コード例 #1
0
def train(topology_id: int,
          batch_size: int = 1000,
          unused_cpu: int = 2,
          use_backup: bool = False):
    """Create an infinite amount of genomes for the requested topology."""
    # Get the config
    cfg = get_config()

    # Get initial genome key
    g_key, csv_path = get_initial_keys(topology_id, use_backup=use_backup)

    # Setup the environment
    _, games = get_game_ids(experiment_id=6)
    multi_env = get_multi_env(config=cfg)
    multi_env.set_games(games, noise=False)

    # Create genomes
    t = time.localtime()
    print(f"\nCurrent time: {t.tm_hour:02d}h-{t.tm_min:02d}m-{t.tm_sec:02d}s")
    print(
        f"> Evaluating {batch_size} genomes in csv '{csv_path.split('/')[-1]}'"
    )
    genomes = list(
        iteritems({
            g_key + i: get_genome(topology_id, g_id=g_key + i, cfg=cfg)
            for i in range(batch_size)
        }))
    g_key += batch_size

    # Evaluate the genome-dictionary in parallel
    try:
        pool = mp.Pool(mp.cpu_count() - unused_cpu)
        manager = mp.Manager()
        return_dict = manager.dict()
        for genome in genomes:
            pool.apply_async(func=multi_env.eval_genome,
                             args=(genome, return_dict))
        pool.close()  # Close the pool
        pool.join()  # Postpone continuation until everything is finished

        # Calculate the fitness from the given return_dict
        fitness = calc_pop_fitness(
            fitness_cfg=cfg.evaluation,
            game_cfg=cfg.game,
            game_obs=return_dict,
        )
        for i, genome in genomes:
            genome.fitness = fitness[i]

        # Write the result to CSV
        with open(csv_path, 'a', newline='') as f:
            writer = csv.writer(f)
            for _, g in genomes:
                writer.writerow(
                    get_genome_parameters(g, topology_id=topology_id))
    except KeyboardInterrupt:
        # Remove the temporary CSV first
        os.remove(csv_path)
        raise KeyboardInterrupt
コード例 #2
0
ファイル: evaluate.py プロジェクト: RubenPants/EvolvableRNN
def evaluate_generations(name,
                         experiment_id,
                         folder=None,
                         hops: int = 10,
                         unused_cpu: int = 2):
    """
    Evaluate the population across its lifetime. At each generation, the ten best genomes are evaluated together with
    the elite genome of the past five generations.

    :param name: Name of the population
    :param experiment_id: Experiment for which the population is trained (and now will be evaluated)
    :param folder: Population-folder (~experiment level)
    :param hops: Number of generations between each saved population
    :param unused_cpu: Number of CPU cores not used
    """
    # Fetch population and evaluation games
    folder = folder if folder else get_folder(experiment_id)
    pop = Population(
        name=name,
        folder_name=folder,
        log_print=False,
        use_backup=True,
    )
    _, game_ids_eval = get_game_ids(experiment_id=experiment_id)

    # Perform the evaluations
    max_gen = pop.generation
    for gen in tqdm(range(0, max_gen + 1, hops)):
        # Load in the current generation
        if not pop.load(gen=gen):
            raise Exception(
                f"Population {name} is not trained for generation {gen}")

        # Collect the used genomes
        if gen > 5:
            genomes = sorted([g for g in pop.population.values()],
                             key=lambda x: x.fitness if x.fitness else 0,
                             reverse=True)[:10]
            for i in range(1, 6):
                keys = [g.key for g in genomes]
                g = copy.deepcopy(pop.best_genome_hist[gen - i]
                                  [1])  # Copy since chance of mutation
                while g.key in keys:  # Already added to genomes, update keys
                    g.key += 1
                genomes.append(g)
        else:
            # No history yet, use only the ten most fit genomes from the current generation
            genomes = sorted([g for g in pop.population.values()],
                             key=lambda x: x.fitness if x.fitness else 0,
                             reverse=True)[:15]

