コード例 #1
0
ファイル: Venation.py プロジェクト: maeotaku/MScThesis
 def __init__(self, img):
     self.img = img#threadsHolding(img)
     #self.pixels = pixels  
     print("Extracting LBP...")
     self.lbpR1P8 = normalize(np.float32(lbp.lbp(self.img, 1, 8, ignore_zeros=False)))
     self.lbpR2P16 = normalize(np.float32(lbp.lbp(self.img, 2, 16, ignore_zeros=False)))
     self.lbpR3P16 = normalize(np.float32(lbp.lbp(self.img, 3, 16, ignore_zeros=False)))
     #self.lbpR3P24 = normalize(np.float32(lbp.lbp(self.img, 3, 24, ignore_zeros=False)))
     self.lbpR1P8_R2P16 = np.float32(np.concatenate([self.lbpR1P8, self.lbpR2P16]))
     self.lbpR1P8_R3P16 = np.float32(np.concatenate([self.lbpR1P8, self.lbpR3P16]))
     self.lbpR2P16_R3P16 = np.float32(np.concatenate([self.lbpR2P16, self.lbpR3P16]))
     
     #self.lbpR1P8pic = np.float32(lbp.lbp_transform(self.img, 1, 8, ignore_zeros=False))
     #self.lbpR2P16pic = np.float32(lbp.lbp_transform(self.img, 2, 16, ignore_zeros=False))
     self.lbpR3P16pic = np.float32(lbp.lbp_transform(self.img, 3, 16, ignore_zeros=False))
     #self.lbpR3P24pic = np.float32(lbp.lbp_transform(self.img, 3, 24, ignore_zeros=False))
     
     '''
コード例 #2
0
for imagename in image_targets:
	image_counter+=1
	filename = args.trainingSetPath + imagename
	print 'Processing image: ', image_counter, filename

	# Abro la imagen en escala de grises
	image = mahotas.imread(filename, as_grey=True)

	if (args.featuresGray != ""):	# Extraer histograma de grises
		gray_hist, bins = np.histogram(image.flatten(), 256, [0, 256])
		gray_features[imagename] = gray_hist
	#	
	if (args.featuresLbp != ""):	# Extraer lbp (sobre la misma imagen del anterior, en escala de grises)
		radius = 3
		points = 4 * radius							# Number of points to be considered as neighbourers
		lbp_hist = lbp.lbp(image, radius, points, ignore_zeros=False)
		lbp_features[imagename] = lbp_hist
	#
	if (args.featuresSurf != ""):	# Extraer surf (sobre la misma imagen del anterior, en escala de grises)
		surf_features = surf.surf(image)[:, 5:]
		surf_all_hist[imagename] = surf_features
	#			
	# Abro la imagen en colores
	image = mahotas.imread(filename, as_grey=False)
	#
	if (args.featuresColor != ""):	# Extraer histograma de colores
		color_hist, bins = np.histogram(image.flatten(), 256, [0, 256])
		color_features[imagename] = color_hist
	#
	if (args.featuresHara != ""):	# Extraer histograma haraclick (sobre la misma imagen del anterior, en colores)
		hara_hist = mahotas.features.haralick(image).mean(0)
コード例 #3
0
ファイル: test_lbp.py プロジェクト: adib2011/mahotas
def test_shape():
    A = np.arange(32*32).reshape((32,32))
    B = np.arange(64*64).reshape((64,64))
    features0 = lbp(A, 3, 12)
    features1 = lbp(B, 3, 12)
    assert features0.shape == features1.shape
コード例 #4
0
ファイル: test_lbp.py プロジェクト: adib2011/mahotas
def test_histogram_large():
    A = np.arange(32*32).reshape((32,32))
    for r in (2,3,4,5):
        assert lbp(A,r,12).sum() == A.size
コード例 #5
0
ファイル: test_lbp.py プロジェクト: adib2011/mahotas
def test_nonzero():
    A = np.arange(32*32).reshape((32,32))
    features = lbp(A, 3, 12)
    features_ignore_zeros = lbp(A * (A> 256), 3, 12, ignore_zeros=True)
    assert features.sum() > 0
    assert not np.all(features == features_ignore_zeros)
コード例 #6
0
ファイル: computefeatures.py プロジェクト: rumi-naik/pyslic
def computefeatures(img, featsets, progress=None, preprocessing=None, **kwargs):
    """
    features = computefeatures(img,featsets,progress=None,**kwargs)

    Compute features defined by featsets on image img.


    featsets can be either a list of feature groups.

