def gen_model(cap=0.16e-6, ind=0.16e-6, res=0.1, dt=0.01e-6, real_type=RealType.FixedPoint): # declare model m = MixedSignalModel('model', dt=dt, real_type=real_type) m.add_analog_input('v_in') m.add_analog_output('v_out') m.add_digital_input('clk') m.add_digital_input('rst') # declare system of equations m.add_analog_state('i_ind', 10) # TODO: can this be tightened down a bit? v_l = AnalogSignal('v_l') v_r = AnalogSignal('v_r') eqns = [ Deriv(m.i_ind) == v_l / ind, Deriv(m.v_out) == m.i_ind / cap, v_r == m.i_ind * res, m.v_in == m.v_out + v_l + v_r ] m.add_eqn_sys(eqns, clk=m.clk, rst=m.rst) BUILD_DIR.mkdir(parents=True, exist_ok=True) model_file = BUILD_DIR / 'model.sv' m.compile_to_file(VerilogGenerator(), filename=model_file) return model_file
def gen_model(real_type): # declare module m = MixedSignalModel('model', real_type=real_type) m.add_digital_input('clk') m.add_digital_input('rst') m.add_analog_output('g') # bind expression to internal signal m.add_digital_param('param_a') m.add_digital_param('param_b') m.add_digital_param('param_c', width=2, signed=True) m.add_digital_param('param_d', width=2, signed=True) m.add_real_param('param_e') m.add_real_param('param_f') # create state signals m.add_digital_state('sig1', init=m.param_a) m.add_digital_state('sig2', init=m.param_c, width=2, signed=True) m.add_analog_state('sig3', init=m.param_e, range_=25) # create main logic m.set_next_cycle(m.sig1, m.param_b, clk=m.clk, rst=m.rst) m.set_next_cycle(m.sig2, m.param_d, clk=m.clk, rst=m.rst) m.set_next_cycle(m.sig3, m.param_f, clk=m.clk, rst=m.rst) # sum signals to output m.set_this_cycle(m.g, m.sig1 + m.sig2 + m.sig3) # compile to a file BUILD_DIR.mkdir(parents=True, exist_ok=True) model_file = BUILD_DIR / 'model.sv' m.compile_to_file(VerilogGenerator(), filename=model_file) # return file location return model_file
def gen_model(rp1, rn1, rp2, rn2, real_type, dt=0.1e-6): # declare model m = MixedSignalModel('model', dt=dt, real_type=real_type) # declare I/O m.add_analog_input('v_in') m.add_analog_output('v_out') m.add_digital_input('sw1') m.add_digital_input('sw2') # declare switch circuit c = m.make_circuit() gnd = c.make_ground() c.voltage('net_v_in', gnd, m.v_in) c.switch('net_v_in', 'net_v_x', m.sw1, r_on=rp1, r_off=rn1) c.switch('net_v_x', gnd, m.sw2, r_on=rp2, r_off=rn2) c.add_eqns(AnalogSignal('net_v_x') == m.v_out) # compile to a file BUILD_DIR.mkdir(parents=True, exist_ok=True) model_file = BUILD_DIR / 'model.sv' m.compile_to_file(VerilogGenerator(), filename=model_file) # return file location return model_file
def gen_model(r_off=2.6e3, current_range=100, real_type=RealType.FixedPoint): # declare model m = MixedSignalModel('model', dt=1e-9, real_type=real_type) m.add_analog_input('v_in') m.add_analog_output('v_out') m.add_digital_input('sw1') m.add_digital_input('sw2') m.add_digital_input('clk') m.add_digital_input('rst') # create test circuit c = m.make_circuit(clk=m.clk, rst=m.rst) gnd = c.make_ground() c.voltage('net_v_in', gnd, m.v_in) c.switch('net_v_in', 'net_v_x', m.sw1, r_off=r_off) c.switch('net_v_x', gnd, m.sw2, r_off=r_off) c.inductor('net_v_in', 'net_v_x', 1.0, current_range=current_range) c.add_eqns(AnalogSignal('net_v_x') == m.v_out) # compile to a file BUILD_DIR.mkdir(parents=True, exist_ok=True) model_file = BUILD_DIR / 'model.sv' m.compile_to_file(VerilogGenerator(), filename=model_file) # return file location return model_file
def gen_model(const=1.23, real_type=RealType.FixedPoint): # declare module m = MixedSignalModel('model', real_type=real_type) m.add_analog_input('a') m.add_analog_output('b') m.add_eqn_sys([m.b == const * m.a]) # compile to a file BUILD_DIR.mkdir(parents=True, exist_ok=True) model_file = BUILD_DIR / 'model.sv' m.compile_to_file(VerilogGenerator(), filename=model_file) # return file location return model_file
def gen_model(tau, real_type): # create mixed-signal model m = MixedSignalModel('model', build_dir=BUILD_DIR, real_type=real_type) # define I/O x = m.add_analog_input('x') dt = m.add_analog_input('dt') y = m.add_analog_output('y') clk = m.add_digital_input('clk') rst = m.add_digital_input('rst') # create function func = m.make_function(lambda t: np.exp(-t / tau), domain=[0, 1e-6], order=1) # apply function f = m.set_from_sync_func('f', func, dt, clk=clk, rst=rst) # update output x_prev = m.cycle_delay(x, 1, clk=clk, rst=rst) y_prev = m.cycle_delay(y, 1, clk=clk, rst=rst) m.set_this_cycle(y, f * y_prev + (1 - f) * x_prev) # write the model return m.compile_to_file(VerilogGenerator())
def gen_model(real_type): # declare module m = MixedSignalModel('model', real_type=real_type) m.add_analog_input('a') m.add_analog_input('b') # bind expression to internal signal m.bind_name('c', m.a + m.b) # compile to a file BUILD_DIR.mkdir(parents=True, exist_ok=True) model_file = BUILD_DIR / 'model.sv' m.compile_to_file(VerilogGenerator(), filename=model_file) # return file location return model_file
