def test_Q(self): ConvertWANDSCDtoQTest_out=ConvertWANDSCDtoQ('ConvertWANDSCDtoQTest_data',BinningDim0='-8.08,8.08,101', BinningDim1='-0.88,0.88,11',BinningDim2='-8.08,8.08,101',NormaliseBy='None') self.assertTrue(ConvertWANDSCDtoQTest_out) s = ConvertWANDSCDtoQTest_out.getSignalArray() self.assertAlmostEqual(np.nanmax(s), 8.97233331213612) self.assertAlmostEqual(np.nanargmax(s), 22780) self.assertEqual(ConvertWANDSCDtoQTest_out.getNumDims(), 3) self.assertEqual(ConvertWANDSCDtoQTest_out.getNPoints(), 112211) d0 = ConvertWANDSCDtoQTest_out.getDimension(0) self.assertEqual(d0.name, 'Q_sample_x') self.assertEqual(d0.getNBins(), 101) self.assertAlmostEquals(d0.getMinimum(), -8.08, 5) self.assertAlmostEquals(d0.getMaximum(), 8.08, 5) d1 = ConvertWANDSCDtoQTest_out.getDimension(1) self.assertEqual(d1.name, 'Q_sample_y') self.assertEqual(d1.getNBins(), 11) self.assertAlmostEquals(d1.getMinimum(), -0.88, 5) self.assertAlmostEquals(d1.getMaximum(), 0.88, 5) d2 = ConvertWANDSCDtoQTest_out.getDimension(2) self.assertEqual(d2.name, 'Q_sample_z') self.assertEqual(d2.getNBins(), 101) self.assertAlmostEquals(d2.getMinimum(), -8.08, 5) self.assertAlmostEquals(d2.getMaximum(), 8.08, 5) self.assertEqual(ConvertWANDSCDtoQTest_out.getNumExperimentInfo(), 1) ConvertWANDSCDtoQTest_out.delete()
def test_Q(self): ConvertWANDSCDtoQTest_out=ConvertWANDSCDtoQ('ConvertWANDSCDtoQTest_data',BinningDim0='-8.08,8.08,101', BinningDim1='-0.88,0.88,11',BinningDim2='-8.08,8.08,101',NormaliseBy='None') self.assertTrue(ConvertWANDSCDtoQTest_out) s = ConvertWANDSCDtoQTest_out.getSignalArray() self.assertAlmostEqual(np.nanmax(s), 8.97233331213612) self.assertAlmostEqual(np.nanargmax(s), 22780) self.assertEquals(ConvertWANDSCDtoQTest_out.getNumDims(), 3) self.assertEquals(ConvertWANDSCDtoQTest_out.getNPoints(), 112211) d0 = ConvertWANDSCDtoQTest_out.getDimension(0) self.assertEquals(d0.name, 'Q_sample_x') self.assertEquals(d0.getNBins(), 101) self.assertAlmostEquals(d0.getMinimum(), -8.08, 5) self.assertAlmostEquals(d0.getMaximum(), 8.08, 5) d1 = ConvertWANDSCDtoQTest_out.getDimension(1) self.assertEquals(d1.name, 'Q_sample_y') self.assertEquals(d1.getNBins(), 11) self.assertAlmostEquals(d1.getMinimum(), -0.88, 5) self.assertAlmostEquals(d1.getMaximum(), 0.88, 5) d2 = ConvertWANDSCDtoQTest_out.getDimension(2) self.assertEquals(d2.name, 'Q_sample_z') self.assertEquals(d2.getNBins(), 101) self.assertAlmostEquals(d2.getMinimum(), -8.08, 5) self.assertAlmostEquals(d2.getMaximum(), 8.08, 5) self.assertEqual(ConvertWANDSCDtoQTest_out.getNumExperimentInfo(), 1) ConvertWANDSCDtoQTest_out.delete()
def test_Q_norm(self): ConvertWANDSCDtoQTest_out = ConvertWANDSCDtoQ('ConvertWANDSCDtoQTest_data',NormalisationWorkspace='ConvertWANDSCDtoQTest_norm', BinningDim0='-8.08,8.08,101',BinningDim1='-0.88,0.88,11',BinningDim2='-8.08,8.08,101') s = ConvertWANDSCDtoQTest_out.getSignalArray() self.assertAlmostEqual(np.nanmax(s), 7.476944426780101) self.assertAlmostEqual(np.nanargmax(s), 22780) ConvertWANDSCDtoQTest_out.delete()
def test_HKL_norm_and_KeepTemporary(self): ConvertWANDSCDtoQTest_out = ConvertWANDSCDtoQ( 'ConvertWANDSCDtoQTest_data', NormalisationWorkspace='ConvertWANDSCDtoQTest_norm', Frame='HKL', KeepTemporaryWorkspaces=True, BinningDim0='-8.08,8.08,101', BinningDim1='-8.08,8.08,101', BinningDim2='-8.08,8.08,101', Uproj='1,1,0', Vproj='1,-1,0', Wproj='0,0,1') self.assertTrue(ConvertWANDSCDtoQTest_out) self.assertTrue(mtd.doesExist('ConvertWANDSCDtoQTest_out')) self.assertTrue(mtd.doesExist('ConvertWANDSCDtoQTest_out_data')) self.assertTrue( mtd.doesExist('ConvertWANDSCDtoQTest_out_normalization')) s = ConvertWANDSCDtoQTest_out.getSignalArray() self.assertAlmostEqual(np.nanmax(s), 