def test_moments_with_continuum(): # Read the data specfile = data_test_file('MaNGA_test_spectra.fits.gz') hdu = fits.open(specfile) drpbm = DRPFitsBitMask() flux = numpy.ma.MaskedArray(hdu['FLUX'].data, mask=drpbm.flagged( hdu['MASK'].data, MaNGADataCube.do_not_fit_flags())) ferr = numpy.ma.power(hdu['IVAR'].data, -0.5) flux[ferr.mask] = numpy.ma.masked ferr[flux.mask] = numpy.ma.masked nspec = flux.shape[0] # Instantiate the template libary velscale_ratio = 4 tpl = TemplateLibrary('MILESHC', match_resolution=False, velscale_ratio=velscale_ratio, spectral_step=1e-4, log=True, hardcopy=False) tpl_sres = numpy.mean(tpl['SPECRES'].data, axis=0) # Get the pixel mask pixelmask = SpectralPixelMask(artdb=ArtifactDB.from_key('BADSKY'), emldb=EmissionLineDB.from_key('ELPSCMSK')) # Instantiate the fitting class ppxf = PPXFFit(StellarContinuumModelBitMask()) # Perform the fit fit_wave, fit_flux, fit_mask, fit_par \ = ppxf.fit(tpl['WAVE'].data.copy(), tpl['FLUX'].data.copy(), hdu['WAVE'].data, flux, ferr, hdu['Z'].data, numpy.full(nspec, 100.), iteration_mode='no_global_wrej', reject_boxcar=100, ensemble=False, velscale_ratio=velscale_ratio, mask=pixelmask, matched_resolution=False, tpl_sres=tpl_sres, obj_sres=hdu['SRES'].data, degree=8, moments=2) # Remask the continuum fit sc_continuum = StellarContinuumModel.reset_continuum_mask_window( numpy.ma.MaskedArray(fit_flux, mask=fit_mask > 0)) # Read the database that define the emission lines and passbands momdb = EmissionMomentsDB.from_key('ELBMILES') # Measure the moments elmombm = EmissionLineMomentsBitMask() elmom = EmissionLineMoments.measure_moments(momdb, hdu['WAVE'].data, flux, continuum=sc_continuum, redshift=hdu['Z'].data, bitmask=elmombm) # Measure the EW based on the moments include_band = numpy.array([numpy.invert(momdb.dummy)]*nspec) \ & numpy.invert(elmombm.flagged(elmom['MASK'], flag=['BLUE_EMPTY', 'RED_EMPTY'])) line_center = (1.0 + hdu['Z'].data)[:, None] * momdb['restwave'][None, :] elmom['BMED'], elmom['RMED'], pos, elmom['EWCONT'], elmom['EW'], elmom['EWERR'] \ = emission_line_equivalent_width(hdu['WAVE'].data, flux, momdb['blueside'], momdb['redside'], line_center, elmom['FLUX'], redshift=hdu['Z'].data, line_flux_err=elmom['FLUXERR'], include_band=include_band) # Check the flags reference = { 'BLUE_INCOMP': 21, 'MAIN_JUMP': 0, 'UNDEFINED_MOM2': 42, 'JUMP_BTWN_SIDEBANDS': 0, 'RED_JUMP': 0, 'DIVBYZERO': 0, 'NO_ABSORPTION_CORRECTION': 0, 'RED_EMPTY': 21, 'UNDEFINED_BANDS': 8, 'DIDNOTUSE': 0, 'UNDEFINED_MOM1': 0, 'FORESTAR': 0, 'NON_POSITIVE_CONTINUUM': 0, 'LOW_SNR': 0, 'MAIN_EMPTY': 21, 'BLUE_JUMP': 0, 'RED_INCOMP': 21, 'MAIN_INCOMP': 21, 'BLUE_EMPTY': 21 } assert numpy.all([ reference[k] == numpy.sum(elmombm.flagged(elmom['MASK'], flag=k)) for k in elmombm.keys() ]), 'Number of flagged measurements changed' # Check that the values are finite assert numpy.all([ numpy.all(numpy.isfinite(elmom[n])) for n in elmom.dtype.names]), \ 'Found non-finite values in output' # Check the band definitions assert numpy.all(numpy.equal(elmom['REDSHIFT'], hdu['Z'].data)), 'Redshift changed' assert numpy.all(numpy.isclose(numpy.mean(momdb['blueside'], axis=1)[None,:], elmom['BCEN']/(1+hdu['Z'].data[:,None])) | elmombm.flagged(elmom['MASK'], flag='UNDEFINED_BANDS')), \ 'Blue passband center incorrect' assert numpy.all(numpy.isclose(numpy.mean(momdb['redside'], axis=1)[None,:], elmom['RCEN']/(1+hdu['Z'].data[:,None])) | elmombm.flagged(elmom['MASK'], flag='UNDEFINED_BANDS')), \ 'Red passband center incorrect' # Check the values assert numpy.all( numpy.absolute(elmom['FLUX'][0] - numpy.array([ 0.63, 0.00, 0.22, -1.32, -0.88, -0.68, -0.44, -0.13, -1.14, -0.07, -0.11, 0.01, 0.38, 0.73, 0.71, 0.44, 0.08, 0.74, 1.30, 2.34, 0.55, 0.44 ])) < 0.01), 'Fluxes too different' assert numpy.all(numpy.absolute(elmom['MOM1'][0] - numpy.array([ 14682.6, 0.0, 14843.2, 14865.8, 14890.4, 14404.7, 14208.6, 12376.0, 14662.5, 14148.5, 15804.1, 17948.4, 14874.5, 14774.9, 14840.5, 14746.0, 15093.1, 14857.8, 14839.0, 14840.2, 14876.0, 14859.5])) < 0.1), \ '1st moments too different' assert numpy.all(numpy.absolute(elmom['MOM2'][0] - numpy.array([322.2, 0.0, 591.4, 436.4, 474.6, 0.0, 0.0, 0.0, 364.6, 0.0, 0.0, 0.0, 289.1, 226.9, 282.6, 283.8, 227.0, 207.7, 207.7, 253.6, 197.0, 212.4])) < 0.1), \ '2nd moments too different' assert numpy.all(numpy.absolute(elmom['EW'][0] - numpy.array([ 0.63, 0.00, 0.20, -1.28, -0.76, -0.54, -0.30, -0.09, -0.61, -0.03, -0.04, 0.00, 0.13, 0.25, 0.24, 0.13, 0.02, 0.22, 0.38, 0.69, 0.17, 0.13])) < 0.01), \ 'EW too different'