        # Evaluate the selected genomes
        evaluate(
            population=pop,
            games=game_ids_eval,
            genomes=genomes,
            unused_cpu=unused_cpu,
            overwrite=True,
        )
コード例 #3
0
def evaluate_population(pop: Population, cfg: Config, cpu: int, experiment_id: int):
    """Evaluate the given population."""
    pop.log(f"{pop.name} - Evaluating the population...")
    _, game_ids_eval = get_game_ids(experiment_id=experiment_id)
    multi_env = get_multi_env(pop=pop, game_config=cfg)
    multi_env.set_games(game_ids_eval, noise=False)
    pool = mp.Pool(mp.cpu_count() - cpu)
    manager = mp.Manager()
    return_dict = manager.dict()
    pbar = tqdm(total=len(pop.population), desc="Evaluating")
    
    def update(*_):
        pbar.update()
    
    for genome_id, genome in pop.population.items():
        pool.apply_async(func=multi_env.eval_genome, args=((genome_id, genome), return_dict), callback=update)
    pool.close()  # Close the pool
    pool.join()  # Postpone continuation until everything is finished
    pbar.close()
    
    # Calculate the fitness from the given return_dict
    pop.log(f"{pop.name} - Calculating fitness scores...")
    fitness = calc_pop_fitness(
            fitness_cfg=pop.config.evaluation,
            game_cfg=cfg.game,
            game_obs=return_dict,
            gen=pop.generation,
    )
    for i, genome in pop.population.items():
        genome.fitness = fitness[i]
    
    # Get the fittest genome
    best = None
    for g in pop.population.values():
        if best is None or g.fitness > best.fitness: best = g
    pop.best_genome = best
    
    # Save the results
    pop.save()
    
    # Visualize most fit genome
    visualize_genome(
            debug=True,
            genome=best,
            population=pop,
    )
    
    # Trace the most fit genome
    trace_most_fit(
            debug=False,
            games=game_ids_eval,
            genome=best,
            population=pop,
            unused_cpu=cpu,
    )
コード例 #4
0
def simulation(cython: bool = False, parallel: bool = False):
    """Execute a simulation of one training iteration."""
    # Create the population
    cfg = Config()
    cfg.game.duration = 200
    cfg.update()
    pop = Population(
        name="delete_me",
        config=cfg,
        folder_name="test_performance",
        use_backup=True,
        overwrite=True,  # Every iteration, create a new population from scratch
    )

    # Perform the simulations of experiment3
    train_games, _ = get_game_ids(experiment_id=3)
    if cython:
        multi_env = MultiEnvironmentCy(game_config=cfg, pop_config=pop.config)
    else:
        multi_env = MultiEnvironment(game_config=cfg, pop_config=pop.config)
    multi_env.set_games(train_games, noise=True)

    # Prepare the generation's reporters for the generation
    pop.reporters.start_generation(gen=pop.generation, logger=pop.log)

    # Fetch the dictionary of genomes
    genomes = list(iteritems(pop.population))

    if parallel:
        # Initialize the evaluation-pool
        pool = mp.Pool(mp.cpu_count())
        manager = mp.Manager()
        return_dict = manager.dict()

        for genome in genomes:
            pool.apply_async(func=multi_env.eval_genome,
                             args=(genome, return_dict))
        pool.close()  # Close the pool
        pool.join()  # Postpone continuation until everything is finished
    else:
        return_dict = dict()
        for genome in genomes:
            multi_env.eval_genome(genome, return_dict)

    path = f"population_backup/storage/test_performance/"
    if os.path.exists(path):
        shutil.rmtree(path)
コード例 #5
0
    # Get game's blueprint
    game.get_blueprint(show_player=True)

    plt.title("Blueprint - Game {id:05d}".format(id=game.id))
    plt.savefig(f'environment/visualizations/blueprint_game{game.id:05d}')
    if show: plt.show()
    plt.close()


if __name__ == '__main__':
    os.chdir("../..")
    cfg = Config()
    games = [0]  # Game Dummy

    # Experiment 1
    exp1_train, exp1_eval = get_game_ids(1)
    games += exp1_train[:1]  # Repeats itself
    games += exp1_eval

    # Experiment 2
    exp2_train, exp2_eval = get_game_ids(2)
    games += exp2_train[:1]  # Repeats itself
    games += exp2_eval

    # Experiment 3
    exp3_train, exp3_eval = get_game_ids(3)
    games += exp3_train[:1]  # Repeats itself
    games += exp3_eval

    # Experiment 6
    exp6_train, exp6_eval = get_game_ids(6)
コード例 #6
0
def main(
    fitness,
    prob_gru: float,
    prob_gru_nr: float,
    prob_gru_nu: float,
    prob_simple_rnn: float,
    train_iterations=0,
    version=0,
    unused_cpu=1,
):
    """
    Run a population's configuration.

