def get_save_depth_params(): parser = get_initial_parser() params = parser.parse_args() params.net_model = 'all' params.proceed_step = RunSteps.COLORIZED_DEPTH_SAVE params = init_save_dirs(params) return params
def get_finetuned_extraction_params(): parser = get_initial_parser() parser.add_argument("--batch-size", dest="batch_size", default=64, type=int) parser.add_argument("--split-no", dest="split_no", default=1, type=int, choices=range(1, 11), help="Split number") params = parser.parse_args() params.proceed_step = RunSteps.FINE_EXTRACTION return params
def get_recursive_params(proceed_step): parser = get_initial_parser() parser.add_argument("--split-no", dest="split_no", default=1, type=int, choices=range(1, 11), help="Split number") parser.add_argument("--num-rnn", dest="num_rnn", default=128, type=int, help="Number of RNN") parser.add_argument("--save-features", dest="save_features", default=0, type=int, choices=[0, 1]) parser.add_argument("--batch-size", dest="batch_size", default=1000, type=int) parser.add_argument( "--trial", dest="trial", default=0, type=int, help= "Trial number is for running the same model with the same params for evaluation " "the effect of randomness.") parser.add_argument( "--reuse-randoms", dest="reuse_randoms", default=1, choices=[0, 1], type=int, help="Handles whether the random weights are gonna save/load or not") parser.add_argument("--fusion-levels", dest="fusion_levels", default=0, choices=[0, 1], type=int, help="Handles whether fusion is performed") parser.add_argument("--load-features", dest="load_features", default=0, type=int, choices=[0, 1]) parser.add_argument("--pooling", dest="pooling", default=Pools.RANDOM, choices=Pools.ALL, type=str.lower, help="Pooling type") params = parser.parse_args() params.proceed_step = proceed_step return params
def get_extraction_params(): parser = get_initial_parser() parser.add_argument("--batch-size", dest="batch_size", default=64, type=int) params = parser.parse_args() params.proceed_step = RunSteps.FIX_EXTRACTION return params
def get_finetune_params(): parser = get_initial_parser() parser.add_argument("--split-no", dest="split_no", default=1, type=int, choices=range(1, 11), help="Split number") parser.add_argument("--batch-size", dest="batch_size", default=16, type=int) parser.add_argument("--lr", dest="lr", default=0.0001, type=float, help='Initial learning rate') parser.add_argument("--momentum", dest="momentum", default=0.95, type=float, help='Momentum rate') parser.add_argument("--step-size", dest="step_size", default=10, type=int, help='Number of epoch for each learning rate decay') parser.add_argument("--gamma", dest="gamma", default=0.1, type=float, help="Factor rate of learning rate decay") parser.add_argument("--num-epochs", dest="num_epochs", default=40, type=int) parser.add_argument("--trial", dest="trial", default=0, type=int, help="Trial number is used to run the same model with the same params to evaluate " "the effect of randomness.") params = parser.parse_args() params.proceed_step = RunSteps.FINE_TUNING return params
def save_sunrgbd_scene(): parser = get_initial_parser() params = parser.parse_args() params.debug_mode = 0 params.dataset_path = "../data/sunrgbd/" if params.data_type == DataTypes.RGB: params.data_type = DataTypesSUNRGBD.RGB elif params.data_type == DataTypes.Depth: params.data_type = DataTypesSUNRGBD.Depth else: print('{}{}The parameter {}--data-type{} should be {} RGB or Depth{}!{}'. format(PrForm.BOLD, PrForm.RED, PrForm.BLUE, PrForm.RED, PrForm.GREEN, PrForm.RED, PrForm.END_FORMAT)) return params.proceed_step = RunSteps.SAVE_SUNRGBD logfile_name = params.log_dir + '/' + params.proceed_step + '/' + params.data_type + '_save.log' init_logger(logfile_name, params) process_dataset_save(params)