# Perform the fit cont_wave, cont_flux, cont_mask, cont_par \ = ppxf.fit(sc_tpl['WAVE'].data.copy(), sc_tpl['FLUX'].data.copy(), wave, flux, ferr, z, dispersion, iteration_mode='no_global_wrej', reject_boxcar=100, ensemble=False, velscale_ratio=velscale_ratio, mask=sc_pixel_mask, matched_resolution=False, tpl_sres=sc_tpl_sres, obj_sres=sres, degree=8, moments=2, plot=False) # How many templates did it find: print(sc_tpl.ntpl) # From what files: print(sc_tpl.file_list) # What were the weights assigned to each template print(cont_par['TPLWGT'][0, :]) # Remask the continuum fit sc_continuum = StellarContinuumModel.reset_continuum_mask_window( numpy.ma.MaskedArray(cont_flux, mask=cont_mask > 0)) # Show the fit and residual pyplot.plot(wave, flux[0, :], label='Data') pyplot.plot(wave, sc_continuum[0, :], label='Model') pyplot.plot(wave, flux[0, :] - sc_continuum[0, :], label='Resid') pyplot.legend() pyplot.xlabel('Wavelength') pyplot.ylabel('Flux') pyplot.show() #------------------------------------------------------------------- print('Elapsed time: {0} seconds'.format(time.perf_counter() - t))
def main(): t = time.perf_counter() #------------------------------------------------------------------- # Read spectra to fit. The following reads a single MaNGA spectrum. # This is where you should read in your own spectrum to fit. # Plate-IFU to use plt = 7815 ifu = 3702 # Spaxel coordinates x = 25 #30 y = 25 #37 # Where to find the relevant datacube. This example accesses the test data # that can be downloaded by executing the script here: # https://github.com/sdss/mangadap/blob/master/download_test_data.py directory_path = defaults.dap_source_dir() / 'data' / 'remote' # Read a spectrum wave, flux, ivar, sres = get_spectra(plt, ifu, x, y, directory_path=directory_path) # In general, the DAP fitting functions expect data to be in 2D # arrays with shape (N-spectra,N-wave). So if you only have one # spectrum, you need to expand the dimensions: flux = flux.reshape(1,-1) ivar = ivar.reshape(1,-1) ferr = numpy.ma.power(ivar, -0.5) sres = sres.reshape(1,-1) # The majority (if not all) of the DAP methods expect that your # spectra are binned logarithmically in wavelength (primarily # because this is what pPXF expects). You can either have the DAP # function determine this value (commented line below) or set it # directly. The value is used to resample the template spectra to # match the sampling of the spectra to fit (up to some integer; see # velscale_ratio). # spectral_step = spectral_coordinate_step(wave, log=True) spectral_step = 1e-4 # Hereafter, the methods expect a wavelength vector, a flux array # with the spectra to fit, an ferr array with the 1-sigma errors in # the flux, and sres with the wavelength-dependent spectral # resolution, R = lambda / Dlambda #------------------------------------------------------------------- #------------------------------------------------------------------- # The DAP needs a reasonable guess of the redshift of the spectrum # (within +/- 2000 km/s). In this example, I'm pulling the redshift # from the DRPall file. There must be one redshift estimate per # spectrum to fit. Here that means it's a single element array # This example accesses the test data # that can be downloaded by executing the script here: # https://github.com/sdss/mangadap/blob/master/download_test_data.py drpall_file = directory_path / f'drpall-{drp_test_version}.fits' z = numpy.array([get_redshift(plt, ifu, drpall_file)]) print('Redshift: {0}'.format(z[0])) # The DAP also requires an initial guess for the velocity # dispersion. A guess of 100 km/s is usually robust, but this may # depend on your spectral resolution. dispersion = numpy.array([100.]) #------------------------------------------------------------------- #------------------------------------------------------------------- # The following sets the keyword for the template spectra to use # during the fit. You can specify different template sets to use # during the stellar-continuum (stellar kinematics) fit and the # emission-line modeling. # Templates used in the stellar continuum fits sc_tpl_key = 'MILESHC' # Templates used in the emission-line modeling el_tpl_key = 'MASTARSSP' # You also need to specify the sampling for the template spectra. # The templates must be sampled with the same pixel step as the # spectra to be fit, up to an integer factor. The critical thing # for the sampling is that you do not want to undersample the # spectral resolution element of the template spectra. Here, I set # the sampling for the MILES templates to be a factor of 4 smaller # than the MaNGA spectrum to be fit (which is a bit of overkill # given the resolution difference). I set the sampling of the # MaStar templates to be the same as the galaxy data. # Template pixel scale a factor of 4 smaller than galaxy data sc_velscale_ratio = 4 # Template sampling is the same as