コード例 #1
0
    def __init__(self, shot):

        self.shot = shot
        # load the geometry
        self._geometry()
        # open the shotfile
        self.Ioc = dd.shotfile('IOC', self.shot)
        # read and create the attribute dictionary
        self._read()
        # close all the stuff
        self.Ioc.close()
        # open and read available gas information
        self.Uvs = dd.shotfile('UVS', self.shot)
        self._valves()
        self._readGas()
        self.Uvs.close()
        # now the directory where eventually the neutrals resides
        try:
            _path = os.path.abspath(
                os.path.join(
                    os.path.join(__file__, '../../../..'),
                    'Experiments/AUG/analysis/data/neutrals/%5i' % self.shot))
            data = numpy.load(_path + '/n0_avg.npy')
            self.n0 = data[:, 0]
            self.n0Err = data[:, 1]
            self.n0Time = numpy.loadtxt(_path + '/time_brillanza.txt')
        except:
            logging.warning('File not found')
            pass

        # now also the equilibrium since it will be useful for
        # the plot of gauges and valves location
        self.Eq = equilibrium.equilibrium(device='AUG', time=2, shot=self.shot)
        self.rg, self.zg = map_equ.get_gc()
コード例 #2
0
 def plotGeometry(self, time=3):
     """
     Plot the geometry of the different LOS in the divertor region
     with the corresponding equilibrium.
     """
     self.Eq.set_time(time)
     rVessel, zVessel = map_equ.get_gc()
     fig, ax = mpl.pylab.subplots(figsize=(10, 8), nrows=1, ncols=1)
     fig.subplots_adjust(right=0.8)
     for key in rVessel.iterkeys():
         ax.plot(rVessel[key], zVessel[key], 'k', lw=1.5)
     ax.contour(self.Eq.R,
                self.Eq.Z,
                self.Eq.psiN,
                np.linspace(0.1, 0.95, num=10),
                colors='grey',
                linestyles='-')
     ax.contour(self.Eq.R,
                self.Eq.Z,
                self.Eq.psiN, [1],
                colors='r',
                linewidths=2)
     ax.contour(self.Eq.R,
                self.Eq.Z,
                self.Eq.psiN,
                np.linspace(1.01, 1.05, num=4),
                colors='grey',
                linestyles='--')
     # adess facciamo il ciclo sulle LoS salvate e
     # costruiamo una legenda a dx
     ax.set_color_cycle(palettable.tableau.Tableau_20.mpl_colors)
     for name in self.Los.iterkeys():
         ax.plot([self.Los[name]['R1'], self.Los[name]['R2']],
                 [self.Los[name]['Z1'], self.Los[name]['Z2']],
                 label=name,
                 lw=2)
     ax.legend(loc='upper center',
               numpoints=1,
               frameon=False,
               bbox_to_anchor=(0.5, 1.2),
               fontsize=14,
               ncol=3)
     ax.set_aspect('equal')
     ax.set_xlim([0.7, 2.])
     ax.set_ylim([-1.5, -0.5])
コード例 #3
0
 def _loadeq(self):
     # loading the equilibrium
     self.Eqm = map_equ.equ_map()
     status = self.Eqm.Open(self.shot, diag='EQH')
     self.Eqm._read_scalars()
     self.Eqm._read_profiles()
     self.Eqm._read_pfm()
     # load the wall for aug
     self.rg, self.zg = map_equ.get_gc()
     self._psi = self.Eqm.pfm.transpose()
     self._time_array = self.Eqm.t_eq
     nr = self._psi.shape[0]
     nz = self._psi.shape[1]
     self._r = self.Eqm.Rmesh
     self._z = self.Eqm.Zmesh
     self._psi_axis = self.Eqm.psi0
     self._psi_bnd = self.Eqm.psix
     # get the fpol in similar way
     # as done in eqtools
     self._jpol = self.Eqm.jpol
     # these are the lower xpoints
     self._rxpl = self.Eqm.ssq['Rxpu']
     self._zxpl = self.Eqm.ssq['Zxpu']
     # read also the upper xpoint
     self._rxpu = self.Eqm.ssq['Rxpo']
     self._zxpu = self.Eqm.ssq['Zxpo']
     # R magnetic axis
     self._axisr = self.Eqm.ssq['Rmag']
     # Z magnetic axis
     self._axisz = self.Eqm.ssq['Zmag']
     # eqm does not load the RBphi on axis
     Mai = dd.shotfile('MAI', self.shot)
     self.Rcent = 1.65
     # we want to interpolate on the same time basis
     Spl = UnivariateSpline(Mai('BTF').time, Mai('BTF').data, s=0)
     self._bphi = Spl(self._time_array) * self.Rcent
     Mai.close()
     Mag = dd.shotfile('MAG', self.shot)
     Spl = UnivariateSpline(Mag('Ipa').time, Mag('Ipa').data, s=0)
     self._cplasma = Spl(self._time_array)
     # we want to load also the plasma curent
     # now define the psiN
     self._psiN = (self._psi-self._psi_axis[:, np.newaxis, np.newaxis])/ \
         (self._psi_bnd[:, np.newaxis, np.newaxis]-self._psi_axis[:, np.newaxis, np.newaxis])
コード例 #4
0
ファイル: equilibrium.py プロジェクト: nrnishta/topic21
    def plot_flux(self,
                  col_levels=None,
                  Nlines=20,
                  axes=None,
                  show=True,
                  title=None,
                  colorbar=True):
        from copy import deepcopy as copy
        """ 
        Contour plot of the equilibrium poloidal flux

