primarily in two ways
    compared to the algorithm described in [vanDijk18]_. Firstly, we use
    the adaptive kernel described in Moon et al, 2019 [Moon17]_ for
    improved stability. Secondly, data diffusion is applied
    in the PCA space, rather than the data space, for speed and
    memory improvements.

    More information and bug reports
    `here <https://github.com/KrishnaswamyLab/MAGIC>`__. For help, visit
    <https://krishnaswamylab.org/get-help>.

    Parameters
    ----------
    adata
        An anndata file with `.raw` attribute representing raw counts.
    name_list
        Denoised genes to return. The default `'all_genes'`/`None`
        may require a large amount of memory if the input data is sparse.
        Another possibility is `'pca_only'`.
    knn
        number of nearest neighbors on which to build kernel.
    decay
        sets decay rate of kernel tails.
        If None, alpha decaying kernel is not used.
    knn_max
        maximum number of nearest neighbors with nonzero connection.
        If `None`, will be set to 3 * `knn`.
    t
        power to which the diffusion operator is powered.
        This sets the level of diffusion. If 'auto', t is selected
        according to the Procrustes disparity of the diffused data.
    n_pca
        Number of principal components to use for calculating
        neighborhoods. For extremely large datasets, using
        n_pca < 20 allows neighborhoods to be calculated in
        roughly log(n_samples) time. If `None`, no PCA is performed.
    solver
        Which solver to use. "exact" uses the implementation described
        in van Dijk et al. (2018) [vanDijk18]_. "approximate" uses a faster
        implementation that performs imputation in the PCA space and then
        projects back to the gene space. Note, the "approximate" solver may
        return negative values.
    knn_dist
        recommended values: 'euclidean', 'cosine', 'precomputed'
        Any metric from `scipy.spatial.distance` can be used
        distance metric for building kNN graph. If 'precomputed',
        `data` should be an n_samples x n_samples distance or
        affinity matrix.
    random_state
        Random seed. Defaults to the global `numpy` random number generator.
    n_jobs
        Number of threads to use in training. All cores are used by default.
    verbose
        If `True` or an integer `>= 2`, print status messages.
        If `None`, `sc.settings.verbosity` is used.
    copy
        If true, a copy of anndata is returned. If `None`, `copy` is True if
        `genes` is not `'all_genes'` or `'pca_only'`. `copy` may only be False
        if `genes` is `'all_genes'` or `'pca_only'`, as the resultant data
        will otherwise have different column names from the input data.
    kwargs
        Additional arguments to `magic.MAGIC`.

    Returns
    -------
    If `copy` is True, AnnData object is returned.

    If `subset_genes` is not `all_genes`, PCA on MAGIC values of cells are
    stored in `adata.obsm['X_magic']` and `adata.X` is not modified.

    The raw counts are stored in `.raw` attribute of AnnData object.

    Examples
    --------
    >>> import scanpy as sc
    >>> import scanpy.external as sce
    >>> adata = sc.datasets.paul15()
    >>> sc.pp.normalize_per_cell(adata)
    >>> sc.pp.sqrt(adata)  # or sc.pp.log1p(adata)
    >>> adata_magic = sce.pp.magic(adata, name_list=['Mpo', 'Klf1', 'Ifitm1'], knn=5)
    >>> adata_magic.shape
    (2730, 3)
    >>> sce.pp.magic(adata, name_list='pca_only', knn=5)
    >>> adata.obsm['X_magic'].shape
    (2730, 100)
    >>> sce.pp.magic(adata, name_list='all_genes', knn=5)
    >>> adata.X.shape
    (2730, 3451)
    """

    try:
        from magic import MAGIC, __version__
    except ImportError:
        raise ImportError(
            'Please install magic package via `pip install --user '
            'git+git://github.com/KrishnaswamyLab/MAGIC.git#subdirectory=python`'
        )
    else:
        if not version.parse(__version__) >= version.parse(MIN_VERSION):
            raise ImportError(
                'scanpy requires magic-impute >= '
                f'v{MIN_VERSION} (detected: v{__version__}). '
                'Please update magic package via `pip install --user '
                '--upgrade magic-impute`'
            )

    start = logg.info('computing MAGIC')
    all_or_pca = isinstance(name_list, (str, type(None)))
    if all_or_pca and name_list not in {"all_genes", "pca_only", None}:
        raise ValueError(
            "Invalid string value for `name_list`: "
            "Only `'all_genes'` and `'pca_only'` are allowed."
        )
    if copy is None:
        copy = not all_or_pca
    elif not all_or_pca and not copy:
        raise ValueError(
            "Can only perform MAGIC in-place with `name_list=='all_genes' or "
            f"`name_list=='pca_only'` (got {name_list}). Consider setting "
            "`copy=True`"
        )
    adata = adata.copy() if copy else adata
    n_jobs = settings.n_jobs if n_jobs is None else n_jobs

