コード例 #1
0
ファイル: fsm.py プロジェクト: splhack/loam
from loam.boards.icestick import IceStick

icestick = IceStick()
icestick.Clock.on()
for i in range(8):
    icestick.J3[i].output().on()

main = icestick.main()

valid = 1

counter = mantle.CounterModM(103, 8)
baud = counter.COUT

count = mantle.Counter(4, has_ce=True, has_reset=True)
done = mantle.Decode(15, 4)(count.O)

run = mantle.DFF(has_ce=True)
run_n = mantle.LUT3([0, 0, 1, 0, 1, 0, 1, 0])
run_n(done, valid, run.O)
run(run_n, ce=baud)

reset = mantle.LUT2(mantle.I0 & ~mantle.I1)(done, run)
count(ce=baud, reset=reset)

m.wire(main.CLKIN, main.J3[0])
m.wire(baud, main.J3[1])
m.wire(run, main.J3[2])
m.wire(done, main.J3[3])
m.wire(count.O, main.J3[4:8])
コード例 #2
0
 def definition(io):
     # IF - get cycle_id, label_index_id
     controller = Controller()
     reg_1_cycle = mantle.Register(n)
     reg_1_control = mantle.DFF(init=1)
     wire(io.CLK, controller.CLK)
     wire(io.CLK, reg_1_cycle.CLK)
     wire(io.CLK, reg_1_control.CLK)
     reg_1_idx = controller.IDX
     wire(controller.CYCLE, reg_1_cycle.I)
     wire(1, reg_1_control.I)
     # RR - get weight block, image block of N bits
     readROM = ReadRom()
     wire(reg_1_idx, readROM.IDX)
     wire(reg_1_cycle.O, readROM.CYCLE)
     reg_2 = mantle.Register(N + b + n)
     reg_2_control = mantle.DFF()
     reg_2_weight = readROM.WEIGHT
     wire(io.CLK, reg_2.CLK)
     wire(io.CLK, readROM.CLK)
     wire(io.CLK, reg_2_control.CLK)
     wire(readROM.IMAGE, reg_2.I[:N])
     wire(reg_1_idx, reg_2.I[N:N + b])
     wire(reg_1_cycle.O, reg_2.I[N + b:])
     wire(reg_1_control.O, reg_2_control.I)
     # EX - NXOr for multiplication, pop count and accumulate the result for activation
     multiplier = mantle.NXOr(height=2, width=N)
     bit_counter = DefineBitCounter(N)()
     adder = mantle.Add(n_bc_adder, cin=False, cout=False)
     mux_for_adder_0 = mantle.Mux(height=2, width=n_bc_adder)
     mux_for_adder_1 = mantle.Mux(height=2, width=n_bc_adder)
     reg_3_1 = mantle.Register(n_bc_adder)
     reg_3_2 = mantle.Register(b + n)
     wire(io.CLK, reg_3_1.CLK)
     wire(io.CLK, reg_3_2.CLK)
     wire(reg_2_weight, multiplier.I0)
     wire(reg_2.O[:N], multiplier.I1)
     wire(multiplier.O, bit_counter.I)
     wire(bits(0, n_bc_adder), mux_for_adder_0.I0)
     wire(bit_counter.O, mux_for_adder_0.I1[:n_bc])
     if n_bc_adder > n_bc:
         wire(bits(0, n_bc_adder - n_bc), mux_for_adder_0.I1[n_bc:])
     # only when data read is ready (i.e. control signal is high), accumulate the pop count result
     wire(reg_2_control.O, mux_for_adder_0.S)
     wire(reg_3_1.O, mux_for_adder_1.I0)
     wire(bits(0, n_bc_adder), mux_for_adder_1.I1)
     if n == 4:
         comparison_3 = SB_LUT4(LUT_INIT=int('0'*15+'1', 2))
         wire(reg_2.O[N+b:], bits([comparison_3.I0, comparison_3.I1, comparison_3.I2, comparison_3.I3]))
     else:
         comparison_3 = mantle.EQ(n)
         wire(reg_2.O[N+b:], comparison_3.I0)
         wire(bits(0, n), comparison_3.I1)
     wire(comparison_3.O, mux_for_adder_1.S)
     wire(mux_for_adder_0.O, adder.I0)
     wire(mux_for_adder_1.O, adder.I1)
     wire(adder.O, reg_3_1.I)
     wire(reg_2.O[N:], reg_3_2.I)
     # CF - classify the image
     classifier = Classifier()
     reg_4 = mantle.Register(n + b)
     reg_4_idx = classifier.O
     wire(io.CLK, classifier.CLK)
     wire(io.CLK, reg_4.CLK)
     wire(reg_3_1.O, classifier.I)
     wire(reg_3_2.O[:b], classifier.IDX)
     wire(reg_3_2.O, reg_4.I)
     # WB - wait to show the result until the end
     reg_5 = mantle.Register(b, has_ce=True)
     comparison_5_1 = mantle.EQ(b)
     comparison_5_2 = mantle.EQ(n)
     and_gate = mantle.And()
     wire(io.CLK, reg_5.CLK)
     wire(reg_4_idx, reg_5.I)
     wire(reg_4.O[:b], comparison_5_1.I0)
     wire(bits(num_classes - 1, b), comparison_5_1.I1)
     wire(reg_4.O[b:], comparison_5_2.I0)
     wire(bits(num_cycles - 1, n), comparison_5_2.I1)
     wire(comparison_5_1.O, and_gate.I0)
     wire(comparison_5_2.O, and_gate.I1)
     wire(and_gate.O, reg_5.CE)
     wire(reg_5.O, io.O)
     # latch the light indicating the end
     reg_6 = mantle.DFF()
     wire(io.CLK, reg_6.CLK)
     or_gate = mantle.Or()
     wire(and_gate.O, or_gate.I0)
     wire(reg_6.O, or_gate.I1)
     wire(or_gate.O, reg_6.I)
     wire(reg_6.O, io.D)
コード例 #3
0
    def definition(cam):
        edge_f = falling(cam.SCK)
        edge_r = rising(cam.SCK)