the galaxy data el_velscale_ratio = 1 # You then need to identify the database that defines the # emission-line passbands (elmom_key) for the non-parametric # emission-line moment calculations, and the emission-line # parameters (elfit_key) for the Gaussian emission-line modeling. # See # https://sdss-mangadap.readthedocs.io/en/latest/emissionlines.html. elmom_key = 'ELBMPL9' elfit_key = 'ELPMPL11' # If you want to also calculate the spectral indices, you can # provide a keyword that indicates the database with the passband # definitions for both the absorption-line and bandhead/color # indices to measure. The script allows these to be None, if you # don't want to calculate the spectral indices. See # https://sdss-mangadap.readthedocs.io/en/latest/spectralindices.html absindx_key = 'EXTINDX' bhdindx_key = 'BHBASIC' # Now we want to construct a pixel mask that excludes regions with # known artifacts and emission lines. The 'BADSKY' artifact # database only masks the 5577, which can have strong left-over # residuals after sky-subtraction. The list of emission lines (set # by the ELPMPL8 keyword) can be different from the list of # emission lines fit below. sc_pixel_mask = SpectralPixelMask(artdb=ArtifactDB.from_key('BADSKY'), emldb=EmissionLineDB.from_key('ELPMPL11')) # Mask the 5577 sky line el_pixel_mask = SpectralPixelMask(artdb=ArtifactDB.from_key('BADSKY')) # Finally, you can set whether or not to show a set of plots. # # Show the ppxf-generated plots for each fit stage. fit_plots = False # Show summary plots usr_plots = True #------------------------------------------------------------------- #------------------------------------------------------------------- # Fit the stellar continuum # First, we construct the template library. The keyword that # selects the template library (sc_tpl_key) is defined above. The # following call reads in the template library and processes the # data to have the appropriate pixel sampling. Note that *no* # matching of the spectral resolution to the galaxy spectrum is # performed. sc_tpl = TemplateLibrary(sc_tpl_key, match_resolution=False, velscale_ratio=sc_velscale_ratio, spectral_step=spectral_step, log=True, hardcopy=False) # This calculation of the mean spectral resolution is a kludge. The # template library should provide spectra that are *all* at the # same spectral resolution. Otherwise, one cannot freely combine # the spectra to fit the Doppler broadening of the galaxy spectrum # in a robust (constrained) way (without substantially more # effort). There should be no difference between what's done below # and simply taking the spectral resolution to be that of the first # template spectrum (i.e., sc_tpl['SPECRES'].data[0]) sc_tpl_sres = numpy.mean(sc_tpl['SPECRES'].data, axis=0).ravel() # Instantiate the fitting class, including the mask that it should # use to flag the data. [[This mask should just be default...]] ppxf = PPXFFit(StellarContinuumModelBitMask()) # The following call performs the fit to the spectrum. Specifically # note that the code only fits the first two moments, uses an # 8th-order additive polynomial, and uses the 'no_global_wrej' # iteration mode. See # https://sdss-mangadap.readthedocs.io/en/latest/api/mangadap.proc.ppxffit.html#mangadap.proc.ppxffit.PPXFFit.fit cont_wave, cont_flux, cont_mask, cont_par \ = ppxf.fit(sc_tpl['WAVE'].data.copy(), sc_tpl['FLUX'].data.copy(), wave, flux, ferr, z, dispersion, iteration_mode='no_global_wrej', reject_boxcar=100, ensemble=False, velscale_ratio=sc_velscale_ratio, mask=sc_pixel_mask, matched_resolution=False, tpl_sres=sc_tpl_sres, obj_sres=sres, degree=8, moments=2, plot=fit_plots) # The returned objects from the fit are the wavelength, model, and # mask vectors and the record array with the best-fitting model # parameters. The datamodel of the best-fitting model parameters is # set by: # https://sdss-mangadap.readthedocs.io/en/latest/api/mangadap.proc.spectralfitting.html#mangadap.proc.spectralfitting.StellarKinematicsFit._per_stellar_kinematics_dtype # Remask the continuum fit sc_continuum = StellarContinuumModel.reset_continuum_mask_window( numpy.ma.MaskedArray(cont_flux, mask=cont_mask>0)) # Show the fit and residual if usr_plots: pyplot.plot(wave, flux[0,:], label='Data') pyplot.plot(wave, sc_continuum[0,:], label='Model') pyplot.plot(wave, flux[0,:] - sc_continuum[0,:], label='Resid') pyplot.legend() pyplot.xlabel('Wavelength') pyplot.ylabel('Flux') pyplot.show() #------------------------------------------------------------------- #------------------------------------------------------------------- # Get the emission-line moments using the fitted stellar continuum # Read the database that define the emission lines and passbands