コード例 #1
0
ファイル: geometry.py プロジェクト: coallaoh/manim
    def round_corners(self, radius=0.5):
        vertices = self.get_vertices()
        arcs = []
        for v1, v2, v3 in adjacent_n_tuples(vertices, 3):
            vect1 = v2 - v1
            vect2 = v3 - v2
            unit_vect1 = normalize(vect1)
            unit_vect2 = normalize(vect2)
            angle = angle_between_vectors(vect1, vect2)
            # Negative radius gives concave curves
            angle *= np.sign(radius)
            # Distance between vertex and start of the arc
            cut_off_length = radius * np.tan(angle / 2)
            # Determines counterclockwise vs. clockwise
            sign = np.sign(np.cross(vect1, vect2)[2])
            arc = ArcBetweenPoints(
                v2 - unit_vect1 * cut_off_length,
                v2 + unit_vect2 * cut_off_length,
                angle=sign * angle
            )
            arcs.append(arc)

        self.clear_points()
        # To ensure that we loop through starting with last
        arcs = [arcs[-1], *arcs[:-1]]
        for arc1, arc2 in adjacent_pairs(arcs):
            self.append_points(arc1.points)
            line = Line(arc1.get_end(), arc2.get_start())
            # Make sure anchors are evenly distributed
            len_ratio = line.get_length() / arc1.get_arc_length()
            line.insert_n_curves(
                int(arc1.get_num_curves() * len_ratio)
            )
            self.append_points(line.get_points())
        return self
コード例 #2
0
    def round_corners(self, radius=0.5):
        vertices = self.get_vertices()
        arcs = []
        for v1, v2, v3 in adjacent_n_tuples(vertices, 3):
            vect1 = v2 - v1
            vect2 = v3 - v2
            unit_vect1 = normalize(vect1)
            unit_vect2 = normalize(vect2)
            angle = angle_between_vectors(vect1, vect2)
            # Negative radius gives concave curves
            angle *= np.sign(radius)
            # Distance between vertex and start of the arc
            cut_off_length = radius * np.tan(angle / 2)
            # Determines counterclockwise vs. clockwise
            sign = np.sign(np.cross(vect1, vect2)[2])
            arc = ArcBetweenPoints(v2 - unit_vect1 * cut_off_length,
                                   v2 + unit_vect2 * cut_off_length,
                                   angle=sign * angle)
            arcs.append(arc)

        self.clear_points()
        # To ensure that we loop through starting with last
        arcs = [arcs[-1], *arcs[:-1]]
        for arc1, arc2 in adjacent_pairs(arcs):
            self.append_points(arc1.points)
            line = Line(arc1.get_end(), arc2.get_start())
            # Make sure anchors are evenly distributed
            len_ratio = line.get_length() / arc1.get_arc_length()
            line.insert_n_curves(int(arc1.get_num_curves() * len_ratio))
            self.append_points(line.get_points())
        return self
コード例 #3
0
    def round_corners(self, radius=0.5):
        vertices = self.get_vertices()
        arcs = []
        for v1, v2, v3 in adjacent_n_tuples(vertices, 3):
            vect1 = v2 - v1
            vect2 = v3 - v2
            unit_vect1 = normalize(vect1)
            unit_vect2 = normalize(vect2)
            angle = angle_between_vectors(vect1, vect2)
            # Negative radius gives concave curves
            angle *= np.sign(radius)
            # Distance between vertex and start of the arc
            cut_off_length = radius * np.tan(angle / 2)
            # Determines counterclockwise vs. clockwise
            sign = np.sign(np.cross(vect1, vect2)[2])
            arcs.append(
                ArcBetweenPoints(v2 - unit_vect1 * cut_off_length,
                                 v2 + unit_vect2 * cut_off_length,
                                 angle=sign * angle))

        self.clear_points()
        # To ensure that we loop through starting with last
        arcs = [arcs[-1], *arcs[:-1]]
        for arc1, arc2 in adjacent_pairs(arcs):
            self.append_points(arc1.points)
            self.add_line_to(arc2.get_start())
        return self