コード例 #1
0
def run_4():
    class C1(ConfigRoot):
        gold_data_json_path = "../data/gold_data/g1.json"

    class C2(ConfigRoot):
        gold_data_json_path = "../data/gold_data/s1_articles__tr2_1__sc_sm_alle_anwendungsfelder_ORIGINAL.json"

    class C3(ConfigRoot):
        gold_data_json_path = "../data/gold_data/differences.json"

    gdc1 = main.load_gold_data(C1)
    gdc2 = main.load_gold_data(C2)
    gdc3 = main.load_gold_data(C3)

    a = None
    for gdi in gdc1.gold_data_item_list:
        if gdi.article_id == "STANDARD_200203161928100152":
            if a is not None:
                raise Exception()
            a = gdi

    b = None
    for gdi in gdc1.gold_data_item_list:
        if gdi.article_id == "STANDARD_200203161928100152":
            if b is not None:
                raise Exception()
            b = gdi

    class C4(ConfigRoot):
        gold_data_json_path = data_flow_registry.gold_data["g1"]["path"]
        gold_data_transform_rule = gold_data_transform_rules.TransformRule2

    class C5(ConfigRoot):
        gold_data_transform_rule = gold_data_transform_rules.TransformRule8

    gdc4 = main.load_gold_data(C4)

    id = None
    for i, gdi in enumerate(gdc4.gold_data_item_list):
        if gdi.article_id == "STANDARD_200203161928100152":
            if id is not None:
                raise Exception()
            id = i
    del gdc4.gold_data_item_list[0:id]
    del gdc4.gold_data_item_list[1:]

    gdc4 = main.transform_gold_data(C4, gdc4)
    gdc4 = main.transform_gold_data(C5, gdc4)

    print()
コード例 #2
0
def run():

    gdc_1 = main.load_gold_data(Config1_1)
    gdc_1 = main.transform_gold_data(Config1_1, gdc_1)
    gdc_1 = main.transform_gold_data(Config1_2, gdc_1)
    gdc = GoldDataContainer(cats_list=gdc_1.cats_list)
    gdc = gold_data_manager.merge_assuming_identical_categories(gdc, gdc_1)

    gdc_2 = main.load_gold_data(Config2)
    gdc_2 = main.transform_gold_data(Config2, gdc_2)
    gdc = gold_data_manager.merge_assuming_identical_categories(gdc, gdc_2)

    gdc_3 = main.load_gold_data(Config3)
    gdc_3 = main.transform_gold_data(Config3, gdc_3)
    gdc = gold_data_manager.merge_assuming_identical_categories(gdc, gdc_3)

    gdc_4 = main.load_gold_data(Config4)
    gdc_4 = main.transform_gold_data(Config4, gdc_4)
    gdc = gold_data_manager.merge_assuming_identical_categories(gdc, gdc_4)

    gdc_5 = main.load_gold_data(Config5)
    gdc_5 = main.transform_gold_data(Config5, gdc_5)
    gdc = gold_data_manager.merge_assuming_identical_categories(gdc, gdc_5)

    gdc_6 = main.load_gold_data(Config6)
    gdc_6 = main.transform_gold_data(Config6, gdc_6)
    gdc = gold_data_manager.merge_assuming_identical_categories(gdc, gdc_6)

    trainer = main.init_trainer(ConfigTrain, cats_list=gdc.cats_list)
    main.run_training(config=ConfigTrain,
                      trainer=trainer,
                      gold_data_container=gdc)

    embed()
コード例 #3
0
def run():

    gdc = main.load_gold_data(ConfigBase)
    gdc = main.transform_gold_data(ConfigBase, gdc)

    trainer = main.init_trainer(ConfigTdc100, cats_list=gdc.cats_list)
    main.run_training(config=ConfigTdc100, trainer=trainer, gold_data_container=gdc)

    trainer = main.init_trainer(ConfigTdc80, cats_list=gdc.cats_list)
    main.run_training(config=ConfigTdc80, trainer=trainer, gold_data_container=gdc)
コード例 #4
0
def run_5():
    class C1(ConfigRoot):
        gold_data_json_path = "../data/gold_data/g1.json"

    class C2(ConfigRoot):
        gold_data_json_path = "../data/gold_data/s1_articles__tr2_1__sc_sm_alle_anwendungsfelder_ORIGINAL.json"

    gdc_n = main.load_gold_data(C1)
    gdc_o = main.load_gold_data(C2)