momdb = EmissionMomentsDB.from_key(elmom_key) # Measure the moments elmom = EmissionLineMoments.measure_moments(momdb, wave, flux, continuum=sc_continuum, redshift=z) #------------------------------------------------------------------- #------------------------------------------------------------------- # Fit the emission-line model # Set the emission-line continuum templates if different from those # used for the stellar continuum if sc_tpl_key == el_tpl_key: # If the keywords are the same, just copy over the previous # library ... el_tpl = sc_tpl el_tpl_sres = sc_tpl_sres # ... and the best fitting stellar kinematics stellar_kinematics = cont_par['KIN'] else: # If the template sets are different, we need to match the # spectral resolution to the galaxy data ... _sres = SpectralResolution(wave, sres[0,:], log10=True) el_tpl = TemplateLibrary(el_tpl_key, sres=_sres, velscale_ratio=el_velscale_ratio, spectral_step=spectral_step, log=True, hardcopy=False) el_tpl_sres = numpy.mean(el_tpl['SPECRES'].data, axis=0).ravel() # ... and use the corrected velocity dispersions. stellar_kinematics = cont_par['KIN'] stellar_kinematics[:,1] = numpy.ma.sqrt(numpy.square(cont_par['KIN'][:,1]) - numpy.square(cont_par['SIGMACORR_EMP'])) # Read the emission line fitting database emldb = EmissionLineDB.from_key(elfit_key) # Instantiate the fitting class emlfit = Sasuke(EmissionLineModelBitMask()) # Perform the fit efit_t = time.perf_counter() eml_wave, model_flux, eml_flux, eml_mask, eml_fit_par, eml_eml_par \ = emlfit.fit(emldb, wave, flux, obj_ferr=ferr, obj_mask=el_pixel_mask, obj_sres=sres, guess_redshift=z, guess_dispersion=dispersion, reject_boxcar=101, stpl_wave=el_tpl['WAVE'].data, stpl_flux=el_tpl['FLUX'].data, stpl_sres=el_tpl_sres, stellar_kinematics=stellar_kinematics, etpl_sinst_mode='offset', etpl_sinst_min=10., velscale_ratio=el_velscale_ratio, matched_resolution=False, mdegree=8, plot=fit_plots) print('TIME: ', time.perf_counter() - efit_t) # Line-fit metrics eml_eml_par = EmissionLineFit.line_metrics(emldb, wave, flux, ferr, model_flux, eml_eml_par, model_mask=eml_mask, bitmask=emlfit.bitmask) # Get the stellar continuum that was fit for the emission lines elcmask = eml_mask.ravel() > 0 goodpix = numpy.arange(elcmask.size)[numpy.invert(elcmask)] start, end = goodpix[0], goodpix[-1]+1 elcmask[start:end] = False el_continuum = numpy.ma.MaskedArray(model_flux - eml_flux, mask=elcmask.reshape(model_flux.shape)) # Plot the result if usr_plots: pyplot.plot(wave, flux[0,:], label='Data') pyplot.plot(wave, model_flux[0,:], label='Model') pyplot.plot(wave, el_continuum[0,:], label='EL Cont.') pyplot.plot(wave, sc_continuum[0,:], label='SC Cont.') pyplot.legend() pyplot.xlabel('Wavelength') pyplot.ylabel('Flux') pyplot.show() # Remeasure the emission-line moments with the new continuum new_elmom = EmissionLineMoments.measure_moments(momdb, wave, flux, continuum=el_continuum, redshift=z) # Compare the summed flux and Gaussian-fitted flux for all the # fitted lines if usr_plots: pyplot.scatter(emldb['restwave'], (new_elmom['FLUX']-eml_eml_par['FLUX']).ravel(), c=eml_eml_par['FLUX'].ravel(), cmap='viridis', marker='.', s=60, lw=0, zorder=4) pyplot.grid() pyplot.xlabel('Wavelength') pyplot.ylabel('Summed-Gaussian Difference') pyplot.show() #------------------------------------------------------------------- #------------------------------------------------------------------- # Measure the spectral indices if absindx_key is None or bhdindx_key is None: # Neither are defined, so we're done print('Elapsed time: {0} seconds'.format(time.perf_counter() - t)) return # Setup the databases that define the indices to measure absdb = None if absindx_key is None else AbsorptionIndexDB.from_key(absindx_key) bhddb = None if bhdindx_key is None else BandheadIndexDB.from_key(bhdindx_key) # Remove the modeled emission lines from the spectra flux_noeml = flux - eml_flux redshift = stellar_kinematics[:,0] / astropy.constants.c.to('km/s').value sp_indices = SpectralIndices.measure_indices(absdb, bhddb, wave, flux_noeml, ivar=ivar, redshift=redshift) # Calculate the velocity dispersion corrections # - Construct versions of the best-fitting model spectra with and without # the included dispersion continuum = Sasuke.construct_continuum_models(emldb, el_tpl['WAVE'].data, el_tpl['FLUX'].data, wave, flux.shape, eml_fit_par) continuum_dcnvlv = Sasuke.construct_continuum_models(emldb, el_tpl['WAVE'].data, el_tpl['FLUX'].data, wave, flux.shape, eml_fit_par, redshift_only=True) # - Get the dispersion corrections and fill the relevant columns of the # index table sp_indices['BCONT_MOD'], sp_indices['BCONT_CORR'], sp_indices['RCONT_MOD'], \ sp_indices['RCONT_CORR'], sp_indices['MCONT_MOD'], sp_indices['MCONT_CORR'], \ sp_indices['AWGT_MOD'], sp_indices['AWGT_CORR'], \ sp_indices['INDX_MOD'], sp_indices['INDX_CORR'], \ sp_indices['INDX_BF_MOD'], sp_indices['INDX_BF_CORR'], \ good_les, good_ang, good_mag, is_abs \ = SpectralIndices.calculate_dispersion_corrections(absdb, bhddb, wave, flux, continuum, continuum_dcnvlv, redshift=redshift, redshift_dcnvlv=redshift) # Apply the index corrections. This is only done here for the # Worthey/Trager definition of the indices, as an example corrected_indices = numpy.zeros(sp_indices['INDX'].shape, dtype=float) corrected_indices_err = numpy.zeros(sp_indices['INDX'].shape, dtype=float) # Unitless indices corrected_indices[good_les], corrected_indices_err[good_les] \ = SpectralIndices.apply_dispersion_corrections(sp_indices['INDX'][good_les], sp_indices['INDX_CORR'][good_les], err=sp_indices['INDX_ERR'][good_les]) # Indices in angstroms corrected_indices[good_ang], corrected_indices_err[good_ang] \ = SpectralIndices.apply_dispersion_corrections(sp_indices['INDX'][good_ang], sp_indices['INDX_CORR'][good_ang], err=sp_indices['INDX_ERR'][good_ang], unit='ang') # Indices in magnitudes corrected_indices[good_mag], corrected_indices_err[good_mag] \ = SpectralIndices.apply_dispersion_corrections(sp_indices['INDX'][good_mag], sp_indices['INDX_CORR'][good_mag], err=sp_indices['INDX_ERR'][good_mag], unit='mag') # Print the results for a few indices index_names = numpy.append(absdb['name'], bhddb['name']) print('-'*73) print(f'{"NAME":<8} {"Raw Index":>12} {"err":>12} {"Index Corr":>12} {"Index":>12} {"err":>12}') print(f'{"-"*8:<8} {"-"*12:<12} {"-"*12:<12} {"-"*12:<12} {"-"*12:<12} {"-"*12:<12}') for name in ['Hb', 'HDeltaA', 'Mgb', 'Dn4000']: i = numpy.where(index_names == name)[0][0] print(f'{name:<8} {sp_indices["INDX"][0,i]:12.4f} {sp_indices["INDX_ERR"][0,i]:12.4f} ' f'{sp_indices["INDX_CORR"][0,i]:12.4f} {corrected_indices[0,i]:12.4f} ' f'{corrected_indices_err[0,i]:12.4f}') print('-'*73) embed() print('Elapsed time: {0} seconds'.format(time.perf_counter() - t))
def main(): t = time.perf_counter() arg = parse_args() if not os.path.isfile(arg.inp): raise FileNotFoundError('No file: {0}'.format(arg.inp)) directory_path = os.getcwd( ) if arg.output_root is None else os.path.abspath(arg.output_root) if not os.path.isdir(directory_path): os.makedirs(directory_path) data_file = os.path.abspath(arg.inp) fit_file = os.path.join(directory_path, arg.out) flag_db = None if arg.spec_flags is None else os.path.abspath( arg.spec_flags) # Read the data spectral_step = 1e-4 wave, flux, ferr, sres, redshift, fit_spectrum = object_data( data_file, flag_db) nspec, npix = flux.shape dispersion = numpy.full(nspec, 100., dtype=numpy.float) # fit_spectrum[:] = False # fit_spectrum[0] = True # fit_spectrum[171] = True # fit_spectrum[791] = True # Mask spectra that should not be fit indx = numpy.any(numpy.logical_not(numpy.ma.getmaskarray(flux)), axis=1) & fit_spectrum flux[numpy.logical_not(indx), :] = numpy.ma.masked print('Read: {0}'.format(arg.inp)) print('Contains {0} spectra'.format(nspec)) print(' each with {0} pixels'.format(npix)) print('Fitting {0} spectra.'.format(numpy.sum(fit_spectrum))) #------------------------------------------------------------------- #------------------------------------------------------------------- # Fit the stellar continuum # Construct the template library sc_tpl = TemplateLibrary(arg.sc_tpl, match_resolution=False, velscale_ratio=arg.sc_vsr, spectral_step=spectral_step, log=True, hardcopy=False) # Set the spectral resolution sc_tpl_sres = numpy.mean(sc_tpl['SPECRES'].data, axis=0).ravel() # Set the pixel mask sc_pixel_mask = SpectralPixelMask(artdb=ArtifactDB.from_key('BADSKY'), emldb=EmissionLineDB.from_key('ELPMPL8')) # Instantiate the fitting class ppxf = PPXFFit(StellarContinuumModelBitMask()) # The following call performs the fit to the spectrum. Specifically # note that the code only fits the first two moments, uses an # 8th-order additive polynomial, and uses the 'no_global_wrej' # iteration mode. See # https://sdss-mangadap.readthedocs.io/en/latest/api/mangadap.proc.ppxffit.html#mangadap.proc.ppxffit.PPXFFit.fit cont_wave, cont_flux, cont_mask, cont_par \ = ppxf.fit(sc_tpl['WAVE'].data.copy(), sc_tpl['FLUX'].data.copy(), wave, flux, ferr, redshift, dispersion, iteration_mode='no_global_wrej', reject_boxcar=100, ensemble=False, velscale_ratio=arg.sc_vsr, mask=sc_pixel_mask, matched_resolution=False, tpl_sres=sc_tpl_sres, obj_sres=sres, degree=arg.sc_deg, moments=2) #, plot=True) if arg.sc_only: write(fit_file, wave, cont_flux, cont_mask, cont_par) print('Elapsed time: {0} seconds'.format(time.perf_counter() - t)) return # if numpy.any(cont_par['KIN'][:,1] < 