    X_magic = MAGIC(
        knn=knn,
        decay=decay,
        knn_max=knn_max,
        t=t,
        n_pca=n_pca,
        solver=solver,
        knn_dist=knn_dist,
        random_state=random_state,
        n_jobs=n_jobs,
        verbose=verbose,
        **kwargs,
    ).fit_transform(adata, genes=name_list)
    logg.info(
        '    finished',
        time=start,
        deep=(
            "added\n    'X_magic', PCA on MAGIC coordinates (adata.obsm)"
            if name_list == "pca_only"
            else ''
        ),
    )
    # update AnnData instance
    if name_list == "pca_only":
        # special case – update adata.obsm with smoothed values
        adata.obsm["X_magic"] = X_magic.X
    elif copy:
        # just return X_magic
        X_magic.raw = adata
        adata = X_magic
    else:
        # replace data with smoothed data
        adata.raw = adata
        adata.X = X_magic.X

    if copy:
        return adata
コード例 #5
0
ファイル: _magic.py プロジェクト: yihming/scanpy
def magic(adata,
          name_list=None,
          k=10,
          a=15,
          t='auto',
          n_pca=100,
          knn_dist='euclidean',
          random_state=None,
          n_jobs=None,
          verbose=False,
          copy=None,
          **kwargs):
    """Markov Affinity-based Graph Imputation of Cells (MAGIC) API [vanDijk18]_.

    MAGIC is an algorithm for denoising and transcript recover of single cells
    applied to single-cell sequencing data. MAGIC builds a graph from the data
    and uses diffusion to smooth out noise and recover the data manifold.

    More information and bug reports
    `here <https://github.com/KrishnaswamyLab/MAGIC>`__. For help, visit
    <https://krishnaswamylab.org/get-help>.

    Parameters
    ----------
    adata : :class:`~scanpy.api.AnnData`
        An anndata file with `.raw` attribute representing raw counts.
    name_list : `list`, `'all_genes'`, or `'pca_only'`, optional (default: `'all_genes'`)
        Denoised genes to return. Default is all genes, but this
        may require a large amount of memory if the input data is sparse.
    k : int, optional, default: 10
        number of nearest neighbors on which to build kernel
    a : int, optional, default: 15
        sets decay rate of kernel tails.
        If None, alpha decaying kernel is not used
    t : int, optional, default: 'auto'
        power to which the diffusion operator is powered.
        This sets the level of diffusion. If 'auto', t is selected
        according to the Procrustes disparity of the diffused data
    n_pca : int, optional, default: 100
        Number of principal components to use for calculating
        neighborhoods. For extremely large datasets, using
        n_pca < 20 allows neighborhoods to be calculated in
        roughly log(n_samples) time.
    knn_dist : string, optional, default: 'euclidean'
        recommended values: 'euclidean', 'cosine', 'precomputed'
        Any metric from `scipy.spatial.distance` can be used
        distance metric for building kNN graph. If 'precomputed',
        `data` should be an n_samples x n_samples distance or
        affinity matrix
    random_state : `int`, `numpy.RandomState` or `None`, optional (default: `None`)
        Random seed. Defaults to the global `numpy` random number generator
    n_jobs : `int` or None, optional. Default: None
        Number of threads to use in training. All cores are used by default.
    verbose : `bool`, `int` or `None`, optional (default: `sc.settings.verbosity`)
        If `True` or an integer `>= 2`, print status messages.
        If `None`, `sc.settings.verbosity` is used.
    copy : `bool` or `None`, optional. Default: `None`.
        If true, a copy of anndata is returned. If `None`, `copy` is True if
        `genes` is not `'all_genes'` or `'pca_only'`. `copy` may only be False
        if `genes` is `'all_genes'` or `'pca_only'`, as the resultant data
        will otherwise have different column names from the input data.
    kwargs : additional arguments to `magic.MAGIC`

    Returns
    -------
    If `copy` is True, AnnData object is returned.