    :param fitness: Fitness function used to evaluate the population
    :param prob_gru: Probability of mutating towards a GRU-node
    :param prob_gru_nr: Probability of mutating towards a GRU-NR-node
    :param prob_gru_nu: Probability of mutating towards a GRU-NU-node
    :param prob_simple_rnn: Probability of mutating towards a SimpleRNN-node
    :param train_iterations: Number of training generations
    :param version: Version of the model
    :param unused_cpu: Number of CPUs not used during training
    """
    # Re-configure the config-file
    cfg = Config()
    cfg.bot.angular_dir = []
    cfg.bot.delta_dist_enabled = False
    cfg.bot.dist_enabled = True
    cfg.game.duration = 60  # 60 seconds should be enough to reach the target from each starting orientation
    cfg.genome.node_add_prob = 0  # Do not change number of hidden nodes
    cfg.genome.node_disable_prob = 0  # Do not change number of hidden nodes
    cfg.population.pop_size = 512
    cfg.population.compatibility_thr = 1.  # Very small since all architectures have strictly one hidden node

    # Let inputs apply to configuration
    cfg.genome.rnn_prob_gru = prob_gru
    cfg.genome.rnn_prob_gru_nr = prob_gru_nr
    cfg.genome.rnn_prob_gru_nu = prob_gru_nu
    cfg.genome.rnn_prob_simple_rnn = prob_simple_rnn
    cfg.evaluation.fitness = fitness
    cfg.update()

    # Create the population
    folder = get_folder(experiment_id=4)
    name = get_name(cfg=cfg, version=version)
    pop = Population(
        name=name,
        config=cfg,
        folder_name=folder,
        use_backup=False,
    )

    # Make sure that all of the genomes in the initial population have exactly one hidden node
    if pop.generation == 0:
        for g in pop.population.values():
            g.mutate_add_node(pop.config.genome)

    # Give overview of population
    gru = cfg.genome.rnn_prob_gru
    gru_nr = cfg.genome.rnn_prob_gru_nr
    gru_nu = cfg.genome.rnn_prob_gru_nu
    rnn = cfg.genome.rnn_prob_simple_rnn
    msg = f"\n\n\n\n\n===> RUNNING EXPERIMENT 4 FOR THE FOLLOWING CONFIGURATION: <===" \
          f"\n\t> fitness:             {cfg.evaluation.fitness}" \
          f"\n\t> GRU enabled:         {gru > 0}  (probability={round(gru, 2)})" \
          f"\n\t> GRU-NR enabled:      {gru_nr > 0}  (probability={round(gru_nr, 2)})" \
          f"\n\t> GRU-NU enabled:      {gru_nu > 0}  (probability={round(gru_nu, 2)})" \
          f"\n\t> SRU enabled:         {rnn > 0}  (probability={round(rnn, 2)})" \
          f"\n\t> Saving under folder: {folder}" \
          f"\n\t> Training iterations: {train_iterations}\n"
    pop.log(msg)

    # Set games used for evaluation
    games_train, games_eval = get_game_ids(experiment_id=4)

    # Execute the requested segments
    try:
        train(
            game_config=cfg,
            games=games_train,
            iterations=train_iterations,
            population=pop,
            unused_cpu=unused_cpu,
        )

        # Evaluate the trained population
        evaluate(
            games=games_eval,
            population=pop,
            unused_cpu=unused_cpu,
        )
        training_overview(population=pop, )
        visualize_genome(
            genome=pop.best_genome,
            population=pop,
        )

        # Perform GRU-analysis if population is NEAT-GRU
        if gru > 0:
            gru_analysis(
                population=pop,
                unused_cpu=unused_cpu,
                experiment_id=4,
            )
            monitor(
                game_id=games_eval[0],
                population=pop,
                genome=pop.best_genome,
            )
    except Exception as e:
        pop.log(traceback.format_exc(), print_result=False)
        raise e
    finally:
        process_killer('run_population.py')  # Close all the terminated files
コード例 #7
0
    plt.imshow(result)
    plt.tight_layout()
    plt.savefig(f"{path[:-1]}.png", bbox_inches='tight', pad_inches=0)
    plt.close()


