コード例 #1
0
def turbofan_thrust(aircraft, Pamb, Tamb, Mach, rating, nei):
    """
    Calculation of thrust for pure turbofan airplane
    Warning : ALL engine thrust returned
    """

    engine = aircraft.turbofan_engine
    nacelle = aircraft.turbofan_nacelle

    factor = engine.rating_factor  # [MTO,MCN,MCL,MCR,FID]

    kth =  0.475*Mach**2 + 0.091*(engine.bpr/10)**2 \
         - 0.283*Mach*engine.bpr/10 \
         - 0.633*Mach - 0.081*engine.bpr/10 + 1.192

    (rho, sig) = earth.air_density(Pamb, Tamb)

    fn0 = factor[rating] * kth * engine.reference_thrust * sig**0.75

    fn_core = fn0 * engine.core_thrust_ratio  # Core thrust

    fn_fan0 = fn0 * (1 - engine.core_thrust_ratio)  # Fan thrust

    Vsnd = earth.sound_speed(Tamb)
    Vair = Vsnd * Mach

    shaft_power0 = fn_fan0 * Vair / nacelle.efficiency_prop  # Available total shaft power for one engine

    fn = fn0 * (engine.n_engine - nei)  # All turbofan thrust

    data = (fn_core, fn_fan0, fn0, shaft_power0
            )  # Data for ONE turbofan engine

    return fn, data
コード例 #2
0
def air_path(aircraft, nei, altp, disa, speed_mode, speed, mass, rating):
    """
    Retrieves air path in various conditions
    """

    g = earth.gravity()

    [pamb, tamb, tstd, dtodz] = earth.atmosphere(altp, disa)

    mach = get_mach(pamb, speed_mode, speed)

    fn, data = propu.thrust(aircraft, pamb, tamb, mach, rating, nei)

    cz = lift_from_speed(aircraft, pamb, mach, mass)

    [cx, lod] = aero.drag(aircraft, pamb, tamb, mach, cz)

    if (nei > 0):
        dcx = propu.oei_drag(aircraft, pamb, mach)
        cx = cx + dcx * nei
        lod = cz / cx

    acc_factor = earth.climb_mode(speed_mode, dtodz, tstd, disa, mach)

    slope = (fn / (mass * g) - 1 / lod) / acc_factor

    vsnd = earth.sound_speed(tamb)

    v_z = mach * vsnd * slope

    return slope, v_z
コード例 #3
0
    def fct_power_bli(y, PwShaft, Pamb, rho, Ttot, Vair, r1, d1, nozzle_area):

        (q0, q1, q2, Vinlet, dVbli) = air_flows(rho, Vair, r1, d1, y)
        PwInput = nacelle.efficiency_fan * PwShaft
        Vjet = numpy.sqrt(2. * PwInput / q1 + Vinlet**2)
        TtotJet = Ttot + PwShaft / (
            q1 * Cp)  # Stagnation temperature increases due to introduced work
        Tstat = TtotJet - 0.5 * Vjet**2 / Cp  # Static temperature
        VsndJet = earth.sound_speed(Tstat)  # Sound speed at nozzle exhaust
        MachJet = Vjet / VsndJet  # Mach number at nozzle output
        PtotJet = earth.total_pressure(
            Pamb, MachJet
        )  # total pressure at nozzle exhaust (P = Pamb) supposing adapted nozzle
        CQoA1 = corrected_air_flow(
            PtotJet, TtotJet,
            MachJet)  # Corrected air flow per area at nozzle position
        q = CQoA1 * nozzle_area

        y = q1 - q

        return y
コード例 #4
0
    def fct_power(q, PwShaft, Pamb, Ttot, Vair, NozzleArea):

        Vinlet = Vair
        PwInput = nacelle.efficiency_fan * PwShaft
        Vjet = numpy.sqrt(2. * PwInput / q +
                          Vinlet**2)  # Supposing isentropic compression
        TtotJet = Ttot + PwShaft / (
            q * Cp)  # Stagnation temperature increases due to introduced work
        TstatJet = TtotJet - 0.5 * Vjet**2 / Cp  # Static temperature
        VsndJet = earth.sound_speed(TstatJet)  # Sound speed at nozzle exhaust
        MachJet = Vjet / VsndJet  # Mach number at nozzle output
        PtotJet = earth.total_pressure(
            Pamb, MachJet)  # total pressure at nozzle exhaust (P = Pamb)
        CQoA1 = corrected_air_flow(
            PtotJet, TtotJet,
            MachJet)  # Corrected air flow per area at fan position
        q0 = CQoA1 * NozzleArea

        y = q0 - q

        return y
コード例 #5
0
def specific_air_range(aircraft, altp, mass, mach, disa):

    propulsion = aircraft.propulsion

    (MTO, MCN, MCL, MCR, FID) = propulsion.rating_code

    g = earth.gravity()

    pamb, tamb, tstd, dtodz = earth.atmosphere(altp, disa)

    vsnd = earth.sound_speed(tamb)

