コード例 #1
0
    def set_data(self):

        if self.set == 10:
            train_data = get_10lamb_old(5)
            img_x, _, _, _ = get_training_data(train_data)
        elif self.set == 13:
            img_x, _, _, _ = get_training_data(get_13(5))

        # Normalise the input!
        img_x = rescale0to1(img_x)
        self.img_x = img_x

        self.k_fold_train_data = get_10lamb_6patches(5)
コード例 #2
0
    def main_train(self, train_data, steps_per_epoch=None):
        if steps_per_epoch is None:
            steps_per_epoch = self.steps_per_epoch

        from main_general import get_training_data

        from preprocessing.image import get_flow

        # TODO train
        x_train, y_train, x_val, y_val = get_training_data(train_data)

        # Generator
        flow_tr = get_flow(x_train,
                           y_train,
                           w_patch=self.w_patch,
                           w_ext_in=self.w_ext_in)

        flow_va = get_flow(x_val,
                           y_val,
                           w_patch=self.w_patch,
                           w_ext_in=self.w_ext_in)

        epochs = 1

        self.neural_net.train(
            flow_tr,
            validation=flow_va,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
            info=f'{set_net["name"]}_d{self.d}_k{self.k}_n{self.n_per_class}')
コード例 #3
0
def folds_annot():
    train_data = get_10lamb_old(5)
    img_x, _, _, _ = get_training_data(train_data)
    
    img_clean = img_x[..., :3]

    lst_get = [get_borders1, get_borders2, get_borders3, get_borders4, get_borders5, get_borders6]

    for i_fold in range(6):
        
        img_annot = imread(f'/home/lameeus/data/ghent_altar/input/hierachy/10_lamb/annotations/kfold/annot_{i_fold+1}.png')

        y1 = annotations2y(img_annot, thresh=.8)[..., 1]

        a = semi_transparant(img_clean, y1.astype(bool))
    
        w0, w1, h0, h1 = lst_get[i_fold]()
        clean_annot_crop = a[h0:h1, w0:w1, :]

        img_clean_crop = img_clean[h0:h1, w0:w1, :]
        
        if 0: concurrent([img_clean_crop, clean_annot_crop])
        
        folder_save = '/scratch/lameeus/data/ghent_altar/input/hierarchy/10lamb/ifolds'

        imsave(os.path.join(folder_save, f'clean_crop_ifold{i_fold}.png'), img_clean_crop)
        imsave(os.path.join(folder_save, f'clean_annot_crop_ifold{i_fold}.png'), clean_annot_crop)
        
        pass
コード例 #4
0
    def set_img_x(self):
        if self.set_nr == 13:
            train_data = get_13(self.mod)

            from data.datatools import imread
            from data.conversion_tools import annotations2y
            train_data.y_te = np.copy(train_data.y_tr)
            train_data.y_tr = annotations2y(imread(
                '/home/lameeus/data/ghent_altar/input/hierarchy/13_small/clean_annot_practical.png'
            ),
                                            thresh=.9)

            img_x, img_y, _, img_y_te = get_training_data(train_data)

        # Normalise the input!
        img_x = rescale0to1(img_x)
        self.img_x = img_x
        self.img_y_tr = img_y
        self.img_y_te = img_y_te

        train_data_10 = get_10lamb_6patches(self.mod).get_train_data_all()
        img_x_10, img_y_10, _, _ = get_training_data(train_data_10)
        # Normalise the input!
        img_x_10 = rescale0to1(img_x_10)

        self.flow_tr_set = get_flow(self.img_x,
                                    self.img_y_tr,
                                    w_patch=self.w_patch,
                                    w_ext_in=self.w_ext_in_ti)
        self.flow_tr_10 = get_flow(img_x_10,
                                   img_y_10,
                                   w_patch=self.w_patch,
                                   w_ext_in=self.w_ext_in_ti)
        n_multiply = 10
        self.flow_tr_set_10 = get_flow([self.img_x] * n_multiply + [img_x_10],
                                       [self.img_y_tr] * n_multiply +
                                       [img_y_10],
                                       w_patch=self.w_patch,
                                       w_ext_in=self.w_ext_in_ti)

        self.flow_ae_tr = get_flow(
            self.img_x,
            self.img_x,
            w_patch=self.w_patch,
            w_ext_in=self.w_ext_in_ae,
        )
コード例 #5
0
    def set_flow(train_data):

        x_train, y_train, _, _ = get_training_data(train_data)

        global flow_tr
        flow_tr = get_flow(x_train,
                           y_train,
                           w_patch=w_patch,
                           w_ext_in=w_ext_in)
コード例 #6
0
 def set_img_x(self):
     train_data = get_10lamb_old(self.mod)
     img_x, _, _, _ = get_training_data(train_data)
     # Normalise the input!
     img_x = rescale0to1(img_x)
     self.img_x = img_x
コード例 #7
0
def main():
    """