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='')
    parser.add_argument('--game_id', type=int, default=10002)
    parser.add_argument('--debug', type=bool, default=False)
    args = parser.parse_args()
    
    # Go back to root
    os.chdir("../../../")
    
    _, eval_games = get_game_ids(experiment_id=4)
    
    # Create the population
    config = Config()
    pop = Population(
            name='test',
            # name='NEAT-SRU/v1',
            folder_name='test',
            # folder_name=get_folder(args.experiment),
            config=config,
    )
    chosen_genome = pop.best_genome
    # chosen_genome = pop.population[47280]
    
    # Run the monitor-tool
    main(
コード例 #8
0
def main(
    fitness,
    prob_gru: float,
    prob_sru: float,
    prob_lstm: float,
    version=0,
    unused_cpu=1,
):
    """
    Run a population's configuration.

    :param fitness: Fitness function used to evaluate the population
    :param prob_gru: Probability of mutating towards a GRU-node
    :param prob_sru: Probability of mutating towards a SRU-node
    :param prob_lstm: Probability of mutating towards a LSTM-node
    :param version: Version of the model
    :param unused_cpu: Number of CPUs not used during training
    """
    # Re-configure the config-file
    cfg = Config()
    cfg.bot.angular_dir = []
    cfg.bot.delta_dist_enabled = False
    cfg.bot.dist_enabled = True
    cfg.game.duration = 60  # 60 seconds should be enough to reach the target from each starting orientation
    cfg.population.pop_size = 512

    # Let inputs apply to configuration
    cfg.genome.rnn_prob_gru = prob_gru
    cfg.genome.rnn_prob_simple_rnn = prob_sru
    cfg.genome.rnn_prob_lstm = prob_lstm
    cfg.evaluation.fitness = fitness
    cfg.update()

    # Copy population over from experiment1
    name = get_name(cfg=cfg, version=version)
    path_exp1 = f'population/storage/experiment1/{name}/'
    if not os.path.exists(path_exp1):
        raise Exception(
            f"Experiment 1 must be executed first for population {name}, terminating experiment 2..."
        )

    # Population exists in experiment1, copy over to experiment2 (change experiment1 population's folder and save)
    pop = Population(name=name,
                     config=cfg,
                     folder_name=get_folder(experiment_id=1),
                     use_backup=False)
    assert pop.generation > 0  # Population is not new (redundant check)
    folder = get_folder(experiment_id=2)
    pop.folder_name = folder
    pop.save()  # Overrides pre-existing populations!

    # Copy over all generations as well, since these are used during population evaluation
    path = f"population{'_backup' if pop.use_backup else ''}/storage/{pop.folder_name}/{pop}/"
    copy_tree(f"{path_exp1}generations", f"{path}generations")

    # Give overview of population
    gru = cfg.genome.rnn_prob_gru
    sru = cfg.genome.rnn_prob_simple_rnn
    lstm = cfg.genome.rnn_prob_lstm
    msg = f"\n\n\n\n\n===> RUNNING EXPERIMENT 2 FOR THE FOLLOWING CONFIGURATION: <===" \
          f"\n\t> fitness:             {cfg.evaluation.fitness}" \
          f"\n\t> GRU enabled:         {gru > 0}  (probability={round(gru, 2)})" \
          f"\n\t> SRU enabled:         {sru > 0}  (probability={round(sru, 2)})" \
          f"\n\t> LSTM enabled:        {lstm > 0}  (probability={round(lstm, 2)})" \
          f"\n\t> Saving under folder: {folder}\n"
    pop.log(msg)

    # Set games used for evaluation
    _, games_eval = get_game_ids(experiment_id=2)

    # Execute the requested segments
    try:
        # Evaluate the trained population
        evaluate(
            games=games_eval,
            population=pop,
            unused_cpu=unused_cpu,
        )
    except Exception as e:
        pop.log(traceback.format_exc(), print_result=False)
        raise e
    finally:
        process_killer('run_population.py')  # Close all the terminated files
コード例 #9
0
def main(pop_name: str,
         version: int,
         unused_cpu: int = 2,
         use_backup: bool = False):
    # Check if valid population name
    if pop_name not in SUPPORTED:
        raise Exception(f"Population '{pop_name}' not supported!")
    # Create the population
    cfg = get_config()
    cfg.population.specie_elitism = 1
    folder = get_folder(experiment_id=7)
    pop = Population(
        name=f'{pop_name}/v{version}',
        config=cfg,
        folder_name=folder,
        use_backup=use_backup,
    )

