コード例 #1
0
def test_prec_to_partial():
    """Testing prec_to_partial function"""
    shape = random.randint(1, 50)
    prec = my_mfd.random_spd(shape)
    partial = my_con.prec_to_partial(prec)
    assert_true(my_mfd.is_spd(partial))
    d = np.sqrt(np.diag(np.diag(prec)))
    assert_array_almost_equal(
    d.dot(partial).dot(d), -prec + 2 * np.diag(np.diag(prec)))
コード例 #2
0
def test_transform():  # TODO : class test for class CovEmbedding
    """Testing fit_transform method for class CovEmbedding"""
    n_subjects = random.randint(3, 50)
    shape = random.randint(1, 10)
    n_samples = 300
    covs = []
    signals = []
    for k in xrange(n_subjects):
        signal = np.random.randn(n_samples, shape)
        signals.append(signal)
        signal -= signal.mean(axis=0)
        covs.append((signal.T).dot(signal) / n_samples)
    for kind in ["correlation", "precision", "partial correlation", "tangent"]:
        estimators = {'kind': kind, 'cov_estimator': None}
        cov_embedding = my_con.CovEmbedding(**estimators)
        covs_transformed = cov_embedding.fit_transform(signals)

        # Generic
        assert_is_instance(covs_transformed, np.ndarray)
        assert_equal(len(covs_transformed), len(covs))

        for k, vec in enumerate(covs_transformed):
            assert_equal(vec.size, shape * (shape + 1) / 2)
            cov_new = my_con.vec_to_sym(vec)
            assert_true(my_mfd.is_spd(covs[k]))
            if estimators["kind"] == "tangent":
                assert_array_almost_equal(cov_new, cov_new.T)
                fre_sqrt = my_mfd.sqrtm(cov_embedding.mean_cov_)
                assert_true(my_mfd.is_spd(fre_sqrt))
                assert_true(my_mfd.is_spd(cov_embedding.whitening_))
                assert_array_almost_equal(
                cov_embedding.whitening_.dot(fre_sqrt), np.eye(shape))
                assert_array_almost_equal(
                fre_sqrt.dot(my_mfd.expm(cov_new)).dot(fre_sqrt), covs[k])
            if estimators["kind"] == "precision":
                assert_true(my_mfd.is_spd(cov_new))
                assert_array_almost_equal(cov_new.dot(covs[k]), np.eye(shape))
            if estimators["kind"] == "correlation":
                assert_true(my_mfd.is_spd(cov_new))
                d = np.sqrt(np.diag(np.diag(covs[k])))
                assert_array_almost_equal(d.dot(cov_new).dot(d), covs[k])
            if estimators["kind"] == "partial correlation":
                assert_true(my_mfd.is_spd(cov_new))
                prec = linalg.inv(covs[k])
                d = np.sqrt(np.diag(np.diag(prec)))
                assert_array_almost_equal(
                d.dot(cov_new).dot(d), -prec + 2 * np.diag(np.diag(prec)))