def sample(self, num_samples, context=None, batch_size=None): """Generates samples from the distribution. Samples can be generated in batches. Args: num_samples: int, number of samples to generate. context: Tensor or None, conditioning variables. If None, the context is ignored. batch_size: int or None, number of samples per batch. If None, all samples are generated in one batch. Returns: A Tensor containing the samples, with shape [num_samples, ...] if context is None, or [context_size, num_samples, ...] if context is given. """ if not various.is_positive_int(num_samples): raise TypeError("Number of samples must be a positive integer.") if context is not None: context = torch.as_tensor(context) if batch_size is None: return self._sample(num_samples, context) else: if not various.is_positive_int(batch_size): raise TypeError("Batch size must be a positive integer.") num_batches = num_samples // batch_size num_leftover = num_samples % batch_size samples = [ self._sample(batch_size, context) for _ in range(num_batches) ] if num_leftover > 0: samples.append(self._sample(num_leftover, context)) return torch.cat(samples, dim=0)
def __init__(self, permutation, dim=1): if permutation.ndimension() != 1: raise ValueError("Permutation must be a 1D tensor.") if not various.is_positive_int(dim): raise ValueError("dim must be a positive integer.") super().__init__() self._dim = dim self.register_buffer("_permutation", permutation)
def __init__(self, features, num_transforms): """Constructor. Args: features: int, dimensionality of the input. num_transforms: int, number of Householder transforms to use. Raises: TypeError: if arguments are not the right type. """ if not various.is_positive_int(features): raise TypeError("Number of features must be a positive integer.") if not various.is_positive_int(num_transforms): raise TypeError("Number of transforms must be a positive integer.") super().__init__() self.features = features self.num_transforms = num_transforms # TODO: are randn good initial values? self.q_vectors = nn.Parameter(torch.randn(num_transforms, features))
def __init__(self, features, using_cache=False): if not various.is_positive_int(features): raise TypeError("Number of features must be a positive integer.") super().__init__() self.features = features self.bias = nn.Parameter(torch.zeros(features)) # Caching flag and values. self.using_cache = using_cache self.cache = LinearCache()
def __init__(self, features, eps=1e-5, momentum=0.1, affine=True): if not various.is_positive_int(features): raise TypeError("Number of features must be a positive integer.") super().__init__() self.momentum = momentum self.eps = eps constant = np.log(np.exp(1 - eps) - 1) self.unconstrained_weight = nn.Parameter(constant * torch.ones(features)) self.bias = nn.Parameter(torch.zeros(features)) self.register_buffer("running_mean", torch.zeros(features)) self.register_buffer("running_var", torch.zeros(features))
def __init__(self, num_transforms, split_dim=1): """Constructor. Args: num_transforms: int, total number of transforms to be added. split_dim: dimension along which to split. """ if not various.is_positive_int(split_dim): raise TypeError("Split dimension must be a positive integer.") super().__init__() self._transforms = nn.ModuleList() self._output_shapes = [] self._num_transforms = num_transforms self._split_dim = split_dim
def __init__(self, features): """ Transform that performs activation normalization. Works for 2D and 4D inputs. For 4D inputs (images) normalization is performed per-channel, assuming BxCxHxW input shape. Reference: > D. Kingma et. al., Glow: Generative flow with invertible 1x1 convolutions, NeurIPS 2018. """ if not various.is_positive_int(features): raise TypeError("Number of features must be a positive integer.") super().__init__() self.initialized = False self.log_scale = nn.Parameter(torch.zeros(features)) self.shift = nn.Parameter(torch.zeros(features))
def __init__(self, features): """ Transform that performs activation normalization. Works for 2D and 4D inputs. For 4D inputs (images) normalization is performed per-channel, assuming BxCxHxW input shape. Reference: > D. Kingma et. al., Glow: Generative flow with invertible 1x1 convolutions, NeurIPS 2018. """ if not various.is_positive_int(features): raise TypeError("Number of features must be a positive integer.") super().__init__() self.initialized = False # TODO: this should be a buffer, but I don't want to ruin the already saved models by changing it now # self.register_buffer("initialized", torch.ones(1, dtype=torch.bool)) self.log_scale = nn.Parameter(torch.zeros(features)) self.shift = nn.Parameter(torch.zeros(features))
def __init__(self, features, dim=1): if not various.is_positive_int(features): raise ValueError("Number of features must be a positive integer.") super().__init__(torch.randperm(features), dim)