0): # embed() # exit() #------------------------------------------------------------------- #------------------------------------------------------------------- #------------------------------------------------------------------- # Measure the emission-line moments # # Remask the continuum fit # sc_continuum = StellarContinuumModel.reset_continuum_mask_window( # numpy.ma.MaskedArray(cont_flux, mask=cont_mask>0)) # # Read the database that define the emission lines and passbands # momdb = EmissionMomentsDB.from_key(arg.el_band) # # Measure the moments # elmom = EmissionLineMoments.measure_moments(momdb, wave, flux, continuum=sc_continuum, # redshift=redshift) #------------------------------------------------------------------- #------------------------------------------------------------------- # Fit the emission-line model # Set the emission-line continuum templates if different from those # used for the stellar continuum if arg.sc_tpl == arg.el_tpl: # If the keywords are the same, just copy over the previous # library and the best fitting stellar kinematics el_tpl = sc_tpl el_tpl_sres = sc_tpl_sres stellar_kinematics = cont_par['KIN'].copy() else: # If the template sets are different, we need to match the # spectral resolution to the galaxy data and use the corrected # velocity dispersions. _sres = SpectralResolution(wave, sres[0, :], log10=True) el_tpl = TemplateLibrary(arg.el_tpl, sres=_sres, velscale_ratio=arg.el_vsr, spectral_step=spectral_step, log=True, hardcopy=False) el_tpl_sres = numpy.mean(el_tpl['SPECRES'].data, axis=0).ravel() stellar_kinematics = cont_par['KIN'].copy() stellar_kinematics[:, 1] = numpy.ma.sqrt( numpy.square(cont_par['KIN'][:, 1]) - numpy.square(cont_par['SIGMACORR_SRES'])).filled(0.0) # if numpy.any(cont_par['KIN'][:,1] < 0): # embed() # exit() # # if numpy.any(stellar_kinematics[:,1] < 0): # embed() # exit() # Mask the 5577 sky line el_pixel_mask = SpectralPixelMask(artdb=ArtifactDB.from_key('BADSKY')) # Read the emission line fitting database emldb = EmissionLineDB.from_key(arg.el_list) # Instantiate the fitting class emlfit = Sasuke(EmissionLineModelBitMask()) # TODO: Improve the initial velocity guess using the first moment... # Perform the fit elfit_time = time.perf_counter() model_wave, model_flux, eml_flux, model_mask, eml_fit_par, eml_eml_par \ = emlfit.fit(emldb, wave, flux, obj_ferr=ferr, obj_mask=el_pixel_mask, obj_sres=sres, guess_redshift=redshift, guess_dispersion=dispersion, reject_boxcar=101, stpl_wave=el_tpl['WAVE'].data, stpl_flux=el_tpl['FLUX'].data, stpl_sres=el_tpl_sres, stellar_kinematics=stellar_kinematics, etpl_sinst_mode='offset', etpl_sinst_min=10., velscale_ratio=arg.el_vsr, matched_resolution=False, mdegree=arg.el_deg, ensemble=False)#, plot=True) print('EML FIT TIME: ', time.perf_counter() - elfit_time) # Line-fit metrics (should this be done in the fit method?) eml_eml_par = EmissionLineFit.line_metrics(emldb, wave, flux, ferr, model_flux, eml_eml_par, model_mask=model_mask, bitmask=emlfit.bitmask) # Equivalent widths EmissionLineFit.measure_equivalent_width(wave, flux, emldb, eml_eml_par, bitmask=emlfit.bitmask, checkdb=False) # Measure the emission-line moments # - Model continuum continuum = StellarContinuumModel.reset_continuum_mask_window(model_flux - eml_flux) # - Updated redshifts fit_redshift = eml_eml_par['KIN'][:,numpy.where(emldb['name'] == 'Ha')[0][0],0] \ / astropy.constants.c.to('km/s').value # - Set the moment database momdb = EmissionMomentsDB.from_key(arg.el_band) # - Set the moment bitmask mombm = EmissionLineMomentsBitMask() # - Measure the moments elmom = EmissionLineMoments.measure_moments(momdb, wave, flux, ivar=numpy.ma.power(ferr, -2), continuum=continuum, redshift=fit_redshift, bitmask=mombm) # - Select the bands that are valid include_band = numpy.array([numpy.logical_not(momdb.dummy)]*nspec) \ & numpy.logical_not(mombm.flagged(elmom['MASK'], flag=['BLUE_EMPTY', 'RED_EMPTY'])) # - Set the line center at the center of the primary passband line_center = (1.0 + fit_redshift)[:, None] * momdb['restwave'][None, :] elmom['BMED'], elmom['RMED'], pos, elmom['EWCONT'], elmom['EW'], elmom['EWERR'] \ = emission_line_equivalent_width(wave, flux, momdb['blueside'], momdb['redside'], line_center, elmom['FLUX'], redshift=fit_redshift, line_flux_err=elmom['FLUXERR'], include_band=include_band) # - Flag non-positive measurements indx = include_band & numpy.logical_not(pos) elmom['MASK'][indx] = mombm.turn_on(elmom['MASK'][indx], 'NON_POSITIVE_CONTINUUM') # - Set the binids elmom['BINID'] = numpy.arange(nspec) elmom['BINID_INDEX'] = numpy.arange(nspec) write(fit_file, wave, cont_flux, cont_mask, cont_par, model_flux=model_flux, model_mask=model_mask, eml_flux=eml_flux, eml_fit_par=eml_fit_par, eml_eml_par=eml_eml_par, elmom=elmom) print('Elapsed time: {0} seconds'.format(time.perf_counter() - t))