        # ROM to store commands
        rom_index = mantle.Counter(4, has_ce=True)
        rom = ROM16(4, init, rom_index.O)

        # Message length is 16 bits, setup counter to generate done signal
        # after EOM
        done_counter = mantle.Counter(5, has_ce=True, has_reset=True)
        count = done_counter.O
        done = mantle.Decode(16, 5)(count)

        # State machine to generate run signal (enable)
        run = mantle.DFF(has_ce=True)
        run_n = mantle.LUT3([0, 0, 1, 0, 1, 0, 1, 0])
        run_n(done, trigger, run)
        run(run_n)
        m.wire(edge_f, run.CE)

        # Reset the message length counter after done
        run_reset = mantle.LUT2(I0 | ~I1)(done, run)
        done_counter(CE=edge_r, RESET=run_reset)

        # State variables for high-level state machine
        ready = mantle.LUT2(~I0 & I1)(run, edge_f)
        start = mantle.ULE(4)(rom_index.O, m.uint(3, 4))
        burst = mantle.UGE(4)(rom_index.O, m.uint(9, 4))

        # Shift register to store 16-bit command|data to send
        mosi = mantle.PISO(16, has_ce=True)
        # SPI enable is negative of load-don't load and shift out data at the
        # same time
        enable = mantle.LUT3(I0 & ~I1 & ~I2)(trigger, run, burst)
        mosi(~burst, rom.O, enable)
        m.wire(edge_f, mosi.CE)

        # Shit register to read in 8-bit data
        miso = mantle.SIPO(8, has_ce=True)
        miso(cam.MISO)
        valid = mantle.LUT2(~I0 & I1)(enable, edge_r)
        m.wire(valid, miso.CE)

        # Capture done state variable
        cap_done = mantle.SRFF(has_ce=True)
        cap_done(mantle.EQ(8)(miso.O, m.bits(0x08, 8)), 0)
        m.wire(enable & edge_r, cap_done.CE)

        # Use state variables to determine what commands are sent (how)
        increment = mantle.LUT4(I0 & (I1 | I2) & ~I3)(ready, start, cap_done,
                                                      burst)
        m.wire(increment, rom_index.CE)

        # wire outputs
        m.wire(enable, cam.EN)
        m.wire(mosi.O, cam.MOSI)
        m.wire(miso.O, cam.DATA)
        m.wire(burst, cam.VALID)

        # --------------------------UART OUTPUT---------------------------- #

        # run UART at 2x SPI rate to allow it to keep up
        baud = edge_r | edge_f

        # reset when SPI burst read (image transfer) begins
        ff = mantle.FF(has_ce=True)
        m.wire(edge_r, ff.CE)
        u_reset = mantle.LUT2(I0 & ~I1)(burst, ff(burst))

        # UART data out every 8 bits
        u_counter = mantle.CounterModM(8, 4, has_ce=True, has_reset=True)
        u_counter(CE=edge_r, RESET=u_reset)
        load = burst & rising(u_counter.COUT)

        # generate signal for when transfer is done
        data_count = mantle.Counter(18, has_ce=True)
        tx_done = mantle.SRFF(has_ce=True)
        # transfer has size 153600 bytes, first 2 bytes are ignored
        tx_done(mantle.EQ(18)(data_count.O, m.bits(tf_size + 2, 18)), 0)
        m.wire(load, tx_done.CE)
        m.wire(load, data_count.CE)

        # wire output
        m.wire(tx_done, cam.DONE)

        uart = UART(8)
        uart_load = mantle.LUT2(I0 & ~I1)(load, tx_done)
        uart(CLK=cam.CLK, BAUD=baud, DATA=miso, LOAD=uart_load)

        # wire output
        m.wire(uart, cam.UART)