    ConfigRoot.gold_data_json_path = "../data/gold_data/s1_articles__tr2_1__sc_sm_alle_anwendungsfelder_X.json"
    gdc_o_X = main.load_gold_data(ConfigRoot)

    def reduce_gdc(gdc):

        # id = None
        multiples = []
        for i, gdi in enumerate(gdc.gold_data_item_list):
            if gdi.article_id == "STANDARD_200203161928100152":
                multiples.append(gdi)
                # if id is not None:
                #     raise Exception()
                # id = i
        del gdc.gold_data_item_list[0:id]
        # del gdc.gold_data_item_list[1:]

    # reduce_gdc(gdc_n)
    # reduce_gdc(gdc_o)
    reduce_gdc(gdc_o_X)

    class C3(ConfigRoot):
        gold_data_transform_rule = gold_data_transform_rules.TransformRule2

    class C4(ConfigRoot):
        gold_data_transform_rule = gold_data_transform_rules.TransformRule8

    gdc_n = main.transform_gold_data(C3, gdc_n)
    gdc_n = main.transform_gold_data(C4, gdc_n)

    gdc_o = main.transform_gold_data(C4, gdc_o)

    print()
コード例 #5
0
def run():

    gdc = main.load_gold_data(ConfigSub)
    gdc = main.transform_gold_data(ConfigSub, gdc)

    for i in range(30):

        if i == 0:
            ConfigSub.should_load_model = False
            ConfigSub.should_create_model = True
        else:
            ConfigSub.should_load_model = True
            ConfigSub.should_create_model = False

        trainer = main.init_trainer(config=ConfigSub, cats_list=gdc.cats_list)
        main.run_training(ConfigSub, trainer, gdc)
コード例 #6
0
def train(trainer1, trainer2):

    gdc = main.load_gold_data(ConfigTrainCompareBase)
    gdc = main.transform_gold_data(ConfigTrainCompareBase, gdc)

    if trainer1 is None:
        ConfigTrainCompareBase.should_load_model = False
        ConfigTrainCompareBase.should_create_model = True
        trainer1 = main.init_trainer(ConfigTrainCompare1,
                                     cats_list=gdc.cats_list)
        trainer2 = main.init_trainer(ConfigTrainCompare2,
                                     cats_list=gdc.cats_list)

    main.run_training(ConfigTrainCompare1, trainer1, gdc)
    main.run_training(ConfigTrainCompare2, trainer2, gdc)

    return trainer1, trainer2
コード例 #7
0
def run():

    gdc = main.load_gold_data(ConfigSub)
    gdc = main.transform_gold_data(ConfigSub, gdc)
    trainer = main.init_trainer(config=ConfigSub, cats_list=gdc.cats_list)
    main.run_training(ConfigSub, trainer, gdc)
コード例 #8
0
def run():

    # get the VR info
    eval_data_container = main.load_gold_data(ConfigLoadG1)
    eval_data_container_VR = main.transform_gold_data(ConfigTransformG1VR,
                                                      eval_data_container)
    df_VR = pd.DataFrame(
        data=[{
            "article_id": gdi.article_id,
            "VR=ja": gdi.cats['Verantwortungsreferenz'] == 1,
        } for gdi in eval_data_container_VR.gold_data_item_list])

    # get the AF info
    eval_data_container = main.load_gold_data(ConfigLoadG1)
    eval_data_container_AF = main.transform_gold_data(
        ConfigTransformG1AF_Part1, eval_data_container)
    #eval_data_container_AF = main.transform_gold_data(ConfigTransformG1AF_Part2, eval_data_container_AF)
    df_AF = pd.DataFrame(data=[{
        "article_id": gdi.article_id,
        "AF=SM": gdi.cats['AF: Soziale Medien'] == 1,
        "AF=SC": gdi.cats['AF: Social Companions'] == 1,
    } for gdi in eval_data_container_AF.gold_data_item_list])