        keywords:
            t = int         time index to plot flux at
            col_levels = []     array storing contour levels for color plot
            Nlines = int        number of contour lines to display
        """
        import matplotlib.pyplot as plt
        #Set contour levels
        if self.psi is not None:
            if col_levels is None:
                col_levels = np.linspace(np.min(self.psi), np.max(self.psi),
                                         100)

            if axes is None:
                axes = plt.gca()
            else:
                show = False
            im = axes.contourf(self.R, self.Z, self.psi, levels=col_levels)
            if colorbar: cbar = plt.colorbar(im, format='%.3f', ax=axes)
            axes.contour(self.R, self.Z, self.psi, Nlines, colors='k')
            axes.contour(self.R,
                         self.Z,
                         self.psi, [self.psi_bnd],
                         colors='r',
                         linewidth=1.5)
            axes.set_xlim(np.min(self.R), np.max(self.R))
            axes.set_ylim(np.min(self.Z), np.max(self.Z))
            if self.wall is not None:
                axes.plot(self.wall['R'], self.wall['Z'], '-g', linewidth=2)
            if self.xpoints:
                for xpoint in self.xpoints:
                    axes.plot(self.xpoints[xpoint].r, self.xpoints[xpoint].z,
                              'rx')
            if self.axis is not None:
                axes.plot(self.axis.r, self.axis.z, 'ro')
            if self.machine == 'AUG':
                rg, zg = map_equ.get_gc()
                for key in rg.iterkeys():
                    axes.plot(rg[key], zg[key], 'k')
            axes.set_xlabel('R (m)')
            axes.set_ylabel('Z (m)')
            if title is not None: axes.set_title(title)
            if colorbar: cbar.ax.set_ylabel('$\psi$')

            axes.set_aspect('equal')
            if show: plt.show()

        else:
            print(
                "ERROR: No poloidal flux found. Please load an equilibrium before plotting.\n"
            )
コード例 #5
0
    def plotTimeTraces(self, trange=[0, 7]):
        """
        This produce a plot of all the collected signal
        divided into two groups together with the evolution of
        H-5N and of the fueling. This will be combined also
        with the equilibrium with the same color code of the LoS

        """

        fig = mpl.pylab.figure(figsize=(14, 10))
        ax = mpl.pylab.subplot2grid((4, 2), (0, 0), rowspan=2)
        self.Eq.set_time(3)
        rVessel, zVessel = map_equ.get_gc()
        for key in rVessel.iterkeys():
            ax.plot(rVessel[key], zVessel[key], 'k', lw=1.5)
        ax.contour(self.Eq.R,
                   self.Eq.Z,
                   self.Eq.psiN,
                   np.linspace(0.1, 0.95, num=10),
                   colors='grey',
                   linestyles='-')
        ax.contour(self.Eq.R,
                   self.Eq.Z,
                   self.Eq.psiN, [1],
                   colors='r',
                   linewidths=2)
        ax.contour(self.Eq.R,
                   self.Eq.Z,
                   self.Eq.psiN,
                   np.linspace(1.01, 1.05, num=4),
                   colors='grey',
                   linestyles='--')
        # adess facciamo il ciclo sulle LoS salvate e
        # costruiamo una legenda a dx
        ax.set_color_cycle(palettable.tableau.Tableau_20.mpl_colors)
        for name in self.Los.iterkeys():
            ax.plot([self.Los[name]['R1'], self.Los[name]['R2']],
                    [self.Los[name]['Z1'], self.Los[name]['Z2']],
                    label=name,
                    lw=2)
        ax.legend(loc='upper center',
                  numpoints=1,
                  frameon=False,
                  bbox_to_anchor=(0.5, 1.2),
                  fontsize=14,
                  ncol=3)
        ax.set_aspect('equal')
        ax.set_xlim([0.7, 2.])
        ax.set_ylim([-1.5, -0.5])

