コード例 #1
0
    def test_mapping_mutation(self):

        file_id = self.dummy_file.id

        EXTRA_INFORMATION = {
            'empty_entries': {
                'empty_indicator': 'Test Region',
                'empty_geolocation': {
                    'value': '',
                    'type': ''
                },
                'empty_filter': 'Default',
                'empty_value_format': {
                    'value format': 'Numeric'
                },
                'empty_date': ''
            },
            'multi_mapped': {
                'column_heading': {},
                'column_values': {},
            },
            'point_based_info': {
                'coord': {
                    'lat': '',
                    'lon': ''
                },
                'subnational': '',
                'country': '',
                'type': '',
            }
        }

        input_json = {
            'metadata_id': file_id,
            'mapping_dict': {
                'indicator': [],
                'geolocation': ["Region"],
                'date': ['datez'],
                'value_format': [],
                'value': ["new infections"],
                'comment': [],
            },
            "filter_headings": {
                "filters": "filters"
            },
            'extra_information': EXTRA_INFORMATION
        }

        result = begin_mapping(input_json)
        self.assertEqual(result['success'], 1)
コード例 #2
0
    def post(self, request):
        context = {}
        logger = logging.getLogger("django")
        logger.info("Entering Mapping Job")

        try:
            context = begin_mapping(request.data)
            logger.info("Successful mapping")
        except Exception as e:
            logger = logging.getLogger("django")
            logger.exception("--Error in mapping process")
            context['error'] = "Error occured when attempting to map file"
            context['success'] = 0
            raise  #temp
        return Response(context)
コード例 #3
0
def mapping(instance):
    file_id = instance.data.get('metadata_id')
    try:
        file = File.objects.get(id=file_id)

        # When mapping again will be deleted all old indicator related
        # to the current file
        file.indicator_set.all().delete()

    except File.DoesNotExist:
        raise Exception(
            'File {file_id} does not exists!'.format(file_id=file_id))

    try:
        # Begin mapping
        result = begin_mapping(instance.data)

        # if mapping success then continue to update relation country
        # on the current indicator
        if result.get('success'):
            update_country_on_indicator(file=file)

    except Exception as e:
        raise Exception(e)
コード例 #4
0
def map_iati_data():
    try:
        # so first we check if OIPA data has been updated
        last_updated_data = requests.get(last_updated_query).json()
        last_updated_time = last_updated_data['results'][0][
            'last_updated_datetime']

        file_source_name = 'AIDSFONDS IATI DATASET'

        dataset_title = file_source_name + last_updated_time

        file_source = FileSource.objects.filter(name=file_source_name)
        map_it = False

        if file_source.count() > 0:
            file_source = file_source.get()
            # we found the file source and then we find the file
            file = File.objects.filter(source=file_source).get()

            # so here we check if the files title is different from the
            # one currently formed, if it is different, that means
            # that the last_updated_time has changed meaning that
            # OIPA data for this IATI/OIPA dataset of ours has changed
            # and we can easily update it, otherwise nothing should be
            # done
            if file.title != dataset_title:
                print(
                    'OIPA DATA HAS BEEN UPDATED, IATI DATASET REMAPPING INITIATED: ',
                    datetime.datetime.now())
                map_it = True
                # then we find the indicators
                indicators = Indicator.objects.filter(file__id=file.id)
                # and now we delete them all
                # NOTE: no need to delete the csv file itself
                # cause it will just be overwritten
                indicators.delete()
                file_source.delete()
                file.delete()
            else:
                print(
                    'OIPA DATA HAS NOT BEEN UPDATED, NOT REMAPPING THE IATI DATASET: ',
                    datetime.datetime.now())
        else:
            print('NEW IATI DATASET BEING MAPPED', datetime.datetime.now())
            map_it = True

        if map_it:
            print('STARTED MAPPING IATI DATA')
            print('TIME:', datetime.datetime.now())

            # creating the file source for the dataset
            file_source = FileSource.objects.create(name=file_source_name)

            full_path_to_dataset = os.path.join(
                os.path.join(settings.MEDIA_ROOT, settings.DATASETS_URL),
                'AIDSFONDS_IATI_DATASET.csv')