def main(): select_file = 'repr/representative_spectra_selection_v2.fits' spec_file = 'repr/benchmark_spectra_v2.fits' flag_file = 'repr/representative_spectra_flags_v2.db' # mod_file = None # plot_file = 'repr/representative_spectra_v2.pdf' # mod_file = 'repr/benchmark_spectra_v2_model.fits' # plot_file = 'repr/representative_spectra_v2_model.pdf' # mod_file = 'repr/run5/run5_MILESHC_4_8_MASTARSSP_1_14_ELBMPL9_ELPMPL11.fits.gz' # plot_file = 'repr/representative_spectra_v2_model_run5_ssp_14_sig1.4.pdf' # mod_file = 'repr/run5/run5_MILESHC_4_8_MASTARSSP_1_14_ELBMPL9_ELPMPL11A.fits.gz' # plot_file = 'repr/representative_spectra_v2_model_run5_ssp_14_sig3.0.pdf' # mod_file = 'repr/run5/run5_MILESHC_4_8_MASTARSSP_1_14_ELBMPL9_ELPMPL11B.fits.gz' # plot_file = 'repr/representative_spectra_v2_model_run5_ssp_14_sigmix.pdf' mod_file = 'repr/run7/run7_MILESHC_4_8_MASTARSSP_1_14_ELBMPL9_ELPMPL11UPA.fits.gz' plot_file = 'repr/representative_spectra_v2_model_run7_ssp_14_sigmixup.pdf' select_hdu = fits.open(select_file) spec_hdu = fits.open(spec_file) mod_hdu = None if mod_file is None else fits.open(mod_file) nspec = spec_hdu['FLUX'].shape[0] restwave_limits = numpy.array([3575, 10300]) d4000_limits = numpy.array([3700, 4300]) mg_limits = numpy.array([5100, 5285]) halpha_limits = numpy.array([6460, 6676]) ca_limits = numpy.array([8450, 8750]) drp_bm = DRPFitsBitMask() cube_bm = DAPCubeBitMask() wave = spec_hdu['WAVE'].data flux = numpy.ma.MaskedArray(spec_hdu['FLUX'].data, mask=drp_bm.flagged( spec_hdu['MASK'].data, flag=['DONOTUSE', 'FORESTAR'])) if mod_hdu is None: model = numpy.ma.MaskedArray(spec_hdu['MODEL'].data, mask=cube_bm.flagged( spec_hdu['MODEL_MASK'].data, flag='NOMODEL')) cont = numpy.ma.MaskedArray( spec_hdu['MODEL'].data - spec_hdu['EMLINE'].data, mask=cube_bm.flagged(spec_hdu['MODEL_MASK'].data, flag='NOMODEL')) stellar = numpy.ma.MaskedArray(spec_hdu['STELLAR'].data, mask=cube_bm.flagged( spec_hdu['STELLAR_MASK'].data, flag='NOMODEL')) else: model = numpy.ma.MaskedArray(mod_hdu['MODEL'].data, mask=mod_hdu['MODEL_MASK'].data > 0) model = StellarContinuumModel.reset_continuum_mask_window(model) cont = numpy.ma.MaskedArray(mod_hdu['MODEL'].data - mod_hdu['EMLINE'].data, mask=mod_hdu['MODEL_MASK'].data > 0) cont = StellarContinuumModel.reset_continuum_mask_window(cont) stellar = numpy.ma.MaskedArray(mod_hdu['STELLAR'].data, mask=mod_hdu['STELLAR_MASK'].data > 0) stellar = StellarContinuumModel.reset_continuum_mask_window(stellar) if not os.path.isfile(flag_file): include_flags = numpy.ones(nspec, dtype=int) numpy.savetxt(flag_file, numpy.array([ select_hdu['PAR'].data['PLT'].astype(int), select_hdu['PAR'].data['IFU'].astype(int), select_hdu['PAR'].data['BIN'].astype(int), numpy.ones(nspec, dtype=int) ]).T, fmt=['%5d', '%5d', '%5d', '%3d'], header='{0:>3} {1:>5} {2:>5} {3:>3}'.format( 'PLT', 'IFU', 'BIN', 'SEL')) rc('font', size=8) with PdfPages(plot_file) as pdf: # j = 0 for i in range(nspec): print('{0}/{1}'.format((i + 1), nspec), end='\r') lambda_limits = restwave_limits * (1 + select_hdu['PAR'].data['Z'][i]) indx = numpy.logical_not(numpy.ma.getmaskarray(flux)[i,:]) \ & (wave > lambda_limits[0]) & (wave < lambda_limits[1]) if numpy.sum(indx) == 0: continue if numpy.sum(numpy.logical_not( numpy.ma.getmaskarray(model)[i, :])) == 0: continue mod_lim = [ numpy.ma.amin(model[i, indx]), numpy.ma.amax(model[i, indx]) ] Df = (mod_lim[1] - mod_lim[0]) * 1.5 flux_limits = numpy.mean(mod_lim) + numpy.array([-Df / 2, Df / 2]) if not numpy.all(numpy.isfinite(flux_limits)): embed() exit() fig = pyplot.figure() # Full spectrum ax = fig.add_axes([0.06, 0.45, 0.92, 0.5]) ax.minorticks_on() ax.tick_params(which='major', length=10, direction='in', top=True, right=True) ax.tick_params(which='minor', length=5, direction='in', top=True, right=True) ax.set_xlim(lambda_limits) ax.set_ylim(flux_limits) ax.grid(True, which='major', color='0.8', zorder=0, linestyle='-') ax.step(wave, flux[i, :], zorder=2, color='k', lw=0.5, where='mid') ax.plot(wave, stellar[i, :], zorder=3, color='C1', lw=1.0) ax.plot(wave, model[i, :], zorder=4, color='C3', lw=1.0) ax.plot(wave, cont[i, :], zorder=5, color='C9', lw=1.0) ax.text(-0.05, 0.5, r'$F_\lambda$', ha='center', va='center', transform=ax.transAxes, rotation='vertical') ax.text(0.5, -0.1, r'$\lambda_{\rm obs}\ [{\rm \AA}]$', ha='center', va='center', transform=ax.transAxes) ax.text(0.01, 1.03, '{0}: {1}-{2}-{3}; '.format( i, select_hdu['PAR'].data['PLT'][i], select_hdu['PAR'].data['IFU'][i], select_hdu['PAR'].data['BIN'][i]) + 'z={0:.4f}; '.format(select_hdu['PAR'].data['Z'][i]) + 