    Feature groups:
    --------------
        + 'har': 13 Haralick features [in matslic]
        + 'har3d': 26 Haralick features (actually this works in 2D as well)
        + 'skl': Skeleton features [in matslic] (syn: 'skel')
        + 'img': Image features [in matslic]
        + 'hul': Hull features [in matslic] (syn: 'hull')
        + 'edg': Edge features [in matslic] (syn: 'edge')
        + 'zer': Zernike moments [in matslic]
        + 'tas' : Threshold Adjacency Statistics
        + 'pftas' : Parameter-free Threshold Adjacency Statistics
    Feature set names:
        + 'SLF7dna'
        + 'mcell': field level features
        + 'field+': all field level features. The exact exact number of
                    features computed is liable to change (increase) in
                    newer versions

    img can be a list of images. In this case, a two-dimensional feature vector will be returned, where
    f[i,j] is the j-th feature of the i-th image. Also, in this case, imgs will be unload after feature calculation.

    Parameters
    ----------
        * *progress*: if progress is not None, then it should be an integer.
                Every *progress* images, an output message will be printed.
        * *preprocessing*: Whether to do preprocessing (default: True).
                If False and img.channeldata[procprotein|procdna] are empty, they are filled in
                using img.channeldata[protein|dna] respectively.
        * *options*: currently passed through to pyslic.preprocessimage
    """
    if type(featsets) == str:
        featsets = _featsfor(featsets)
    if type(img) == list:
        features = []
        for i, im in enumerate(img):
            f = computefeatures(im, featsets, progress=None, **kwargs)
            features.append(f)
            im.unload()
            if progress is not None and (i % progress) == 0:
                print "Processed %s images..." % i
        return numpy.array(features)
    regions = img.regions
    if regions is not None and regions.max() > 1 and "region" not in kwargs:
        precomputestats(img)
        return numpy.array(
            [
                computefeatures(img, featsets, progress=progress, region=r, **kwargs)
                for r in xrange(1, regions.max() + 1)
            ]
        )
    scale = img.scale
    if scale is None:
        scale = _Default_Scale
    is_surf = len(featsets) == 1 and featsets[0] in ("surf", "surf-ref", "surfp")
    if preprocessing is None:
        preprocessing = not is_surf
    if preprocessing:
        preprocessimage(img, kwargs.get("region"), options=kwargs.get("options", {}))
    else:
        if "procprotein" not in img.channeldata:
            img.channeldata["procprotein"] = img.get("protein")
            img.channeldata["resprotein"] = 0 * img.get("protein")
        if ("dna" in img.channeldata) and ("procdna" not in img.channeldata):
            img.channeldata["procdna"] = img.get("dna")
    features = numpy.array([])
    protein = img.get("protein")
    procprotein = img.get("procprotein")
    resprotein = img.get("resprotein")
    dna = img.channeldata.get("dna")
    procdna = img.channeldata.get("procdna")
    if procprotein.size < _Min_image_size:
        if is_surf:
            return np.array([])
        if featsets == _featsfor("SLF7dna"):
            return np.array([np.nan for i in xrange(90)])
        if featsets == _featsfor("field-dna+"):
            return np.array([np.nan for i in xrange(173)])
        raise ValueError
    lbppat = re.compile(r"lbp\(([0-9]+), ?([0-9]+)\)")
    for F in featsets:
        if F in ["edg", "edge"]:
            feats = edgefeatures(procprotein)
        elif F == "raw-har":
            feats = haralickfeatures(procprotein).mean(0)
        elif F[:3] == "har":
            img = procprotein
            har_scale = kwargs.get("haralick.scale", _Default_Haralick_Scale)
            if F == "har" and scale != har_scale:
                img = img.copy()
                img = ndimage.zoom(img, scale / _Default_Haralick_Scale)
            if len(F) > 3:
                rate = int(F[3])
                if rate != 1:
                    C = np.ones((rate, rate))
                    img = np.array(img, np.uint16)
                    img = ndimage.convolve(img, C)
                    img = img[::rate, ::rate]
            if not img.size:
                feats = np.zeros(13)
            else:
                bins = kwargs.get("haralick.bins", _Default_Haralick_Bins)
                if bins != 256:
                    min = img.min()
                    max = img.max()
                    ptp = max - min
                    if ptp:
                        img = np.array((img - min).astype(float) * bins / ptp, np.uint8)
                feats = haralickfeatures(img)
                feats = feats.mean(0)
        elif F in ["hul", "hull"]:
            feats = hullfeatures(procprotein)
        elif F == "hullsize":
            feats = hullsizefeatures(procprotein)
        elif F == "hullsizedna":
            feats = hullsizefeatures(procdna)
        elif F == "img":
            feats = imgfeaturesdna(procprotein, procdna)
        elif F in ("obj-field", "obj-field-dna"):
            feats = imgfeaturesdna(procprotein, procdna, isfield=True)
        elif F == "mor":
            feats = morphologicalfeatures(procprotein)
        elif F == "nof":
            feats = noffeatures(procprotein, resprotein)
        elif F in ["skl", "skel"]:
            feats = imgskelfeatures(procprotein)
        elif F == "zer":
            feats = zernike(procprotein, 12, 34.5, scale)
        elif F == "tas":
            feats = tas(protein)
        elif F == "pftas":
            feats = pftas(procprotein)
        elif F == "overlap":
            feats = overlapfeatures(protein, dna, procprotein, procdna)
        elif lbppat.match(F):
            radius, points = lbppat.match(F).groups()
            feats = lbp(protein, int(radius), int(points))
        elif F in ("surf", "surf-ref", "surfp"):
            if F == "surfp":
                from warnings import warn