def gen_model(tau=1e-6, dt=0.1e-6, real_type=RealType.FixedPoint): m = MixedSignalModel('model', dt=dt, real_type=real_type) m.add_analog_input('v_in') m.add_analog_output('v_out') m.add_digital_input('clk') m.add_digital_input('rst') m.set_tf(input_=m.v_in, output=m.v_out, tf=((1, ), (tau, 1)), clk=m.clk, rst=m.rst) BUILD_DIR.mkdir(parents=True, exist_ok=True) model_file = BUILD_DIR / 'model.sv' m.compile_to_file(VerilogGenerator(), filename=model_file) return model_file
def gen_model(): # declare model I/O m = MixedSignalModel('model') m.add_digital_input('a', width=63, signed=True) m.add_digital_input('b', width=63, signed=True) m.add_digital_output('c', width=64, signed=True) # assign expression to output m.bind_name('d', m.a - m.b) m.set_this_cycle(m.c, m.d) # compile to a file BUILD_DIR.mkdir(parents=True, exist_ok=True) model_file = BUILD_DIR / 'model.sv' m.compile_to_file(VerilogGenerator(), filename=model_file) # return file location return model_file
def gen_model(): # declare module m = MixedSignalModel('model') m.add_digital_input('clk') m.add_digital_input('rst') m.add_digital_input('seed', width=32) m.add_digital_output('out', width=32) # sum signals to output m.set_this_cycle(m.out, mt19937(clk=m.clk, rst=m.rst, seed=m.seed)) # compile to a file BUILD_DIR.mkdir(parents=True, exist_ok=True) model_file = BUILD_DIR / 'model.sv' m.compile_to_file(VerilogGenerator(), filename=model_file) # return file location return model_file
def gen_model(width, init, real_type): # declare module m = MixedSignalModel('model', real_type=real_type) m.add_digital_input('clk') m.add_digital_input('rst') m.add_digital_output('out', width=width) # bind expression to internal signal lfsr = m.lfsr_signal(width, clk=m.clk, rst=m.rst, init=init) m.set_this_cycle(m.out, lfsr) # compile to a file BUILD_DIR.mkdir(parents=True, exist_ok=True) model_file = BUILD_DIR / 'model.sv' m.compile_to_file(VerilogGenerator(), filename=model_file) # return file location return model_file
def gen_model(n, vn, vp, dt, real_type): # declare model I/O m = MixedSignalModel('model', dt=dt, real_type=real_type) m.add_digital_input('d_in', width=n, signed=True) m.add_analog_output('a_out') # compute expression for DAC output expr = ((m.d_in + (2**(n - 1))) / ((2**n) - 1)) * (vp - vn) + vn # assign expression to output m.set_this_cycle(m.a_out, expr) # compile to a file BUILD_DIR.mkdir(parents=True, exist_ok=True) model_file = BUILD_DIR / 'model.sv' m.compile_to_file(VerilogGenerator(), filename=model_file) # return file location return model_file
def gen_model(res=1e3, cap=1e-9, dt=0.1e-6, real_type=RealType.FixedPoint): m = MixedSignalModel('model', dt=dt, real_type=real_type) m.add_analog_input('v_in') m.add_analog_output('v_out') m.add_digital_input('clk') m.add_digital_input('rst') c = m.make_circuit(clk=m.clk, rst=m.rst) gnd = c.make_ground() c.capacitor('net_v_out', gnd, cap, voltage_range=RangeOf(m.v_out)) c.resistor('net_v_in', 'net_v_out', res) c.voltage('net_v_in', gnd, m.v_in) c.add_eqns(AnalogSignal('net_v_out') == m.v_out) BUILD_DIR.mkdir(parents=True, exist_ok=True) model_file = BUILD_DIR / 'model.sv' m.compile_to_file(VerilogGenerator(), filename=model_file) return model_file
def gen_model(n, vn, vp, dt, real_type): # declare model I/O m = MixedSignalModel('model', dt=dt, real_type=real_type) m.add_analog_input('a_in') m.add_digital_output('d_out', width=n, signed=True) # compute expression for ADC output as an unclamped, real number expr = ((m.a_in - vn) / (vp - vn) * ((2**n) - 1)) - (2**(n - 1)) # clamp to ADC range clamped = clamp_op(expr, -(2**(n - 1)), (2**(n - 1)) - 1) # assign expression to output m.set_this_cycle(m.d_out, to_sint(clamped, width=n)) # compile to a file BUILD_DIR.mkdir(parents=True, exist_ok=True) model_file = BUILD_DIR / 'model.sv' m.compile_to_file(VerilogGenerator(), filename=model_file) # return file location return model_file
def gen_model(tau_f=1e-9, tau_s=100e-9, dt=10e-9, real_type=RealType.FixedPoint): m = MixedSignalModel('model', dt=dt, real_type=real_type) m.add_analog_input('v_in') m.add_analog_output('v_out') m.add_digital_input('clk') m.add_digital_input('rst') m.bind_name('in_gt_out', m.v_in > m.v_out) # detector dynamics eqns = [ Deriv(m.v_out) == eqn_case([0, 1 / tau_f], [m.in_gt_out]) * (m.v_in - m.v_out) - (m.v_out / tau_s) ] m.add_eqn_sys(eqns, clk=m.clk, rst=m.rst) BUILD_DIR.mkdir(parents=True, exist_ok=True) model_file = BUILD_DIR / 'model.sv' m.compile_to_file(VerilogGenerator(), filename=model_file) return model_file