    Cz = flight.lift_from_speed(aircraft, pamb, mach, mass)

    [Cx, LoD] = airplane_aero.drag(aircraft, pamb, tamb, mach, Cz)

    nei = 0.

    sfc = propu.sfc(aircraft, pamb, tamb, mach, MCR, nei)

    sar = (vsnd * mach * LoD) / (mass * g * sfc)

    return sar
コード例 #6
0
    sfc_factor = 1. / eff_h  # factor on cruise SFC due to rear fuselage electric nacelle with bli

    #------------------------------------------------------------------------------------------------------
    shaft_power = aircraft.electric_engine.mcr_e_shaft_power

    disa = 0.
    altp = aircraft.design_driver.ref_cruise_altp
    mach = aircraft.design_driver.cruise_mach

    (pamb, tamb, tstd, dt_o_dz) = earth.atmosphere(altp, disa)

    (e_fan_thrust, q_air,
     dv_bli) = jet.fan_thrust_with_bli(aircraft.electric_nacelle, pamb, tamb,
                                       mach, shaft_power)

    vair = mach * earth.sound_speed(tamb)

    kVbli = dv_bli / vair

    # Print some results
    #------------------------------------------------------------------------------------------------------
    print("-------------------------------------------")
    print("Global mass of electric chain = ", "%.0f" % global_e_mass, " kg")
    print("Electric fan length = ", "%.2f" % aircraft.electric_nacelle.length,
          " m")
    print("Electric fan diameter = ",
          "%.2f" % aircraft.electric_nacelle.fan_width, " m")
    print("Electric nozzle diameter = ",
          "%.2f" % aircraft.electric_nacelle.nozzle_width, " m")
    print("relative decrease of e-fan inlet velocity in cruise = ",
          "%.3f" % kVbli, " no_dim")
コード例 #7
0
def mission(aircraft, dist_range, tow, altp, mach, disa):
    """
    Mission computation using breguet equation, fixed L/D and fixed sfc
    """

    engine = aircraft.turbofan_engine
    propulsion = aircraft.propulsion
    battery = aircraft.battery

    (MTO, MCN, MCL, MCR, FID) = propulsion.rating_code

    g = earth.gravity()

    pamb, tamb, tstd, dtodz = earth.atmosphere(altp, disa)
    vsnd = earth.sound_speed(tamb)
    tas = vsnd * mach

    lod_max, cz_lod_max = airplane_aero.lod_max(aircraft, pamb, tamb, mach)

    lod_cruise = 0.95 * lod_max

    nei = 0.

    sfc = propu.sfc(aircraft, pamb, tamb, mach, MCR, nei)

    if (propulsion.architecture == 2):
        fn, sec, data = propu.hybrid_thrust(aircraft, pamb, tamb, mach, MCR,
                                            nei)
    if (propulsion.architecture == 3):
        fn, sec, data = propu.hybrid_thrust(aircraft, pamb, tamb, mach, MCR,
                                            nei)

    # Departure ground phases
    #-----------------------------------------------------------------------------------------------------------
    fuel_taxi_out = (34 + 2.3e-4 * engine.reference_thrust) * engine.n_engine
    time_taxi_out = 540

    fuel_take_off = 1e-4 * (2.8 + 2.3 / engine.bpr) * tow
    time_take_off = 220 * tow / (engine.reference_thrust * engine.n_engine)