                warn("surfp is deprecated. Use surf-ref", DeprecationWarning)
            if len(featsets) > 1:
                raise ValueError("pyslic.features.computefeatures: surf-ref must be computed on its own")
            if F == "surf":
                dna = None
            return surf_ref(protein, dna)
        else:
            raise Exception("Unknown feature set: %s" % F)
        features = numpy.r_[features, feats]
    return features
コード例 #7
0
def computefeatures(img, featsets, progress=None, preprocessing=True, **kwargs):
    '''
    features = computefeatures(img,featsets,progress=None,**kwargs)

    Compute features defined by featsets on image img.


    featsets can be either a list of feature groups.

    Feature groups:
    --------------
        + 'har': 13 Haralick features [in matslic]
        + 'har3d': 26 Haralick features (actually this works in 2D as well)
        + 'skl': Skeleton features [in matslic] (syn: 'skel')
        + 'img': Image features [in matslic]
        + 'hul': Hull features [in matslic] (syn: 'hull')
        + 'edg': Edge features [in matslic] (syn: 'edge')
        + 'zer': Zernike moments [in matslic]
        + 'tas' : Threshold Adjacency Statistics
        + 'pftas' : Parameter-free Threshold Adjacency Statistics
    Feature set names:
        + 'SLF7dna'
        + 'mcell': field level features
        + 'field+': all field level features. The exact exact number of
                    features computed is liable to change (increase) in
                    newer versions

    img can be a list of images. In this case, a two-dimensional feature vector will be returned, where
    f[i,j] is the j-th feature of the i-th image. Also, in this case, imgs will be unload after feature calculation.