    # Replace the population's initial population with the requested topologies genomes
    if pop.generation == 0:
        for g_id in pop.population.keys():
            pop.population[g_id] = get_topology(pop_name, gid=g_id, cfg=cfg)
        pop.species.speciate(config=pop.config,
                             population=pop.population,
                             generation=pop.generation,
                             logger=pop.log)

    pop.log(f"\n\n\n===> RUNNING EXPERIMENT 7 <===\n")
    # Set games and environment used for training and evaluation
    games_train, games_eval = get_game_ids(experiment_id=7)
    train_env = get_multi_env(config=cfg)
    eval_env = get_multi_env(config=cfg)
    eval_env.set_games(games_eval, noise=False)

    solution_found = False
    while not solution_found:
        # Train the population for a single iteration
        pop.log("\n===> TRAINING <===")
        train_env.set_games(games_train, noise=True)

        # Prepare the generation's reporters for the generation
        pop.reporters.start_generation(gen=pop.generation, logger=pop.log)

        # Fetch the dictionary of genomes
        genomes = list(iteritems(pop.population))

        # Initialize the evaluation-pool
        pool = mp.Pool(mp.cpu_count() - unused_cpu)
        manager = mp.Manager()
        return_dict = manager.dict()

        for genome in genomes:
            pool.apply_async(func=train_env.eval_genome,
                             args=(genome, return_dict))
        pool.close()  # Close the pool
        pool.join()  # Postpone continuation until everything is finished

        # Calculate the fitness from the given return_dict
        fitness = calc_pop_fitness(
            fitness_cfg=pop.config.evaluation,
            game_cfg=cfg.game,
            game_obs=return_dict,
            gen=pop.generation,
        )
        for i, genome in genomes:
            genome.fitness = fitness[i]

        # Update the population's best_genome
        best = None
        for g in itervalues(pop.population):
            if best is None or g.fitness > best.fitness: best = g
        pop.reporters.post_evaluate(population=pop.population,
                                    species=pop.species,
                                    best_genome=best,
                                    logger=pop.log)

        # Update the population's best_genome
        genomes = sorted(pop.population.items(),
                         key=lambda x: x[1].fitness,
                         reverse=True)
        pop.best_fitness[pop.generation] = genomes[0][1].fitness
        pop.best_genome_hist[pop.generation] = genomes[0]
        pop.best_genome = best

        # Let population evolve
        evolve(pop, pop_name)

        # End generation
        pop.reporters.end_generation(population=pop.population,
                                     name=str(pop),
                                     species_set=pop.species,
                                     logger=pop.log)

        # Test if evaluation finds a solution for the new generation, impossible if fitness < 0.7
        if pop.best_genome.fitness > 0.7 or pop.generation % 10 == 0:
            pop.log("\n===> EVALUATING <===")
            genomes = list(iteritems(pop.population))
            pool = mp.Pool(mp.cpu_count() - unused_cpu)
            manager = mp.Manager()
            return_dict = manager.dict()
            for genome in genomes:
                pool.apply_async(func=eval_env.eval_genome,
                                 args=(genome, return_dict))
            pool.close()  # Close the pool
            pool.join()  # Postpone continuation until everything is finished

            # Calculate the fitness from the given return_dict
            finished = calc_finished_ratio(
                fitness_cfg=cfg.evaluation,
                game_obs=return_dict,
            )
            best = None
            for i, genome in genomes:
                genome.fitness = finished[i]
                if best is None or finished[i] > best.fitness: best = genome
            pop.log(f"Best genome:\n{best}\n{best.nodes[2]}")

            # Solution is found
            if best.fitness == 1:
                pop.best_genome = best
                pop.log(f"Solution found!")
                solution_found = True  # End the outer while-loop

        # Save the population with their evaluation results
        pop.save()
コード例 #10
0
def main(topology_id: int,
         iterations: int,
         eval_interval: int,
         experiment_id: int,
         hops: float = 0.1,
         weight_range: float = 1,
         mutate_combine: bool = False,
         mutate_bias: bool = True,
         mutate_reset: bool = True,
         mutate_update: bool = True,
         mutate_candidate: bool = True,
         init_population_size: int = 1000,
         unused_cpu: int = 2):
    """
    Run the fifth experiment.
    