    # Mission leg
    #-----------------------------------------------------------------------------------------------------------
    if (propulsion.architecture == 1):
        fuel_mission = tow * (1 - numpy.exp(-(sfc * g * dist_range) /
                                            (tas * lod_cruise)))
    elif (propulsion.architecture == 2):
        fuel_mission = tow*(1-numpy.exp(-(sfc*g*dist_range)/(tas*lod_cruise))) \
                        - (sfc/sec)*battery.energy_cruise
    elif (propulsion.architecture == 3):
        fuel_mission = tow*(1-numpy.exp(-(sfc*g*dist_range)/(tas*lod_cruise))) \
                        - (sfc/sec)*battery.energy_cruise
    elif (propulsion.architecture == 4):
        fuel_mission = tow * (1 - numpy.exp(-(sfc * g * dist_range) /
                                            (tas * lod_cruise)))
    else:
        raise Exception("propulsion.architecture index is out of range")

    time_mission = 1.09 * (dist_range / tas)

    l_w = tow - fuel_mission

    # Arrival ground phases
    #-----------------------------------------------------------------------------------------------------------
    fuel_landing = 1e-4 * (0.5 + 2.3 / engine.bpr) * l_w
    time_landing = 180

    fuel_taxi_in = (26 + 1.8e-4 * engine.reference_thrust) * engine.n_engine
    time_taxi_in = 420

    # Block fuel and time
    #-----------------------------------------------------------------------------------------------------------
    block_fuel = fuel_taxi_out + fuel_take_off + fuel_mission + fuel_landing + fuel_taxi_in
    time_block = time_taxi_out + time_take_off + time_mission + time_landing + time_taxi_in

    # Diversion and holding reserve fuel
    #-----------------------------------------------------------------------------------------------------------
    fuel_diversion = l_w * (1 -
                            numpy.exp(-(sfc * g * regul.diversion_range()) /
                                      (tas * lod_cruise)))

    fuel_holding = sfc * (l_w * g / lod_max) * regul.holding_time()

    # Total
    #-----------------------------------------------------------------------------------------------------------
    design_range = aircraft.design_driver.design_range

    fuel_total = fuel_mission * (1 + regul.reserve_fuel_ratio(design_range)
                                 ) + fuel_diversion + fuel_holding

    #-----------------------------------------------------------------------------------------------------------
    return block_fuel, time_block, fuel_total
コード例 #8
0
def hybrid_thrust(aircraft, Pamb, Tamb, Mach, rating, nei):

    propulsion = aircraft.propulsion
    engine = aircraft.turbofan_engine
    nacelle = aircraft.turbofan_nacelle

    battery = aircraft.battery
    power_elec = aircraft.power_elec_chain
    e_engine = aircraft.electric_engine
    e_nacelle = aircraft.electric_nacelle

    power_ratio = numpy.array([
        e_engine.mto_e_power_ratio, e_engine.mcn_e_power_ratio,
        e_engine.mcl_e_power_ratio, e_engine.mcr_e_power_ratio,
        e_engine.fid_e_power_ratio
    ])

    # Battery power feed is used in temporary phases only
    battery_power_feed = numpy.array([1, 0, 1, 0, 0]) * battery.power_feed

    fn, data = turbofan_thrust(aircraft, Pamb, Tamb, Mach, rating, nei)
    (fn_core, fn_fan0, fn0, shaft_power0) = data

    Vsnd = earth.sound_speed(Tamb)

    Vair = Vsnd * Mach

    shaft_power1 = (1 - power_ratio[rating]
                    ) * shaft_power0  # Shaft power dedicated to the fan

    fn_fan1 = nacelle.efficiency_prop * shaft_power1 / Vair  # Effective fan thrust

    shaft_power2 = power_ratio[rating] * shaft_power0 * (
        engine.n_engine - nei)  # Shaft power dedicated to electric generator

    # Effective eFan shaft power
    pw_shaft2 =   shaft_power2*power_elec.overall_efficiency \
                + e_nacelle.motor_efficiency*e_nacelle.controller_efficiency*battery_power_feed[rating]

    if (pw_shaft2 > 0.):

        if (propulsion.bli_effect > 0):
            (fn_fan2, q1,
             dVbli) = jet.fan_thrust_with_bli(e_nacelle, Pamb, Tamb, Mach,
                                              pw_shaft2)
            dVbli_o_V = dVbli / Vair
        else:
            (fn_fan2, q0) = jet.fan_thrust(e_nacelle, Pamb, Tamb, Mach,
                                           pw_shaft2)
            dVbli_o_V = 0.

