def objective_func(batch_size, lookback, lr, lstm_units, lstm_act='relu', cnn_act='relu', filters=64): n_epochs = 5000 data_config, nn_config, args, intervals, verbosity = make_model( int(batch_size), int(lookback), n_epochs, lr, lstm_act, cnn_act, lstm_units, filters) model = Model(data_config=data_config, nn_config=nn_config, args=args, intervals=intervals, verbosity=verbosity) model.build_nn() model.train_nn() mse = np.min(model.losses['val_losses']['mse']) reset_graph() return mse
def objective_fn(**kwargs): data_config, nn_config, total_intervals = make_model(**kwargs) df = pd.read_csv('data/nk_data.csv') model = Model( data_config=data_config, nn_config=nn_config, data=df, # intervals=total_intervals ) model.build_nn() idx = np.arange(720) tr_idx, test_idx = train_test_split(idx, test_size=0.5, random_state=313) history = model.train_nn(indices=list(tr_idx)) return np.min(history['val_loss'])