    :param topology_id: Chosen topology to investigate
    :param iterations: Number of training iterations performed
    :param eval_interval: After how much training iterations evaluation is performed
    :param experiment_id: ID of the experiment used to train and evaluate the population on
    :param hops: Hops between variable-configurations
    :param weight_range: Range of deviation for one's weights
    :param mutate_combine: Combine the best results of each mutation type
    :param mutate_bias: Mutate the GRU's bias values
    :param mutate_reset: Mutate the reset-gate's weights
    :param mutate_update: Mutate the update-gate's weights
    :param mutate_candidate: Mutate the candidate-state's weights
    :param init_population_size: Initial size of the randomized population
    :param unused_cpu: Number of CPU-cores not used
    """
    # Get the population
    name = f"experiment{experiment_id}_topology{topology_id}_hops{hops}_range{weight_range}"
    pop = Population(
        name=name,
        folder_name='experiment5',
        use_backup=False,
    )

    # Define the games specific to the experiment
    _, game_ids_eval = get_game_ids(experiment_id=experiment_id)

    # Set the genomes if population is new
    if pop.generation == 0:
        # Get the requested topology-type
        if topology_id == 1:
            topology = get_topology1
        elif topology_id == 2:
            topology = get_topology2
        else:
            raise Exception(f"Topology {topology_id} not supported.")

        # Initialize the population with a randomized population
        pop.population = dict()
        for gid in range(init_population_size):
            new_genome = topology(pop.config, random_init=True)
            new_genome.key = gid
            pop.population[gid] = new_genome

        # Perform an initial training
        train_population(pop=pop, games=game_ids_eval, unused_cpu=unused_cpu)
        pop.generation = 0  # Don't count initial training as a generation

        # Get the fittest genome
        best = None
        for g in pop.population.values():
            if best is None or g.fitness > best.fitness: best = g
        pop.best_genome = best
        visualize_best_genome(pop=pop)

        # Test the initial population
        test_population(pop=pop, games=game_ids_eval)

        # Set the most fit genome as the starting-point
        set_population(pop=pop,
                       hops=hops,
                       weight_range=weight_range,
                       mutate_bias=mutate_bias,
                       mutate_reset=mutate_reset,
                       mutate_update=mutate_update,
                       mutate_candidate=mutate_candidate)

    # Evaluate the population
    for i in range(iterations):
        train_population(pop=pop, games=game_ids_eval, unused_cpu=unused_cpu)
        evaluate_fitness(pop=pop,
                         hops=hops,
                         weight_range=weight_range,
                         mutate_combine=mutate_combine,
                         mutate_bias=mutate_bias,
                         mutate_reset=mutate_reset,
                         mutate_update=mutate_update,
                         mutate_candidate=mutate_candidate)
        visualize_best_genome(pop=pop)
        if pop.generation % eval_interval == 0:
            test_population(pop=pop, games=game_ids_eval)
        set_population(pop=pop,
                       hops=hops,
                       weight_range=weight_range,
                       mutate_bias=mutate_bias,
                       mutate_reset=mutate_reset,
                       mutate_update=mutate_update,
                       mutate_candidate=mutate_candidate)
コード例 #11
0
def main(topology_id: int,
         batch_size: int = 1000,
         train_batch: int = 3,
         min_finished: float = MIN_FINISHED,
         unused_cpu: int = 2,
         save_pop: bool = False,
         use_backup: bool = False):
    """Run a population infinitely long and store all its good genomes."""
    # Get the CSV used to store the results in
    csv_path, csv_name, added = get_csv_path(topology_id, use_backup=use_backup, batch_size=batch_size)
    
    # Create the population
    name = csv_name if save_pop else 'dummy'
    cfg = get_config()
    folder = get_folder(experiment_id=6)
    pop = Population(
            name=name,
            config=cfg,
            folder_name=folder,
            use_backup=use_backup,
            overwrite=True,  # Every iteration, create a new population from scratch
    )
    