    :return:
    """

    ### Settings
    mod = 5

    w_patch = 16 * 2
    """
    Data (all important modalities)
    """

    # folder_windows = r'C:\Users\Laurens_laptop_w\OneDrive - UGent\data\10lamb'
    train_data = get_10lamb_old(mod)
    img_x, img_y_tr, _, _ = get_training_data(train_data)
    # Normalise the input!
    img_x = rescale0to1(img_x)
    """
    Train segmentation
        1) reuse everything
        2) fix encoder
    """

    if 1:

        if 1:
            b_encoder_fixed = False

            info_enc_fixed = '_enc_fixed' if b_encoder_fixed else ''
            get_info = lambda: f'10lamb_kfold_pretrained{info_enc_fixed}/unet_enc_k{k}_ifold{i_fold}'

            n_epochs = 40

            k = 10

            if k == 10:
                epoch_w = 100
            else:
                raise NotImplementedError()

            ### Settings you don't have to change:

            w_patch = 50
            w_ext_in = 28
            b_double = False
            padding = 'valid'

            # TODO flag for converting encoder to dilated conv

            def get_unet_pretrained_encoder():

                model_encoder = get_model_encoder()

                encoder_inputs = model_encoder.input

                decoder_outputs = decoder(model_encoder, f_out=2)

                model_pretrained_unet = Model(encoder_inputs, decoder_outputs)
                from methods.examples import compile_segm
                compile_segm(model_pretrained_unet, lr=1e-4)

                model_pretrained_unet.summary()

                return model_pretrained_unet

            """
            Train
            """

            k_fold_train_data = get_10lamb_6patches(5)
            for i_fold in range(6):
                """
                Get a new network (not trained yet for segmentation)
                """

                model_pretrained_unet = get_unet_pretrained_encoder()
                n_pretrained_unet = NeuralNet(model_pretrained_unet)
                """
                The data
                """

                train_data_i = k_fold_train_data.k_split_i(i_fold)

                info = get_info()

                img_y_tr = train_data_i.get_y_train()
                img_y_te = train_data_i.get_y_test()

                flow_tr = get_flow(
                    img_x,
                    img_y_tr,
                    w_patch=w_patch,  # Comes from 10
                    w_ext_in=w_ext_in)

                flow_te = get_flow(
                    img_x,
                    img_y_te,
                    w_patch=w_patch,  # Comes from 10
                    w_ext_in=w_ext_in)

                n_pretrained_unet.train(flow_tr,
                                        flow_te,
                                        epochs=n_epochs,
                                        verbose=1,
                                        info=info)
                """
                Prediction
                """

                n_pretrained_unet.w_ext = w_ext_in
                y_pred = n_pretrained_unet.predict(img_x)

                concurrent([y_pred[..., 1]])
    """
    Classification
    """

    if 1:
        im_clean = img_x[..., :3]

        k = 8
        i_fold = 3
        epoch_last = 40

        from methods.examples import kappa_loss, weighted_categorical_crossentropy
        from performance.metrics import accuracy_with0, jaccard_with0
        loss = weighted_categorical_crossentropy((1, 1))

        list_y_pred = []

        ### K fold validation
        k_fold_train_data = get_10lamb_6patches(5)
        train_data_i = k_fold_train_data.k_split_i(i_fold)
        img_y_tr = train_data_i.get_y_train()
        img_y_te = train_data_i.get_y_test()

        for epoch in np.arange(31, epoch_last + 1):
            filepath_model = f'/scratch/lameeus/data/ghent_altar/net_weight/10lamb_kfold/ti_unet_k{k}_kfold{i_fold}/w_{epoch}.h5'

            model = load_model(filepath_model,
                               custom_objects={
                                   'loss': loss,
                                   'accuracy_with0': accuracy_with0,
                                   'jaccard_with0': jaccard_with0,
                                   'kappa_loss': kappa_loss
                               })

            n = NeuralNet(model, w_ext=10)
            y_pred = n.predict(img_x)

            list_y_pred.append(y_pred)

        y_pred_mean = np.mean(list_y_pred, axis=0)
        q1 = y_pred_mean[..., 1]
        concurrent([q1, q1.round(), im_clean])
        """
        Optimal threshold (making conf matrix symmetric, not based on maximising kappa)
        """
        y_gt = np.any([img_y_tr, img_y_te], axis=0)

        from performance.testing import _get_scores, filter_non_zero

        def foo_performance(y_true, y_pred, thresh):
            # is basically argmax
            y_pred_thresh_arg = np.greater_equal(y_pred[..., 1], thresh)

            y_true_flat, y_pred_thresh_arg_flat = filter_non_zero(
                y_true, y_pred_thresh_arg)
            y_te_argmax = np.argmax(y_true_flat, axis=-1)