    # for each text, read from the DB how many LM it contains
    db_connection, db_cursor = db_manager.open_db_connection(
        db_config={
            "host": credentials.db_host,
            "dbname": credentials.db_name,
            "user": credentials.db_user,
            "password": credentials.db_password,
            "port": credentials.db_port
        })

    db_cursor.execute(
        sql.SQL("""
            select 
                t.docid as id, 
                count(distinct t.keyword_id) as dist, 
                sum(t.token_count) as total
            from {table_name} as t 
            where t.docid = any( %(docid_list)s )
            group by t.docid
            order by t.docid asc
        """).format(
            table_name=sql.Identifier('index_2__mara002__lmvr_tokens')), {
                'docid_list': [
                    gdi.article_id
                    for gdi in eval_data_container.gold_data_item_list
                ],
            })
    results = db_cursor.fetchall()
    df_LM = pd.DataFrame(data=[{
        "article_id": r['id'],
        "LMs total": r['total'],
        "LMs distinct": r['dist'],
    } for r in results])

    # close db connection
    db_manager.close_db_connection(db_connection, db_cursor)

    # merge the 3 dataframes
    df = df_LM.merge(df_AF, how='outer', on='article_id')
    df = df.merge(df_VR, how='outer', on='article_id')
    # the LM table in the db doesn't contain all texts, so we have NaN values. Replace those with 0.
    df['LMs total'] = df['LMs total'].fillna(0)
    df['LMs distinct'] = df['LMs distinct'].fillna(0)

    # define shortcuts to filter the dataframe
    maskAF = (df['AF=SC'] == True) | (df['AF=SM'] == True)
    maskVR = (df['VR=ja'] == True)

    main.log_manager.info_global(
        "--------------------------------\n"
        "Calculations complete. \n"
        "You can now access the DataFrame as `df`. \n"
        "There are 2 masks provided as `maskAF` (SC or SM) and `maskVR` (trivial). \n"
    )

    # usage example:
    # df[maskAF & maskVR]
    # df[~maskVR]

    embed()
コード例 #9
0
def run():

    eval_data_container = main.load_gold_data(ConfigLoadG8)
    eval_data_container = main.transform_gold_data(ConfigLoadG8, eval_data_container)

    modelVR = main.init_trainer(ConfigLoadVRModel)

    main.log_manager.info_global(
        "--------------------------------\n"
        "Evaluating mo11 over the entire dataset g8: \n"
    )
    scores_spacy, scores_manual = modelVR.evaluate(eval_data_container)

    # only look at those examples that mo9 predicts as either AF=SM or AF=SC
    modelAF = main.init_trainer(ConfigLoadAFModel)

    gdis_to_keep = []

    for gdi in eval_data_container.gold_data_item_list: 
    
        doc = modelAF.nlp(gdi.text)

        for cat in ['AF: Social Companions', 'AF: Soziale Medien']: 
            if doc.cats[cat] > 0.5: 
                gdis_to_keep.append(gdi)
                break 

    eval_data_container2 = GoldDataContainer()
    eval_data_container2.cats_list = eval_data_container.cats_list
    eval_data_container2.gold_data_item_list = gdis_to_keep

    main.log_manager.info_global(
        "--------------------------------\n"
        "Evaluating mo11 over those texts in g8 that mo9 predicts to be AF=SM or AF=SC: \n"
    )
    scores_spacy2, scores_manual2 = modelVR.evaluate(eval_data_container2)

    # only look at those examples that were annotated as AF=SM or AF=SC
    
    # we need to reload the data to undo the transformation that removes AF
    eval_data_container = main.load_gold_data(ConfigLoadG8)

    gdis_to_keep = [] 

    for gdi in eval_data_container.gold_data_item_list: 

        for cat in ['AF: Social Companions', 'AF: Soziale Medien']:
            if gdi.cats[cat] == 1:
                gdis_to_keep.append(gdi)
                break 

    eval_data_container3 = GoldDataContainer()
    eval_data_container3.cats_list = eval_data_container.cats_list
    eval_data_container3.gold_data_item_list = gdis_to_keep