    # Replace the population's initial population with the requested topologies genomes
    for g_id in pop.population.keys(): pop.population[g_id] = get_genome(topology_id, g_id=g_id, cfg=cfg)
    pop.species.speciate(config=pop.config,
                         population=pop.population,
                         generation=pop.generation,
                         logger=pop.log)
    
    # Set games and environment used for training and evaluation
    pop.log(f"\n\n\n===> RUNNING EXPERIMENT 6 <===\n")
    games_train, games_eval = get_game_ids(experiment_id=6)
    train_env = get_multi_env(config=cfg)
    eval_env = get_multi_env(config=cfg)
    eval_env.set_games(games_eval, noise=False)
    
    # Keep training and evolving the network until the complete CSV is filled
    last_saved = pop.generation
    try:
        while added < batch_size:
            t = time.localtime()
            pop.log(f"\n\n===> Selective genome creation at {added / batch_size * 100}%, "
                    f"storing in csv '{csv_path.split('/')[-1]}' "
                    f"({t.tm_hour:02d}h-{t.tm_min:02d}m-{t.tm_sec:02d}s) <===")
            
            # Train the population
            pop.log("\n===> Training <===")
            for _ in tqdm(range(train_batch), desc="Training"):
                train_env.set_games(games_train, noise=True)
                genomes = list(iteritems(pop.population))
                
                # Initialize the evaluation-pool
                pool = mp.Pool(mp.cpu_count() - unused_cpu)
                manager = mp.Manager()
                return_dict = manager.dict()
                
                for genome in genomes:
                    pool.apply_async(func=train_env.eval_genome, args=(genome, return_dict))
                pool.close()  # Close the pool
                pool.join()  # Postpone continuation until everything is finished
                
                # Calculate the fitness from the given return_dict
                fitness = calc_pop_fitness(
                        fitness_cfg=pop.config.evaluation,
                        game_cfg=cfg.game,
                        game_obs=return_dict,
                        gen=pop.generation,
                )
                for i, genome in genomes:
                    genome.fitness = fitness[i]
                
                # Update the population's best_genome
                best = None
                for g in itervalues(pop.population):
                    if best is None or g.fitness > best.fitness: best = g
                genomes = sorted(pop.population.items(), key=lambda x: x[1].fitness, reverse=True)
                pop.best_fitness[pop.generation] = genomes[0][1].fitness
                pop.best_genome_hist[pop.generation] = genomes[0]
                pop.best_genome = best
                pop.log(f"Best training fitness: {best.fitness}")
                
                # Let population evolve
                pop.evolve()
                
                # Constraint each of the population's new genomes to the given topology
                for g in pop.population.values():
                    enforce_topology(g, topology_id=topology_id)
            
            # Save the population after training
            if pop.generation - last_saved >= 100:
                pop.save()
                last_saved = pop.generation
            
            # Evaluate the current population as was done in experiment6
            pop.log("\n===> EVALUATING <===")
            genomes = list(iteritems(pop.population))
            pool = mp.Pool(mp.cpu_count() - unused_cpu)
            manager = mp.Manager()
            return_dict = manager.dict()
            for genome in genomes:
                pool.apply_async(func=eval_env.eval_genome, args=(genome, return_dict))
            pool.close()  # Close the pool
            pool.join()  # Postpone continuation until everything is finished
            
            # Calculate the fitness from the given return_dict
            finished = calc_finished_ratio(
                    fitness_cfg=cfg.evaluation,
                    game_obs=return_dict,
            )
            best = None
            for i, genome in genomes:
                genome.fitness = finished[i]
                if best is None or finished[i] > best.fitness: best = genome
            
