def test_parse_fit_table_correctly_formats_the_table(self): peaks = [(35.2, 0.4), (25.03, 0.1), (10.03, 0.05)] peaks += [(20.003, 0.004), (75.15, 0.2), (5.2, 0.05)] fit_table = self.simulate_fit_parameter_output(peaks, 100.034) data_table = CreateEmptyTableWorkspace() to_refit = self.alg_instance.parse_fit_table(fit_table, data_table, refit=False) self.assertEqual(to_refit, []) self.assertEqual(data_table.getColumnNames(), self.peak_table_header) np.testing.assert_almost_equal(data_table.column(0), [25.03, 75.15], 5) np.testing.assert_almost_equal(data_table.column(1), [0.1, 0.2], 5) np.testing.assert_almost_equal(data_table.column(2), [35.2, 20.003], 5) np.testing.assert_almost_equal(data_table.column(3), [0.4, 0.004], 5) np.testing.assert_almost_equal(data_table.column(4), [10.03, 5.2], 5) np.testing.assert_almost_equal(data_table.column(5), [0.05, 0.05], 5)
def test_parse_fit_table_marks_peaks_for_refitting_if_error_larger_than_value( self): peaks = [(35.2, 0.4), (25.03, 0.1), (10.03, 0.05)] peaks += [(20.003, 40.22), (75.15, 0.2), (5.2, np.NaN)] fit_table = self.simulate_fit_parameter_output(peaks, 100.034) data_table = CreateEmptyTableWorkspace() to_refit = self.alg_instance.parse_fit_table(fit_table, data_table, refit=True) self.assertEqual(data_table.getColumnNames(), self.peak_table_header) np.testing.assert_almost_equal(data_table.column(0), [25.03], 5) np.testing.assert_almost_equal(data_table.column(1), [0.1], 5) np.testing.assert_almost_equal(data_table.column(2), [35.2], 5) np.testing.assert_almost_equal(data_table.column(3), [0.4], 5) np.testing.assert_almost_equal(data_table.column(4), [10.03], 5) np.testing.assert_almost_equal(data_table.column(5), [0.05], 5) np.testing.assert_almost_equal(to_refit, [(75.15, 20.003, 5.2)], 5)