    # now apply the transformation that removes all categories except VR
    eval_data_container3 = main.transform_gold_data(ConfigLoadG8, eval_data_container3) 

    main.log_manager.info_global(
        "--------------------------------\n"
        "Evaluating mo11 over those texts in g8 that were annotated as AF=SM or AF=SC: \n"
    )
    scores_spacy3, scores_manual3 = modelVR.evaluate(eval_data_container3)

    embed()
コード例 #10
0
def run_2():
    class Config1_1(ConfigRoot):
        # g1 combined with tr2 produces gold data that was formerly persisted as 's1_articles__tr2_1__sc_sm_alle_anwendungsfelder.json'
        gold_data_json_path = data_flow_registry.gold_data["g1"]["path"]
        gold_data_transform_rule = gold_data_transform_rules.TransformRule2

    class Config1_2(ConfigRoot):
        gold_data_transform_rule = gold_data_transform_rules.TransformRule8

    class Config2(ConfigRoot):
        # formerly s2 in prodigy, now p1 in prodigy data, and persisted as gold data as g4
        gold_data_json_path = data_flow_registry.gold_data["g4"]["path"]
        gold_data_transform_rule = gold_data_transform_rules.TransformRule9

    class Config3(ConfigRoot):
        # formerly s3 in prodigy, now p2 in prodigy data, and persisted as gold data as g5
        gold_data_json_path = data_flow_registry.gold_data["g5"]["path"]
        gold_data_transform_rule = gold_data_transform_rules.TransformRule8

    class Config4(ConfigRoot):
        # formerly s4 in prodigy, now p3 in prodigy data, and persisted as gold data as g6
        gold_data_json_path = data_flow_registry.gold_data["g6"]["path"]
        gold_data_transform_rule = gold_data_transform_rules.TransformRule8

    class Config5(ConfigRoot):
        # formerly s5 in prodigy, now p4 in prodigy data, and persisted as gold data as g7
        gold_data_json_path = data_flow_registry.gold_data["g7"]["path"]
        gold_data_transform_rule = gold_data_transform_rules.TransformRule8

    class Config6(ConfigRoot):
        # formerly s6 in prodigy, now p5 in prodigy data, and persisted as gold data as g8
        gold_data_json_path = data_flow_registry.gold_data["g8"]["path"]
        gold_data_transform_rule = gold_data_transform_rules.TransformRule8

    ConfigRoot.gold_data_json_path = "../data/gold_data/s1_articles__tr2_1__sc_sm_alle_anwendungsfelder_X.json"
    gdc_old = main.load_gold_data(ConfigRoot)

    gdc_1 = main.load_gold_data(Config1_1)
    gdc_1 = main.transform_gold_data(Config1_1, gdc_1)
    gdc_1 = main.transform_gold_data(Config1_2, gdc_1)
    gdc = GoldDataContainer(cats_list=gdc_1.cats_list)
    gdc = gold_data_manager.merge_assuming_identical_categories(gdc, gdc_1)

    gdc_2 = main.load_gold_data(Config2)
    gdc_2 = main.transform_gold_data(Config2, gdc_2)
    gdc = gold_data_manager.merge_assuming_identical_categories(gdc, gdc_2)

    gdc_3 = main.load_gold_data(Config3)
    gdc_3 = main.transform_gold_data(Config3, gdc_3)
    gdc = gold_data_manager.merge_assuming_identical_categories(gdc, gdc_3)

    gdc_4 = main.load_gold_data(Config4)
    gdc_4 = main.transform_gold_data(Config4, gdc_4)
    gdc = gold_data_manager.merge_assuming_identical_categories(gdc, gdc_4)

    gdc_5 = main.load_gold_data(Config5)
    gdc_5 = main.transform_gold_data(Config5, gdc_5)
    gdc = gold_data_manager.merge_assuming_identical_categories(gdc, gdc_5)

    gdc_6 = main.load_gold_data(Config6)
    gdc_6 = main.transform_gold_data(Config6, gdc_6)
    gdc = gold_data_manager.merge_assuming_identical_categories(gdc, gdc_6)

    gdc_new = gdc

    pair_differences = []

    for i, gdi_o in enumerate(gdc_old.gold_data_item_list):

        found = False

        for gdi_n in gdc_new.gold_data_item_list:

            if gdi_o.article_id == gdi_n.article_id:

                if gdi_o.cats != gdi_n.cats:
                    texts_equal = gdi_o.text == gdi_n.text
                    pair_differences.append({"gdi_o": gdi_o, "gdi_n": gdi_n})
                else:
                    print(i)

                found = True
                break

        if not found:
            print(i)

    gdc_d = GoldDataContainer(cats_list=gdc.cats_list)
    for p in pair_differences:
        gdc_d.gold_data_item_list.append(p["gdi_o"])
        gdc_d.gold_data_item_list.append(p["gdi_n"])