            # Give evaluation overview of population
            pop.log(f"Best evaluation finish ratio: {round(best.fitness, 2)}")
            best_str = str(best).replace("\n", "\n\t")
            best_str += "\n\t" + str(best.nodes[2]).replace("\n", "\n\t")
            pop.log(f"Best genome: \n\t{best_str}")
            sids = list(iterkeys(pop.species.species))
            sids.sort()
            msg = f"\nPopulation '{name}' has {len(pop.species.species):d} species:" \
                  f"\n\t specie    age    size    finished    stag " \
                  f"\n\t========  =====  ======  ==========  ======"
            pop.log(msg) if pop.log else print(msg)
            for sid in sids:
                s = pop.species.species[sid]
                a = pop.generation - s.created
                n = len(s.members)
                sf = [g.fitness for g in s.members.values() if g.fitness]
                f = "--" if len(sf) == 0 else f"{max(sf):.2f}"
                st = pop.generation - s.last_improved
                msg = f"\t{sid:^8}  {a:^5}  {n:^6}  {f:^10}  {st:^6}"
                pop.log(msg) if pop.log else print(msg)
            
            # Write the result to CSV
            with open(csv_path, 'a', newline='') as f:
                writer = csv.writer(f)
                for _, g in genomes:
                    # Only write the genomes that exceed the minimum 'finished ratio' threshold!
                    if g.fitness >= min_finished:
                        writer.writerow(get_genome_parameters(g, topology_id=topology_id))
                        added += 1
    finally:
        # Remove the dummy population if it exists
        pop.save()
        path = f"population{'_backup' if use_backup else ''}/storage/{pop.folder_name}/dummy/"
        if os.path.exists(path):
            shutil.rmtree(path)
コード例 #12
0
def main(
    fitness,
    prob_gru: float,
    prob_sru: float,
    prob_lstm: float,
    train_iterations=0,
    version=0,
    unused_cpu=1,
):
    """
    Run a population's configuration.

    :param fitness: Fitness function used to evaluate the population
    :param prob_gru: Probability of mutating towards a GRU-node
    :param prob_sru: Probability of mutating towards a SRU-node
    :param prob_lstm: Probability of mutating towards a LSTM-node
    :param train_iterations: Number of training generations
    :param version: Version of the model
    :param unused_cpu: Number of CPUs not used during training
    """
    # Re-configure the config-file
    cfg = Config()
    cfg.bot.angular_dir = []
    cfg.bot.delta_dist_enabled = False
    cfg.bot.dist_enabled = True
    cfg.game.duration = 60  # 60 seconds should be enough to reach the target from each starting orientation
    cfg.population.pop_size = 512

    # Let inputs apply to configuration
    cfg.genome.rnn_prob_gru = prob_gru
    cfg.genome.rnn_prob_simple_rnn = prob_sru
    cfg.genome.rnn_prob_lstm = prob_lstm
    cfg.evaluation.fitness = fitness
    cfg.update()

    # Create the population
    folder = get_folder(experiment_id=1)
    name = get_name(cfg=cfg, version=version)
    pop = Population(
        name=name,
        config=cfg,
        folder_name=folder,
        use_backup=False,
    )

    # Give overview of population
    gru = cfg.genome.rnn_prob_gru
    sru = cfg.genome.rnn_prob_simple_rnn
    lstm = cfg.genome.rnn_prob_lstm
    msg = f"\n\n\n\n\n===> RUNNING EXPERIMENT 1 FOR THE FOLLOWING CONFIGURATION: <===" \
          f"\n\t> fitness:             {cfg.evaluation.fitness}" \
          f"\n\t> GRU enabled:         {gru > 0}  (probability={round(gru, 2)})" \
          f"\n\t> SRU enabled:         {sru > 0}  (probability={round(sru, 2)})" \
          f"\n\t> LSTM enabled:        {lstm > 0}  (probability={round(lstm, 2)})" \
          f"\n\t> Saving under folder: {folder}" \
          f"\n\t> Training iterations: {train_iterations}\n"
    pop.log(msg)

    # Set games used for evaluation
    games_train, games_eval = get_game_ids(experiment_id=1)

    # Execute the requested segments
    try:
        train(
            debug=False,
            games=games_train,
            iterations=train_iterations,
            population=pop,
            unused_cpu=unused_cpu,
        )

        # Evaluate the trained population
        evaluate(
            games=games_eval,
            population=pop,
            unused_cpu=unused_cpu,
        )
        training_overview(population=pop, )
        visualize_genome(
            genome=pop.best_genome,
            population=pop,
        )
    except Exception as e:
        pop.log(traceback.format_exc(), print_result=False)
        raise e
    finally:
        process_killer('run_population.py')  # Close all the terminated files