    Parameters
    ----------
        * *progress*: if progress is not None, then it should be an integer.
                Every *progress* images, an output message will be printed.
        * *preprocessing*: Whether to do preprocessing (default: True).
                If False and img.channeldata[procprotein|procdna] are empty, they are filled in
                using img.channeldata[protein|dna] respectively.
        * *options*: currently passed through to pyslic.preprocessimage
    '''
    if type(featsets) == str:
        featsets = _featsfor(featsets)
    if type(img) == list:
        features=[]
        for i,im in enumerate(img):
            f = computefeatures(im,featsets,progress=None,**kwargs)
            features.append(f)
            im.unload()
            if progress is not None and (i % progress) == 0:
                print 'Processed %s images...' % i
        return numpy.array(features)
    regions = img.regions
    if regions is not None and regions.max() > 1 and 'region' not in kwargs:
        precomputestats(img)
        return numpy.array([
                    computefeatures(img, featsets, progress=progress, region=r, **kwargs)
                    for r in xrange(1,regions.max()+1)])
    scale = img.scale
    if scale is None:
        scale = _Default_Scale
    if preprocessing:
        preprocessimage(img, kwargs.get('region',1), options=kwargs.get('options',{}))
    else:
        if not img.channeldata['procprotein']:
            img.channeldata['procprotein'] = img.get('protein')
            img.channeldata['resprotein'] = 0*img.get('protein')
        if not img.channeldata['procdna']:
            img.channeldata['procdna'] = img.get('dna')
    features = numpy.array([])
    protein = img.get('protein')
    procprotein = img.get('procprotein')
    resprotein = img.get('resprotein')
    dna = img.channeldata.get('dna')
    procdna = img.channeldata.get('procdna')
    if procprotein.size < _Min_image_size:
        return np.array([np.nan for i in xrange(90)])
    lbppat = re.compile(r'lbp\(([0-9]+), ?([0-9]+)\)')
    for F in featsets:
        if F in ['edg','edge']:
            feats = edgefeatures(procprotein)
        elif F == 'raw-har':
            feats = haralickfeatures(procprotein).mean(0)
        elif F[:3] == 'har':
            img = procprotein
            har_scale = kwargs.get('haralick.scale',_Default_Haralick_Scale)
            if F == 'har' and scale != har_scale:
                img = img.copy()
                img = ndimage.zoom(img, scale/_Default_Haralick_Scale)
            if len(F) > 3:
                rate = int(F[3])
                if rate != 1:
                    C = np.ones((rate,rate))
                    img = np.array(img,np.uint16)
                    img = ndimage.convolve(img,C)
                    img = img[::rate,::rate]
            if not img.size:
                feats = np.zeros(13)
            else:
                bins = kwargs.get('haralick.bins',_Default_Haralick_Bins)
                if bins != 256:
                    min = img.min()
                    max = img.max()
                    ptp = max - min
                    if ptp:
                        img = np.array((img-min).astype(float) * bins/ptp, np.uint8)
                feats = haralickfeatures(img)
                feats = feats.mean(0)
        elif F == 'har3d':
            feats = haralickfeatures(procprotein)
            feats = numpy.r_[feats.mean(0),feats.ptp(0)]
        elif F in ['hul', 'hull']:
            feats = hullfeatures(procprotein)
        elif F == 'hullsize':
            feats = hullsizefeatures(procprotein)
        elif F == 'hullsizedna':
            feats = hullsizefeatures(procdna)
        elif F == 'img':
            feats = imgfeaturesdna(procprotein, procdna)
        elif F in ('obj-field', 'obj-field-dna'):
            feats = imgfeaturesdna(procprotein, procdna, isfield=True)
        elif F == 'mor':
            feats = morphologicalfeatures(procprotein)
        elif F == 'nof':
            feats = noffeatures(procprotein,resprotein)
        elif F in ['skl', 'skel']:
            feats = imgskelfeatures(procprotein)
        elif F == 'zer':
            feats = zernike(procprotein,12,34.5,scale)
        elif F == 'tas':
            feats = tas(protein)
        elif F == 'pftas':
            feats = pftas(procprotein)
        elif F == 'overlap':
            feats = overlapfeatures(protein, dna, procprotein, procdna)
        elif lbppat.match(F):
            radius,points = lbppat.match(F).groups()
            feats = lbp(protein, int(radius), int(points))
        else:
            raise Exception('Unknown feature set: %s' % F)
        features = numpy.r_[features,feats]
    return features