        # now plot the rest including fueling and density
        ax1 = mpl.pylab.subplot2grid((4, 2), (0, 1))
        ax1.plot(self._Dcn('H-5').time,
                 self._Dcn('H-5').data / 1e19,
                 'k',
                 lw=2,
                 label=r'# %5i' % self.shot)
        ax1.set_ylabel(r'$\overline{n}_e$ H-5 [10$^{19}$]')
        ax1.set_xlabel(r't [s]')
        ax1.set_xlim(trange)

        ax2 = mpl.pylab.subplot2grid((4, 2), (1, 1))
        ax2.plot(self._Uvs('D_tot').time,
                 self._Uvs('D_tot').data / 1e21,
                 'k',
                 lw=2,
                 label=r'# %5i' % self.shot)
        ax2.set_ylabel(r'D$_2 [10^{21}$ e/s]')
        ax2.set_xlabel(r't [s]')
        ax2.set_xlim(trange)

        ax3 = mpl.pylab.subplot2grid((4, 2), (2, 1), rowspan=2)
        ax3.set_color_cycle(palettable.tableau.Tableau_20.mpl_colors)
        for name in self.Los.iterkeys():
            ax3.plot(self.time,
                     self.Los[name]['data'] / 1e20,
                     label=name,
                     lw=2)
        ax3.set_xlabel('t[s]')
        ax3.set_ylabel(r'n$_e [10^{20}$ m$^{-3}$]')
        ax3.set_ylim([0, 3])
        ax3.set_xlim(trange)
コード例 #6
0
ファイル: map_equ.py プロジェクト: odstrcilt/quickfit
    t = 5.33,#s
    color = 'b','g'
    rho = np.linspace(0,2,101)
    
    R,Z = eqm.rho2rz( rho, t, all_lines=True)
    print(len(R))
    for r,z,c in zip(R,Z,color):
        for rc,zc in zip(r,z):
            plt.plot(rc,zc,c)
            
    R,Z = eqm.rhoTheta2rz(   np.linspace(0,1,51),np.linspace(-np.pi,np.pi,1000),  t)

    plt.plot(R[0],Z[0],'r')

    Rv,Zv = get_gc()
    for key in list(Rv.keys()):
        plt.plot(Rv[key],Zv[key])
    plt.axis('equal')
    
    plt.show()
    
        
    eqm._read_pfm()
    eqm._read_profiles()
    eqm._read_scalars()
    
    
    rho = np.linspace(0,0.98,100)
    q = eqm.getQuantity(rho, 'Qpsi', 2)[0]
    
コード例 #7
0
    ax[2, 1].set_xlim(_xlim)
    ax[2, 1].set_ylim([0, 1.2e3])

    ax[3, 1].plot(iD2.time,
                  iD2.data / 1e21,
                  col,
                  ls='-',
                  lw=1.7,
                  label=r'Shot # %5i' % shot)
    ax[3, 1].set_xlabel(r't [s]')
    ax[3, 1].set_ylabel(r'D$_{2} [10^{21}]$')
    ax[3, 1].set_xlim(_xlim)

    # ora plottiamo l'equilibrio in un asse a parte
    if i == 0:
        rg, zg = map_equ.get_gc()
        for key in rg.iterkeys():
            axE.plot(rg[key], zg[key], 'k')
    axE.contour(Eq.R,
                Eq.Z,
                Eq.psiN(Eq.R, Eq.Z),
                np.linspace(0, 1, 5),
                colors=col)
    axE.contour(Eq.R,
                Eq.Z,
                Eq.psiN(Eq.R, Eq.Z),
                np.linspace(1, 1.09, 3),
                colors=col,
                linestyles='--')
    axE.set_xlabel('R')
    axE.set_ylabel('Z')