            # Kappa
            return _get_scores(y_te_argmax, y_pred_thresh_arg_flat)[-1]

        """
        1. BEST? PERFORMANCE based on test set
        """

        print('1. Test distribution optimization')

        thresh = optimal_test_thresh_equal_distribution(img_y_te, y_pred_mean)
        q1_thresh = np.greater_equal(q1, thresh)
        concurrent([q1, q1_thresh, im_clean])

        print(f'thresh: {thresh}')

        # Test, train, both
        print('Kappa performance:')
        print('\ttrain:', foo_performance(img_y_tr, y_pred_mean, thresh))
        print('\ttestset:', foo_performance(img_y_te, y_pred_mean, thresh))
        print('\tboth:', foo_performance(y_gt, y_pred_mean, thresh))

        print('\nIncremental optimization on test set')

        test_thresh2 = test_thresh_incremental(y_pred_mean,
                                               img_y_tr,
                                               img_y_te,
                                               n=5,
                                               verbose=0)

        print('Kappa performance:')
        print('\ttrain:', foo_performance(img_y_tr, y_pred_mean, test_thresh2))
        print('\ttestset:', foo_performance(img_y_te, y_pred_mean,
                                            test_thresh2))
        print('\tboth:', foo_performance(y_gt, y_pred_mean, test_thresh2))
        """
        2. based on train
        """

        print('\n2. Training distribution optimization')

        thresh = optimal_test_thresh_equal_distribution(img_y_tr, y_pred_mean)
        q1_thresh = np.greater_equal(q1, thresh)
        concurrent([q1, q1_thresh, im_clean])

        print(f'thresh: {thresh}')

        # Test, train, both
        print('Kappa performance:')
        print('\ttrain:', foo_performance(img_y_tr, y_pred_mean, thresh))
        print('\ttestset:', foo_performance(img_y_te, y_pred_mean, thresh))
        print('\tboth:', foo_performance(y_gt, y_pred_mean, thresh))
        """
        3. CONSISTENT: based on train+set
        """

        print('\n3. all GT distribution optimization')

        thresh = optimal_test_thresh_equal_distribution(y_gt, y_pred_mean)
        q1_thresh = np.greater_equal(q1, thresh)
        concurrent([q1, q1_thresh, im_clean])

        print(f'thresh: {thresh}')

        # Test, train, both
        print('Kappa performance:')
        print('\ttrain:', foo_performance(img_y_tr, y_pred_mean, thresh))
        print('\ttestset:', foo_performance(img_y_te, y_pred_mean, thresh))
        print('\tboth:', foo_performance(y_gt, y_pred_mean, thresh))

        if 0:
            """
            4. DUMB/Not needed: Based on prediction of whole panel
            """

            thresh = optimal_test_thresh_equal_distribution(y_gt,
                                                            y_pred_mean,
                                                            mask_true=False)
            q1_thresh = np.greater_equal(q1, thresh)
            concurrent([q1, q1_thresh, im_clean])

    print('Done')
コード例 #8
0
def main():
    ### Settings
    
    mod=5
    panel_nr = 19
    
    i_start ,i_end = 1, epochs_tot
    # i_start ,i_end = 1, 2
    
    k_lst = np.arange(1, 21)
    # k_lst = [1, 2]
    
    verbose=0
    b_plot = False
    
    ###
    
    if panel_nr == 13:
        train_data = get_13botleftshuang(mod=mod)
        folder_weights = '/scratch/lameeus/data/ghent_altar/net_weight/lamb_segmentation'
    elif panel_nr == 19:
        train_data = get_19SE_shuang(mod=mod)
        folder_weights = '/scratch/lameeus/data/ghent_altar/net_weight/19_hand_SE'
    else:
        raise ValueError(panel_nr)


    x, y_tr, _, y_te = get_training_data(train_data)