    If `subset_genes` is not `all_genes`, PCA on MAGIC values of cells are stored in
    `adata.obsm['X_magic']` and `adata.X` is not modified.

    The raw counts are stored in `.raw` attribute of AnnData object.

    Examples
    --------
    >>> import scanpy.api as sc
    >>> import magic
    >>> adata = sc.datasets.paul15()
    >>> sc.pp.normalize_per_cell(adata)
    >>> sc.pp.sqrt(adata)  # or sc.pp.log1p(adata)
    >>> adata_magic = sc.pp.magic(adata, name_list=['Mpo', 'Klf1', 'Ifitm1'], k=5)
    >>> adata_magic.shape
    (2730, 3)
    >>> sc.pp.magic(adata, name_list='pca_only', k=5)
    >>> adata.obsm['X_magic'].shape
    (2730, 100)
    >>> sc.pp.magic(adata, name_list='all_genes', k=5)
    >>> adata.X.shape
    (2730, 3451)
    """

    try:
        from magic import MAGIC
    except ImportError:
        raise ImportError(
            'Please install magic package via `pip install --user '
            'git+git://github.com/KrishnaswamyLab/MAGIC.git#subdirectory=python`'
        )

    logg.info('computing PHATE', r=True)
    needs_copy = not (name_list is None or
                      (isinstance(name_list, str)
                       and name_list in ["all_genes", "pca_only"]))
    if copy is None:
        copy = needs_copy
    elif needs_copy and not copy:
        raise ValueError(
            "Can only perform MAGIC in-place with `name_list=='all_genes' or "
            "`name_list=='pca_only'` (got {}). Consider setting "
            "`copy=True`".format(name_list))
    adata = adata.copy() if copy else adata
    verbose = settings.verbosity if verbose is None else verbose
    if isinstance(verbose, (str, int)):
        verbose = _settings_verbosity_greater_or_equal_than(2)
    n_jobs = settings.n_jobs if n_jobs is None else n_jobs

    X_magic = MAGIC(k=k,
                    a=a,
                    t=t,
                    n_pca=n_pca,
                    knn_dist=knn_dist,
                    random_state=random_state,
                    n_jobs=n_jobs,
                    verbose=verbose,
                    **kwargs).fit_transform(adata, genes=name_list)
    logg.info(
        '    finished',
        time=True,
        end=' ' if _settings_verbosity_greater_or_equal_than(3) else '\n')
    # update AnnData instance
    if name_list == "pca_only":
        # special case - update adata.obsm with smoothed values
        adata.obsm["X_magic"] = X_magic.X
        logg.hint('added\n'
                  '    \'X_magic\', PCA on MAGIC coordinates (adata.obsm)')
    elif copy:
        # just return X_magic
        X_magic.raw = adata
        adata = X_magic
    else:
        # replace data with smoothed data
        adata.raw = adata
        adata.X = X_magic.X

    if copy:
        return adata
コード例 #6
0
ファイル: main.py プロジェクト: chrisyrniu/Meta-MAGIC
if not isinstance(args.num_actions, (list, tuple)):  # single action case
    args.num_actions = [args.num_actions]
args.dim_actions = env.dim_actions
args.num_inputs = num_inputs

parse_action_args(args)

if args.seed == -1:
    args.seed = np.random.randint(0, 10000)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)

print(args)

policy_net = MAGIC(args, num_inputs)

if not args.display:
    display_models([policy_net])

# share parameters among threads, but not gradients
for p in policy_net.parameters():
    p.data.share_memory_()

disp_trainer = Trainer(args, policy_net, data.init(args.env_name, args, False))
disp_trainer.display = True


def disp():
    x = disp_trainer.get_episode()
コード例 #7
0
args.num_actions = env.num_actions

# Multi-action
if not isinstance(args.num_actions, (list, tuple)):  # single action case
    args.num_actions = [args.num_actions]
args.dim_actions = env.dim_actions

parse_action_args(args)

if args.seed == -1:
    args.seed = np.random.randint(0, 10000)
torch.manual_seed(args.seed)

print(args)

policy_net = MAGIC(args)

if not args.display:
    display_models([policy_net])

# share parameters among threads, but not gradients
for p in policy_net.parameters():
    p.data.share_memory_()

disp_trainer = Trainer(args, policy_net, data.init(args.env_name, args, False))
disp_trainer.display = True


def disp():
    x = disp_trainer.get_episode()