def search(): form = LoginForm() #form.username.data= 7536970 if request.method == 'POST': acptcrt = clean_text(getacptnccriteria(str( form.username.data))).replace("given", "").replace("when", "").replace("user", "") result = findsimilartc(acptcrt) tc_ids = result[0] accuracy = result[1] to_be_rendered = list(zip(tc_ids, accuracy)) if request.method == 'GET': acptcrt = clean_text(getacptnccriteria(str(USERSTRYID))).replace( "given", "").replace("when", "").replace("user", "") result = findsimilartc(acptcrt) tc_ids = result[0] accuracy = result[1] to_be_rendered = list(zip(tc_ids, accuracy)) # if form.validate_on_submit(): # acptcrt = clean_text(getacptnccriteria(str(form.username.data))).replace("given", "").replace("when","").replace("user", "") # return render_template('homechart.html', title='Sign In', form=form, tc_ids=tc_ids) #return render_template('home.html', title='Sign In', form=form, tc_ids=tc_ids, accuracy=accuracy) return render_template('home.html', title='Sign In', form=form, result=to_be_rendered)
def personal(): data = request.get_json() uid = data['id'] sender = data['sender'] subject = data['subject'] message = data['message'] text = sender + ' ' + subject + ' ' + message text_clean = clean_text(text) text_vect = personal_vect.transform([text_clean]) predict = personal_model.predict(text_vect) print(predict[0]) email = { 'message-id': uid, 'from': sender, 'subject': subject, 'message': message, 'personal': predict.tolist() } return jsonify(email)
def hello_world(id): id = int(id) acptcrt = clean_text(getacptnccriteria(id)).replace("give", "").replace( "when", "").replace("user", "") return jsonify({"test_case_ids": findsimilartcwitacc(acptcrt)})
#basic1 is dsa model model.save("dellcom.model") # print("Model Saved") model = Doc2Vec.load("dellcom.model") # to find the vector of a document which is not in training data # test_data = word_tokenize(acptcrtlst[0].lower()) # v1 = model.infer_vector(test_data) # print("V1_infer", v1) # to find most similar doc using tags # similar_doc = model.docvecs.most_similar('1') # print(similar_doc) print(acptcrtlst[0]) tokens = [clean_text(str(acptcrtlst[0]))] print(listToString(tokens)) # tokens = tokens.remove("Given") new_vector = model.infer_vector(listToString(tokens).split()) # sims = model.docvecs.most_similar([new_vector]) # print(sims) most_similar_docs = [] # for d in model.docvecs.most_similar([new_vector]): # print(int(d[0])) # most_similar_docs.append(coupleddata[d[0]]) MOST_SIMILAR_TCS =model.docvecs.most_similar([new_vector]) similar_tcs = [tc_tuple[0] for tc_tuple in MOST_SIMILAR_TCS] for item in similar_tcs: print(item+"===="+tfsconnect.getworkitemtitle(item))