4.646855396509936) self.assertAlmostEqual(np.nanargmax(s), 443011) self.assertEqual(ConvertWANDSCDtoQTest_out.getNumDims(), 3) self.assertEqual(ConvertWANDSCDtoQTest_out.getNPoints(), 101**3) d0 = ConvertWANDSCDtoQTest_out.getDimension(0) self.assertEqual(d0.name, '[H,H,0]') self.assertEqual(d0.getNBins(), 101) self.assertAlmostEquals(d0.getMinimum(), -8.08, 5) self.assertAlmostEquals(d0.getMaximum(), 8.08, 5) d1 = ConvertWANDSCDtoQTest_out.getDimension(1) self.assertEqual(d1.name, '[H,-H,0]') self.assertEqual(d1.getNBins(), 101) self.assertAlmostEquals(d1.getMinimum(), -8.08, 5) self.assertAlmostEquals(d1.getMaximum(), 8.08, 5) d2 = ConvertWANDSCDtoQTest_out.getDimension(2) self.assertEqual(d2.name, '[0,0,L]') self.assertEqual(d2.getNBins(), 101) self.assertAlmostEquals(d2.getMinimum(), -8.08, 5) self.assertAlmostEquals(d2.getMaximum(), 8.08, 5) self.assertEqual(ConvertWANDSCDtoQTest_out.getNumExperimentInfo(), 1) ConvertWANDSCDtoQTest_out.delete()
def test_HKL_norm_and_KeepTemporary(self): ConvertWANDSCDtoQTest_out = ConvertWANDSCDtoQ('ConvertWANDSCDtoQTest_data',NormalisationWorkspace='ConvertWANDSCDtoQTest_norm', Frame='HKL',KeepTemporaryWorkspaces=True,BinningDim0='-8.08,8.08,101', BinningDim1='-8.08,8.08,101',BinningDim2='-8.08,8.08,101', Uproj='1,1,0',Vproj='1,-1,0',Wproj='0,0,1') self.assertTrue(ConvertWANDSCDtoQTest_out) self.assertTrue(mtd.doesExist('ConvertWANDSCDtoQTest_out')) self.assertTrue(mtd.doesExist('ConvertWANDSCDtoQTest_out_data')) self.assertTrue(mtd.doesExist('ConvertWANDSCDtoQTest_out_normalization')) s = ConvertWANDSCDtoQTest_out.getSignalArray() self.assertAlmostEqual(np.nanmax(s), 4.646855396509936) self.assertAlmostEqual(np.nanargmax(s), 443011) self.assertEquals(ConvertWANDSCDtoQTest_out.getNumDims(), 3) self.assertEquals(ConvertWANDSCDtoQTest_out.getNPoints(), 101**3) d0 = ConvertWANDSCDtoQTest_out.getDimension(0) self.assertEquals(d0.name, '[H,H,0]') self.assertEquals(d0.getNBins(), 101) self.assertAlmostEquals(d0.getMinimum(), -8.08, 5) self.assertAlmostEquals(d0.getMaximum(), 8.08, 5) d1 = ConvertWANDSCDtoQTest_out.getDimension(1) self.assertEquals(d1.name, '[H,-H,0]') self.assertEquals(d1.getNBins(), 101) self.assertAlmostEquals(d1.getMinimum(), -8.08, 5) self.assertAlmostEquals(d1.getMaximum(), 8.08, 5) d2 = ConvertWANDSCDtoQTest_out.getDimension(2) self.assertEquals(d2.name, '[0,0,L]') self.assertEquals(d2.getNBins(), 101) self.assertAlmostEquals(d2.getMinimum(), -8.08, 5) self.assertAlmostEquals(d2.getMaximum(), 8.08, 5) self.assertEqual(ConvertWANDSCDtoQTest_out.getNumExperimentInfo(), 1) ConvertWANDSCDtoQTest_out.delete()
def test_COP(self): ConvertWANDSCDtoQTest_out = ConvertWANDSCDtoQ( 'ConvertWANDSCDtoQTest_data', BinningDim0='-8.08,8.08,101', BinningDim1='-1.68,1.68,21', BinningDim2='-8.08,8.08,101', NormaliseBy='None') ConvertWANDSCDtoQTest_cop = ConvertWANDSCDtoQ( 'ConvertWANDSCDtoQTest_data', BinningDim0='-8.08,8.08,101', BinningDim1='-1.68,1.68,21', BinningDim2='-8.08,8.08,101', NormaliseBy='None', ObliquityParallaxCoefficient=1.5) self.assertTrue(ConvertWANDSCDtoQTest_out) self.assertTrue(ConvertWANDSCDtoQTest_cop) Test_out = ConvertWANDSCDtoQTest_out.getSignalArray().copy() Test_cop = ConvertWANDSCDtoQTest_cop.getSignalArray().copy() x, y, z = np.meshgrid(np.linspace(-8, 8, 101), np.linspace(-1.6, 1.6, 21), np.linspace(-8, 8, 101), indexing='ij') Test_out_max_Qy = y[~np.isnan(Test_out)].max() Test_cop_max_Qy = y[~np.isnan(Test_cop)].max() # Test whether Qy is scaled by ObliquityParallaxCoefficient correctly proportion = Test_cop_max_Qy / Test_out_max_Qy self.assertAlmostEquals(proportion, 1.5, 5) ConvertWANDSCDtoQTest_out.delete() ConvertWANDSCDtoQTest_cop.delete()