            # create and saving the csv file
            with open(full_path_to_dataset, 'w') as writeFile:
                writer = csv.writer(writeFile)
                # we write the headers
                writer.writerow([
                    'Indicator', 'Sub-indicator', 'ISO2', 'Year',
                    'Value Format', 'Value'
                ])
                # and here we retrieve and write the actual values of this dataset
                for iati_ind_item in iati_indicator_metadata:
                    # and here we start forming the dataset
                    # starting from activity status
                    iati_data = requests.get(iati_ind_item['query']).json()

                    for item in iati_data['results']:
                        # so yeah here we form the dataset with values
                        writer.writerow([
                            iati_ind_item['ind_val'],
                            pydash.objects.get(item,
                                               iati_ind_item['filter_place']),
                            pydash.objects.get(item,
                                               iati_ind_item['geo_place']),
                            pydash.objects.get(item,
                                               iati_ind_item['date_place']),
                            iati_ind_item['format_val'],
                            pydash.objects.get(item,
                                               iati_ind_item['value_place'])
                        ])

            writeFile.close()

            # and now out of this file we create the file object
            file_man = File.objects.create(
                title=dataset_title,
                description=dataset_title,
                contains_subnational_data=False,
                organisation='Zimmerman&Zimmerman',
                maintainer='Zimmerman&Zimmerman',
                date_of_dataset=datetime.datetime.now(),
                methodology='Iati',
                define_methodology='Iati',
                update_frequency='Pretty frequent',
                comments='No comments',
                accessibility='a',
                data_quality='best',
                number_of_rows=1,
                file_types='csv',
                source=file_source,
                original_file_location=full_path_to_dataset,
                file_status='1',
                error_file_location='',
                file=full_path_to_dataset)
            # datatypes_overview_file_location

            # so this is gonna be the mapping dict for that
            # iati data
            data = {
                "metadata_id": file_man.id,
                "filter_headings": {
                    "Sub-indicator": "Sub-indicator"
                },
                "extra_information": {
                    "empty_entries": {
                        "empty_indicator": '',
                        "empty_geolocation": {
                            "value": '',
                            "type": ''
                        },
                        "empty_filter": '',
                        "empty_value_format": {},
                        "empty_date": ''
                    },
                    "multi_mapped": {
                        "column_heading": {},
                        "column_values": {}
                    },
                    "point_based_info": {
                        "coord": {
                            "lat": '',
                            "lon": ''
                        },
                        "subnational": '',
                        "country": '',
                        "type": ''
                    }
                },
                "mapping_dict": {
                    "indicator": ['Indicator'],
                    "filters": ['Sub-indicator'],
                    "geolocation": ['ISO2'],
                    "date": ['Year'],
                    "value_format": ['Value Format'],
                    "value": ['Value'],
                    "comment": []
                }
            }

            begin_mapping(data)

            print('MAPPING IATI DATA FINISHED')
            print('TIME:', datetime.datetime.now())

    except Exception as e:
        print('ERROR:', e)
コード例 #5
0
    def test_mapping_point_based_mutation(self):

        file_id = self.dummy_file.id

        EXTRA_INFORMATION = {
            'empty_entries': {
                'empty_indicator': 'Test pointbased',
                'empty_geolocation': {
                    'value': '',
                    'type': ''
                },
                'empty_filter': 'Default',
                'empty_value_format': {
                    'value format': 'Numeric'
                },
                'empty_date': '2016'
            },
            'multi_mapped': {
                'column_heading': {},
                'column_values': {},
            },
            'point_based_info': {
                'coord': {
                    'lat': 'Lat location 1',
                    'lon': 'Long location 1'
                },
                'subnational': '',
                'country': '',
                'type': '',
            }
        }

        # so this query call based mapping doesn't seem to work very properly
        # so we comment this out for now and will adress this later
        # but for the data just to be mapped out we'll just use the mapping
        # function itself here ^
        # input_json_str = json.dumps(input_json)
        # query_input = {"input": {"data": input_json_str}}
        # query = """
        # mutation mapping($input: MappingMutationInput!) {
        #                             mapping(input: $input) {
        #                                                 id
        #                                                 data
        #                         }
        # }"""

