def assign_label(self): all_labeled_y, all_labeled_x = read_input('./datas/all_label.p') all_labeled_imgs = self.encoder.predict(all_labeled_x) all_unlabeled_x = read_input('./datas/all_unlabel.p') all_unlabeled_imgs = self.encoder.predict(all_unlabeled_x) index = -1 for unlabeled_img in tqdm(all_unlabeled_imgs): index += 1 target_img = all_unlabeled_x[index] target_img = target_img.reshape((1,) + target_img.shape) all_distance = [euclidean_distance(unlabeled_img, labeled_img) for labeled_img in all_labeled_imgs] index_of_max = min(range(len(all_distance)), key = lambda i: all_distance[i]) assigned_label = all_labeled_y[index_of_max] all_labeled_x = np.concatenate((all_labeled_x, target_img), axis=0) all_labeled_y = np.concatenate((all_labeled_y, np.array([assigned_label])), axis=0) # # for debug # origin_img = all_labeled_x[index_of_max] # target_img = np.reshape(target_img, (3, 32, 32)) # origin_img = np.reshape(origin_img, (3, 32, 32)) # pyplot.figure(figsize=[4, 4]) # pyplot.subplot(2, 2, 1) # pyplot.imshow(toimage(origin_img)) # pyplot.subplot(2, 2, 2) # pyplot.imshow(toimage(target_img)) # pyplot.show() output_dict = dict({'data': all_labeled_x, 'labels': all_labeled_y}) output_path = 'datas/relabeled_img.p' import pickle with open(output_path, 'wb') as handle: print("Save output at %s " % output_path) pickle.dump(output_dict, handle, protocol=pickle.HIGHEST_PROTOCOL)
def test_trees_on_the_path(self): tree_map = read_input("test_input") self.assertEqual(trees_on_the_path(tree_map, 1, 1), 2) self.assertEqual(trees_on_the_path(tree_map, 3, 1), 7) self.assertEqual(trees_on_the_path(tree_map, 5, 1), 3) self.assertEqual(trees_on_the_path(tree_map, 7, 1), 4) self.assertEqual(trees_on_the_path(tree_map, 1, 2), 2)
def setUp(self): """setUp test. :return: """ super(PizzaTestCase, self).setUp() try: unlink(input_file) except FileNotFoundError: pass with open(input_file, 'wb') as file_descriptor: file_descriptor.write(input_text) self.pizza = read_input(input_file)
from datetime import datetime from main import ( decode_seats, find_my_seat, read_input, ) # [TEST1] Verify that highest ID is correctly found from test dataset input = read_input(path='input_test.txt') decoded_file = decode_seats(enc=input) if decoded_file[-1] != 820: raise Exception( f'{datetime.now()} - ERROR: Highest value should be 820, but got \'{decoded_file[-1]}\'' ) # [TEST2] Verify that missing id '3' (my seat) is correctly found from test dataset decoded_sim = [ 1, 2, 4, 5, ] if find_my_seat(seats=decoded_sim) != 3: raise Exception(f'{datetime.now()} - ERROR: My seat was not found') print(f'{datetime.now()} - OK: all tests passed!')
import pytest from main import (Problem1ApplyRules, Problem1SourrandingSeatsFinder, Problem2ApplyRules, Problem2SourrandingSeatsFinder, SeatLayout, read_input, solver) finder_1 = Problem1SourrandingSeatsFinder() rules_1 = Problem1ApplyRules() finder_2 = Problem2SourrandingSeatsFinder() rules_2 = Problem2ApplyRules() test_inputs = [ (read_input("./input_test_1_1.txt"), finder_1, rules_1, 37), (read_input("./input_test_1_2.txt"), finder_1, rules_1, 11), (read_input("./input_test_2_1.txt"), finder_2, rules_2, 5), (read_input("./input_test_2_2.txt"), finder_2, rules_2, 9), (read_input("./input_test_1_1.txt"), finder_2, rules_2, 26), ] @pytest.mark.parametrize("test_input,finder,rules,expected", test_inputs) def test(test_input, finder, rules, expected): seat_layout = SeatLayout.load(finder=finder, rules=rules, input_str=test_input) assert solver(seat_layout) == expected
def _get_tiles_corner_tiles(): tiles = read_input("test_input") search_matches(tiles) corner_tiles = search_corners(tiles) return tiles, corner_tiles
# # for debug # origin_img = all_labeled_x[index_of_max] # target_img = np.reshape(target_img, (3, 32, 32)) # origin_img = np.reshape(origin_img, (3, 32, 32)) # pyplot.figure(figsize=[4, 4]) # pyplot.subplot(2, 2, 1) # pyplot.imshow(toimage(origin_img)) # pyplot.subplot(2, 2, 2) # pyplot.imshow(toimage(target_img)) # pyplot.show() output_dict = dict({'data': all_labeled_x, 'labels': all_labeled_y}) output_path = 'datas/relabeled_img.p' import pickle with open(output_path, 'wb') as handle: print("Save output at %s " % output_path) pickle.dump(output_dict, handle, protocol=pickle.HIGHEST_PROTOCOL) if __name__ == "__main__": x = read_input('./datas/all_unlabel.p') np.random.shuffle(x) x_train, x_test = x[:-500], x[-500:] x_train = x_train.astype(np.float32) / 255. x_test = x_test.astype(np.float32) / 255. autoencoder = AutoEncoder(x_train, x_test) autoencoder.start_train() autoencoder.predict(x_test[:10]) autoencoder.assign_label()
def test_read_input_ok(monkeypatch): monkeypatch.setattr('sys.stdin', io.StringIO('a\nb\nc\nd\n')) assert main.read_input() == ['a', 'b', 'c', 'd']
import pytest from main import problem_1, problem_2, read_input input_1 = read_input("./input_test_1.txt") input_2 = read_input("./input_test_2.txt") testdata_1 = [(input_1, 7 * 5), (input_2, 22 * 10)] testdata_2 = [(input_1, 8), (input_2, 19208)] @pytest.mark.parametrize("test_input,expected", testdata_1) def test_1(test_input, expected): assert problem_1(test_input) == expected @pytest.mark.parametrize("test_input,expected", testdata_2) def test_2(test_input, expected): assert problem_2(test_input) == expected
def test_read_file(self): read = read_input('test_input.txt') self.assertEqual(read, [ 'C - 3 - 4', 'M - 2 - 1', 'T - 1 - 2 - 3', 'A - Lara - 1 - 1 - N - AADA' ], "Should be 6")
def setUp(self): self.rules, self.messages = read_input("test-input")
def setUp(self): self.layout = read_input("test_input")