def training(a, b, problem, story, target, j, order, score, constraints): #this function take the trips and creates positive and negative training # instances from them if j == 0: j = -1 vec = [j, order, score, constraints] vec.extend(makesets.eqvector(a, b, problem, story, target)) return vec
def training(trips, problem, story, target, sets): #this function take the trips and creates positive and negative training instances from them texamples = {x: ([], []) for x in ["+", "*", '/', '-', '=']} for op, a, b in trips: if op == '=': vec = makesets.eqvector(a, b, problem, story, target, sets) else: vec = makesets.vector(a, b, problem, story, target) texamples[op][0].append(vec) return texamples
def training(trips, problem, story, target): # this function take the trips and creates positive and negative training instances from them texamples = {x: ([], []) for x in ["+", "*", "/", "-", "="]} for op, a, b in trips: if op == "=": vec = makesets.eqvector(a, b, problem, story, target) else: vec = makesets.vector(a, b, problem, story, target) texamples[op][0].append(vec) return texamples
def compute(p,op,e,target,problem,story,order,sp=None): if op == '==': vec = [order].extend(makesets.eqvector(p,e,problem,story,target,sp)) op_label, op_acc, op_val = svm_predict([-1], [vec], glob ,'-q -b 1') else: vec = makesets.vector(p,e,problem,story,target) op_label, op_acc, op_val = svm_predict([-1], [vec], multi ,'-q -b 1') op_val=op_val[0] if op == '+': val = op_val[0] if op == '-': val = op_val[1] if op == '*': val = op_val[2] if op == '/': val = op_val[3] if op == '=': val = op_val[1] c = makesets.combine(p[1],e[1],op) return (val,c,op_val)