        # result = schema.execute(query, variable_values=query_input)

        input_json = {
            'metadata_id': file_id,
            "filter_headings": {
                "filters": "filters"
            },
            "extra_information": EXTRA_INFORMATION,
            'mapping_dict': {
                'indicator': [],
                'filters': [],
                'geolocation': ["Lat location 1", "Long location 1"],
                'date': [],
                'value_format': [],
                'value': ["new infections"],
                'comment': [],
            },
        }

        result = begin_mapping(input_json)

        self.assertEqual(result['success'], 1)
コード例 #6
0
def file_post_save(sender, instance, **kwargs):
    if kwargs.get('created'):
        begin_mapping(instance.data)
コード例 #7
0
    def setUp(self):
        ci = CountryImport()
        ci.update_polygon()
        ci.update_alt_name()

        self.dummy_file_source = factory.FileSourceFactory(
            name='dummy_file_source')
        self.dummy_geolocation = factory.GeolocationFactory(tag='Albania',
                                                            iso2='al',
                                                            iso3='alb',
                                                            object_id=4,
                                                            content_type_id=15,
                                                            type='country')
        self.dummy_file = factory.FileFactory(
            title="test",
            description="test",
            contains_subnational_data=True,
            organisation="test",
            maintainer="test",
            date_of_dataset="2009-01-01",
            methodology="test",
            define_methodology="test",
            update_frequency="test",
            comments="test",
            accessibility="p",
            data_quality="test",
            number_of_rows=1,
            file_types="csv",
            location=self.dummy_geolocation,
            source=self.dummy_file_source,
            file=os.path.abspath("samples/AIDSinfotest.csv"))

        file_id = self.dummy_file.id

        input_json = {
            'metadata_id': file_id,
            'filter_headings': {
                "Subgroup": "Subgroup"
            },
            "extra_information": {
                "empty_entries": {
                    "empty_indicator": '',
                    "empty_geolocation": {
                        "value": '',
                        "type": ''
                    },
                    "empty_filter": '',
                    "empty_value_format": {},
                    "empty_date": ''
                },
                "multi_mapped": {
                    "column_heading": {},
                    "column_values": {}
                },
                "point_based_info": {
                    "coord": {
                        "lat": '',
                        "lon": ''
                    },
                    "subnational": '',
                    "country": '',
                    "type": ''
                }
            },
            'mapping_dict': {
                "indicator": ["Indicator"],
                "value_format": ["Unit"],
                "geolocation": ["Area"],
                "value": ["Data Value"],
                "date": ["Time Period"],
                "comment": ["Source"],
                "filters": ["Subgroup"]
            }
        }

        begin_mapping(input_json)
コード例 #8
0
    def setUp(self):
        self.dummy_file_source = factory.FileSourceFactory(
            name='dummy_file_source'
        )
        alb = factory.CountryFactory(name='Albania', iso2='al', iso3='alb')
        self.dummy_geolocation = factory.GeolocationFactory(
            tag='Albania',
            iso2='al',
            iso3='alb',
            object_id=alb.id,
            content_type_id=15,
            type='country'
        )
        self.dummy_file = factory.FileFactory(
            title="test",
            description="test",
            contains_subnational_data=True,
            organisation="test",
            maintainer="test",
            date_of_dataset="2009-01-01",
            methodology="test",
            define_methodology="test",
            update_frequency="test",
            comments="test",
            accessibility="p",
            data_quality="test",
            number_of_rows=1,
            file_types="csv",
            location=self.dummy_geolocation,
            source=self.dummy_file_source,
            file=os.path.abspath("samples/point_based.csv")
        )

        file_id = self.dummy_file.id

        EXTRA_INFORMATION = {
            'empty_entries': {
                'empty_indicator': 'Test pointbased',
                'empty_geolocation': {
                    'value': '',
                    'type': ''},
                'empty_filter': 'Default',
                'empty_value_format': {
                    'value format': 'Numeric'},
                'empty_date': '2016'},
            'multi_mapped': {
                'column_heading': {},
                'column_values': {},
            },
            'point_based_info': {
                'coord': {
                    'lat': 'Lat location 1',
                    'lon': 'Long location 1'},
                'subnational': '',
                'country': '',
                'type': '',
            }}

        input_json = {
            'metadata_id': file_id,
            "filter_headings": {"filters": "filters"},
            "extra_information": EXTRA_INFORMATION,
            'mapping_dict': {
                'indicator': [],
                'filters': [],
                'geolocation': ["Lat location 1", "Long location 1"],
                'date': [],
                'value_format': [],
                'value': ["new infections"],
                'comment': [],
            },
        }

        begin_mapping(input_json)