    (y_tr, y_te) = map(batch2img, (y_tr, y_te))
    


    assert i_end >= i_start
    
    if b_plot:
        # plotting
        pred_lst = []
        info_lst = []
    
    lst_data = []
    lst_data_avg_pred = []
    
    for k in k_lst:
    
        model = None
        
        pred_lst = []
        
        for epoch in np.arange(i_start, i_end + 1)[::-1]:
    
            info = f'settings: k {k}; epoch {epoch}'
            print('\n\t'+info)
            
            filepath_model = os.path.join(folder_weights, f'ti_unet_k{k}_imbalanced/w_{epoch}.h5')
    
            if epoch == i_end:
                model = load_model(filepath_model, custom_objects={'loss': loss,
                                                                   'accuracy_with0': accuracy_with0,
                                                                   'jaccard_with0': jaccard_with0,
                                                                   'kappa_loss': kappa_loss
                                                                   })
        
            else:
                model.load_weights(filepath_model)

            n = NeuralNet(model, w_ext=10)
    
            y_pred = n.predict(x)
            o = y_pred[..., 1]

            pred_lst.append(o)
            
            def print_conf(y_true, y_pred):
                    y_true = batch2img(y_true)
                    y_pred = batch2img(y_pred)
                    
                    b_annot = np.sum(y_true, axis=-1).astype(bool)
                    
                    y_true_annot = y_true[b_annot, :].argmax(axis=-1)
                    y_pred_annot = y_pred[b_annot, :].argmax(axis=-1)
                    
                    """
                    T0; predicted 1, but is 0
                    predicted 0, but is 1; T1
                    """
                    conf_mat = confusion_matrix(y_true_annot, y_pred_annot)
                    print(conf_mat)
                
            if 1:   # Single prediction
                
                if verbose == 1:
                    print_conf(y_tr, y_pred)
                    print_conf(y_te, y_pred)
                    
                if b_plot:
                    pred_lst.append(o)
                    info_lst.append(info)
    
                test_thresh = test_thresh_incremental(y_pred, y_tr, y_te, n=5, verbose=0)
                
                pred_thresh = np.greater_equal(o, test_thresh)
    
                pred_thresh_bin = np.stack([1-pred_thresh, pred_thresh], axis=-1)
    
                y_te_flat, y_pred_flat = filter_non_zero(y_te, pred_thresh_bin)
                y_te_argmax = np.argmax(y_te_flat, axis=-1)
                y_pred_argmax = np.argmax(y_pred_flat, axis=-1)
                acc, jacc, kappa = _get_scores(y_te_argmax, y_pred_argmax)
            
                if verbose == 1:
                    print_conf(y_tr, pred_thresh_bin)
                    print_conf(y_te, pred_thresh_bin)
    
                if 0: concurrent([pred_thresh])
                
                data_i = {'k':k,
                          'epoch':epoch,
                          'test_thresh':test_thresh,
                          'kappa':kappa,
                          'accuracy':acc,
                          'jaccard':jacc
                          }
                lst_data.append(data_i)
            
            if 1:   # avg prediction
    
                pred_i_average = np.mean(pred_lst, axis=0)
    
                # optimizing threshold prediction
                test_thresh = test_thresh_incremental(np.stack([1 - pred_i_average, pred_i_average], axis=-1), y_tr, y_te, n=5,
                                                      verbose=0)
                pred_thresh = np.greater_equal(pred_i_average, test_thresh)
                pred_thresh_bin = np.stack([1 - pred_thresh, pred_thresh], axis=-1)
    
                y_te_flat, y_pred_flat = filter_non_zero(y_te, pred_thresh_bin)
                y_te_argmax = np.argmax(y_te_flat, axis=-1)
                y_pred_argmax = np.argmax(y_pred_flat, axis=-1)
                acc, jacc, kappa = _get_scores(y_te_argmax, y_pred_argmax)
    
                data_i = {'k': k,
                          'epoch_start': epoch,
                          'test_thresh': test_thresh,
                          'kappa': kappa,
                          'accuracy': acc,
                          'jaccard': jacc
                          }
    
                lst_data_avg_pred.append(data_i)
            
    b = True
    if b:
        df = pd.DataFrame(lst_data)
        filename_save = f'tiunet_1pool_shaoguang{panel_nr}_imbalanced'
        filename_path = f'/scratch/lameeus/data/ghent_altar/dataframes/{filename_save}.csv'
        df.to_csv(filename_path, sep=';')
    
        df = pd.DataFrame(lst_data_avg_pred)
        filename_save = f'tiunet_1pool_shaoguang{panel_nr}_imbalanced_averaging'
        df.to_csv(f'/scratch/lameeus/data/ghent_altar/dataframes/{filename_save}.csv', sep=';')

    if b_plot:
        concurrent(pred_lst, info_lst)
    
    plt.show()
    
    return