import sys sys.path.insert(0, '../..') from marginal_likelihood.SBML import SBML from marginal_likelihood.ODES import ODES from marginal_likelihood.SBMLtoODES import sbml_to_odes sbml = SBML() sbml.load_file('final_model.sbml') odes = sbml_to_odes(sbml) time = [0, 30, 60, 180, 300, 900, 1800] odes.overtime_plot(['MAPK_PP + MAPK_P'], time, filename='sum') # odes.overtime_plot (['(MAPK_PP + MAPK_P) / (MAPK_PP + MAPK_P + MAPK)'], time, filename='ratio')
from marginal_likelihood.SBML import SBML from marginal_likelihood.ODES import ODES from marginal_likelihood.SBMLtoODES import sbml_to_odes from experiment.ExperimentSet import ExperimentSet from experiment.Experiment import Experiment import numpy as np def add_noise (values): for i in range (len (values)): eps = np.random.normal (0, 3) if values[i] + eps > 0: values[i] += eps sbml = SBML () sbml.load_file ('final_model.sbml') odes = sbml_to_odes (sbml) time = [30, 60, 180, 300, 900, 1800] # Simple experiment: run final_model simulations adding a Gaussian noise values = odes.evaluate_exp_on ('MAPK_PP + MAPK_P', time) experiment_set = ExperimentSet () for i in range (3): noised_values = list (values) add_noise (noised_values) experiment = Experiment (time, noised_values, 'MAPK_PP + MAPK_P') experiment_set.add (experiment) experiment_set.save_to_file ('gauss_noise.data')
import sys sys.path.insert(0, '../..') from marginal_likelihood.SBML import SBML from marginal_likelihood.ODES import ODES from marginal_likelihood.SBMLtoODES import sbml_to_odes sbml = SBML() sbml.load_file('model2.xml') odes = sbml_to_odes(sbml) time = [0, 2, 5, 10, 20, 40] time = [2, 5, 10] # time = [0, 120, 300, 600] # in seconds initial_state = {'ERKPP': 903, 'ERK': 9097} odes.overtime_plot(['ERKPP/100'], time, filename='sum', initial_state_map=initial_state)
import sys sys.path.insert (0, '../..') import numpy as np from marginal_likelihood.SBML import SBML from marginal_likelihood.ODES import ODES from marginal_likelihood.SBMLtoODES import sbml_to_odes for i in range (1, 5): model = 'model' + str (i) sbml = SBML () sbml.load_file (model + '.xml') odes = sbml_to_odes (sbml) time = np.linspace (0, 1000, 7) odes.overtime_plot (['B', 'A', 'AB', 'C'], time, filename=model)