'S/N={0:.1f}; '.format(select_hdu['PAR'].data['SNR'][i]) + r'$\sigma_{\ast,{\rm obs}}$=' + r'{0:.1f}; D4000={1:.1f}; H$\alpha$ EW={2:.1f}'.format( select_hdu['PAR'].data['SIGMA'][i], select_hdu['PAR'].data['D4000'][i], select_hdu['PAR'].data['HAEW'][i]), horizontalalignment='left', verticalalignment='center', transform=ax.transAxes) lambda_limits = d4000_limits * (1 + select_hdu['PAR'].data['Z'][i]) indx = numpy.logical_not(numpy.ma.getmaskarray(flux)[i,:]) \ & (wave > lambda_limits[0]) & (wave < lambda_limits[1]) mod_lim = [0,1] if numpy.sum(indx) == 0 \ else [numpy.ma.amin(model[i,indx]), numpy.ma.amax(model[i,indx])] Df = (mod_lim[1] - mod_lim[0]) * 1.5 flux_limits = numpy.mean(mod_lim) + numpy.array([-Df / 2, Df / 2]) ax = fig.add_axes([0.06, 0.08, 0.19, 0.27]) ax.minorticks_on() ax.tick_params(which='major', length=10, direction='in', top=True, right=True) ax.tick_params(which='minor', length=5, direction='in', top=True, right=True) ax.set_xlim(lambda_limits) ax.set_ylim(flux_limits) ax.grid(True, which='major', color='0.8', zorder=0, linestyle='-') ax.plot(wave, flux[i, :], zorder=2, color='k', lw=0.5) ax.plot(wave, stellar[i, :], zorder=3, color='C1', lw=1.0) ax.plot(wave, model[i, :], zorder=4, color='C3', lw=1.0) ax.plot(wave, cont[i, :], zorder=5, color='C9', lw=1.0) ax.text(0.5, -0.2, r'$\lambda_{\rm obs}\ [{\rm \AA}]$', ha='center', va='center', transform=ax.transAxes) lambda_limits = mg_limits * (1 + select_hdu['PAR'].data['Z'][i]) indx = numpy.logical_not(numpy.ma.getmaskarray(flux)[i,:]) \ & (wave > lambda_limits[0]) & (wave < lambda_limits[1]) mod_lim = [0,1] if numpy.sum(indx) == 0 \ else [numpy.ma.amin(model[i,indx]), numpy.ma.amax(model[i,indx])] Df = (mod_lim[1] - mod_lim[0]) * 1.5 flux_limits = numpy.mean(mod_lim) + numpy.array([-Df / 2, Df / 2]) ax = fig.add_axes([0.30, 0.08, 0.19, 0.27]) ax.minorticks_on() ax.tick_params(which='major', length=10, direction='in', top=True, right=True) ax.tick_params(which='minor', length=5, direction='in', top=True, right=True) ax.set_xlim(lambda_limits) ax.set_ylim(flux_limits) ax.grid(True, which='major', color='0.8', zorder=0, linestyle='-') ax.plot(wave, flux[i, :], zorder=2, color='k', lw=0.5) ax.plot(wave, stellar[i, :], zorder=3, color='C1', lw=1.0) ax.plot(wave, model[i, :], zorder=4, color='C3', lw=1.0) ax.plot(wave, cont[i, :], zorder=5, color='C9', lw=1.0) ax.text(0.5, -0.2, r'$\lambda_{\rm obs}\ [{\rm \AA}]$', ha='center', va='center', transform=ax.transAxes) lambda_limits = halpha_limits * (1 + select_hdu['PAR'].data['Z'][i]) indx = numpy.logical_not(numpy.ma.getmaskarray(flux)[i,:]) \ & (wave > lambda_limits[0]) & (wave < lambda_limits[1]) mod_lim = [0,1] if numpy.sum(indx) == 0 \ else [numpy.ma.amin(model[i,indx]), numpy.ma.amax(model[i,indx])] Df = (mod_lim[1] - mod_lim[0]) * 1.5 flux_limits = numpy.mean(mod_lim) + numpy.array([-Df / 2, Df / 2]) ax = fig.add_axes([0.54, 0.08, 0.19, 0.27]) ax.minorticks_on() ax.tick_params(which='major', length=10, direction='in', top=True, right=True) ax.tick_params(which='minor', length=5, direction='in', top=True, right=True) ax.set_xlim(lambda_limits) ax.set_ylim(flux_limits) ax.grid(True, which='major', color='0.8', zorder=0, linestyle='-') ax.plot(wave, flux[i, :], zorder=2, color='k', lw=0.5) ax.plot(wave, stellar[i, :], zorder=3, color='C1', lw=1.0) ax.plot(wave, model[i, :], zorder=4, color='C3', lw=1.0) ax.plot(wave, cont[i, :], zorder=5, color='C9', lw=1.0) ax.text(0.5, -0.2, r'$\lambda_{\rm obs}\ [{\rm \AA}]$', ha='center', va='center', transform=ax.transAxes) lambda_limits = ca_limits * (1 + select_hdu['PAR'].data['Z'][i]) indx = numpy.logical_not(numpy.ma.getmaskarray(flux)[i,:]) \ & (wave > lambda_limits[0]) & (wave < lambda_limits[1]) mod_lim = [0,1] if numpy.sum(indx) == 0 \ else [numpy.ma.amin(model[i,indx]), numpy.ma.amax(model[i,indx])] Df = (mod_lim[1] - mod_lim[0]) * 1.5 flux_limits = numpy.mean(mod_lim) + numpy.array([-Df / 2, Df / 2]) ax = fig.add_axes([0.78, 0.08, 0.19, 0.27]) ax.minorticks_on() ax.tick_params(which='major', length=10, direction='in', top=True, right=True) ax.tick_params(which='minor', length=5, direction='in', top=True, right=True) ax.set_xlim(lambda_limits) ax.set_ylim(flux_limits) ax.grid(True, which='major', color='0.8', zorder=0, linestyle='-') ax.plot(wave, flux[i, :], zorder=2, color='k', lw=0.5) ax.plot(wave, stellar[i, :], zorder=3, color='C1', lw=1.0) ax.plot(wave, model[i, :], zorder=4, color='C3', lw=1.0) ax.plot(wave, cont[i, :], zorder=5, color='C9', lw=1.0) ax.text(0.5, -0.2, r'$\lambda_{\rm obs}\ [{\rm \AA}]$', ha='center', va='center', transform=ax.transAxes) pdf.savefig(orientation='landscape') fig.clear() pyplot.close(fig) # j += 1 # if j == 10: # break print('{0}/{0}'.format(nspec))