    ConfigRoot.gold_data_json_path = "../data/gold_data/differences.json"
    main.persist_gold_data(ConfigRoot, gdc_d)

    embed()
コード例 #11
0
def run():
    class Config1_1(ConfigRoot):
        # g1 combined with tr2 produces gold data that was formerly persisted as 's1_articles__tr2_1__sc_sm_alle_anwendungsfelder.json'
        gold_data_json_path = data_flow_registry.gold_data["g1"]["path"]
        gold_data_transform_rule = gold_data_transform_rules.TransformRule2

    class Config1_2(ConfigRoot):
        gold_data_transform_rule = gold_data_transform_rules.TransformRule8

    class Config2(ConfigRoot):
        # formerly s2 in prodigy, now p1 in prodigy data, and persisted as gold data as g4
        gold_data_json_path = data_flow_registry.gold_data["g4"]["path"]
        gold_data_transform_rule = gold_data_transform_rules.TransformRule9

    class Config3(ConfigRoot):
        # formerly s3 in prodigy, now p2 in prodigy data, and persisted as gold data as g5
        gold_data_json_path = data_flow_registry.gold_data["g5"]["path"]
        gold_data_transform_rule = gold_data_transform_rules.TransformRule8

    class Config4(ConfigRoot):
        # formerly s4 in prodigy, now p3 in prodigy data, and persisted as gold data as g6
        gold_data_json_path = data_flow_registry.gold_data["g6"]["path"]
        gold_data_transform_rule = gold_data_transform_rules.TransformRule8

    class Config5(ConfigRoot):
        # formerly s5 in prodigy, now p4 in prodigy data, and persisted as gold data as g7
        gold_data_json_path = data_flow_registry.gold_data["g7"]["path"]
        gold_data_transform_rule = gold_data_transform_rules.TransformRule8

    class Config6(ConfigRoot):
        # formerly s6 in prodigy, now p5 in prodigy data, and persisted as gold data as g8
        gold_data_json_path = data_flow_registry.gold_data["g8"]["path"]
        gold_data_transform_rule = gold_data_transform_rules.TransformRule8

    ConfigRoot.gold_data_json_path = "../data/gold_data/s1_articles__tr2_1__sc_sm_alle_anwendungsfelder_X.json"
    gdc_old = main.load_gold_data(ConfigRoot)

    gdc_1 = main.load_gold_data(Config1_1)
    gdc_1 = main.transform_gold_data(Config1_1, gdc_1)
    gdc_1 = main.transform_gold_data(Config1_2, gdc_1)
    for gdi in gdc_1.gold_data_item_list:
        gdi.source = "g1"  # TODO: Damit dass geht muss golddataitem und gold_data_manager angepasst werden

    gdc = GoldDataContainer(cats_list=gdc_1.cats_list)
    gdc = gold_data_manager.merge_assuming_identical_categories(gdc, gdc_1)

    gdc_2 = main.load_gold_data(Config2)
    gdc_2 = main.transform_gold_data(Config2, gdc_2)
    for gdi in gdc_2.gold_data_item_list:
        gdi.source = "g4"
    gdc = gold_data_manager.merge_assuming_identical_categories(gdc, gdc_2)

    gdc_3 = main.load_gold_data(Config3)
    gdc_3 = main.transform_gold_data(Config3, gdc_3)
    for gdi in gdc_3.gold_data_item_list:
        gdi.source = "g5"
    gdc = gold_data_manager.merge_assuming_identical_categories(gdc, gdc_3)

    gdc_4 = main.load_gold_data(Config4)
    gdc_4 = main.transform_gold_data(Config4, gdc_4)
    for gdi in gdc_4.gold_data_item_list:
        gdi.source = "g6"
    gdc = gold_data_manager.merge_assuming_identical_categories(gdc, gdc_4)

    gdc_5 = main.load_gold_data(Config5)
    gdc_5 = main.transform_gold_data(Config5, gdc_5)
    for gdi in gdc_5.gold_data_item_list:
        gdi.source = "g7"
    gdc = gold_data_manager.merge_assuming_identical_categories(gdc, gdc_5)

    gdc_6 = main.load_gold_data(Config6)
    gdc_6 = main.transform_gold_data(Config6, gdc_6)
    for gdi in gdc_6.gold_data_item_list:
        gdi.source = "g8"
    gdc = gold_data_manager.merge_assuming_identical_categories(gdc, gdc_6)

    get_redundancies_by_id(gdc)