        sec = (pw_shaft2 / e_nacelle.motor_efficiency) / fn_fan2

    else:

        dVbli_o_V = 0.
        fn_fan2 = 0.
        sec = 0

    fn = (fn_core + fn_fan1) * (engine.n_engine - nei) + fn_fan2

    data = (fn_core, fn_fan1, fn_fan2, dVbli_o_V, shaft_power2, fn0,
            shaft_power0)

    return (fn, sec, data)
コード例 #9
0
def eval_bli_nacelle_design(this_nacelle,Pamb,Tamb,Mach,shaft_power,hub_width,body_length,body_width):
    """
    BLI nacelle design
    """

    gam = earth.heat_ratio()
    r = earth.gaz_constant()
    Cp = earth.heat_constant(gam,r)

    (rho,sig) = earth.air_density(Pamb,Tamb)
    Vsnd = earth.sound_speed(Tamb)
    Re = earth.reynolds_number(Pamb,Tamb,Mach)
    Vair = Vsnd*Mach

    # Precalculation of the relation between d0 and d1
    #-----------------------------------------------------------------------------------------------------------

    body_bnd_layer = resize_boundary_layer(body_width,hub_width)

    # Electrical nacelle geometry : e-nacelle diameter is size by cruise conditions
    #-----------------------------------------------------------------------------------------------------------
    r0 = 0.5*body_width     # Radius of the fuselage, supposed constant
    d0 = jet.boundary_layer(Re,body_length)     # theoritical thickness of the boundary layer without taking account of fuselage tapering
    r1 = 0.5*hub_width        # Radius of the hub of the efan nacelle
    d1 = lin_interp_1d(d0,body_bnd_layer[:,0],body_bnd_layer[:,1])       # Thickness of the BL around the hub

    deltaV = 2.*Vair*(this_nacelle.efficiency_fan/this_nacelle.efficiency_prop - 1.)      # speed variation produced by the fan

    PwInput = this_nacelle.efficiency_fan*shaft_power     # kinetic energy produced by the fan

    #===========================================================================================================
    def fct_power_1(y,PwInput,deltaV,rho,Vair,r1,d1):
        (q0,q1,q2,v1,dVbli) = jet.air_flows(rho,Vair,r1,d1,y)
        Vinlet = Vair - dVbli
        Vjet = Vinlet + deltaV
        Pw = 0.5*q1*(Vjet**2 - Vinlet**2)
        y = PwInput - Pw
        return y
    #-----------------------------------------------------------------------------------------------------------

    fct_arg = (PwInput,deltaV,rho,Vair,r1,d1)

    # Computation of y1 : thickness of the vein swallowed by the inlet
    output_dict = fsolve(fct_power_1, x0=d1, args=fct_arg, full_output=True)

    y1 = output_dict[0][0]

    (q0,q1,q2,v1,dVbli) = jet.air_flows(rho,Vair,r1,d1,y1)

    MachInlet = v1/Vsnd     # Mean Mach number at inlet position

    Ptot = earth.total_pressure(Pamb,MachInlet)        # Stagnation pressure at inlet position

    Ttot = earth.total_temperature(Tamb,MachInlet)     # Stagnation temperature at inlet position

    MachFan = 0.5       # required Mach number at fan position

    CQoA1 = jet.corrected_air_flow(Ptot,Ttot,MachFan)        # Corrected air flow per area at fan position

    eFanArea = q1/CQoA1     # Fan area around the hub

    fan_width = numpy.sqrt(hub_width**2 + 4*eFanArea/numpy.pi)        # Fan diameter

    Vjet = v1 + deltaV      # Jet velocity

    TtotJet = Ttot + shaft_power/(q1*Cp)        # Stagnation pressure increases due to introduced work

    Tstat = TtotJet - 0.5*Vjet**2/Cp        # static temperature

    VsndJet = numpy.sqrt(gam*r*Tstat) # Sound velocity at nozzle exhaust

    MachJet = Vjet/VsndJet # Mach number at nozzle output

    PtotJet = earth.total_pressure(Pamb,MachJet)       # total pressure at nozzle exhaust (P = Pamb)

    CQoA2 = jet.corrected_air_flow(PtotJet,TtotJet,MachJet)     # Corrected air flow per area at nozzle output

    nozzle_area = q1/CQoA2        # Fan area around the hub

    nozzle_width = numpy.sqrt(4*nozzle_area/numpy.pi)       # Nozzle diameter

    this_nacelle.hub_width = hub_width

    this_nacelle.fan_width = fan_width

    this_nacelle.nozzle_width = nozzle_width

    this_nacelle.nozzle_area = nozzle_area

    this_nacelle.width = 1.20*fan_width      # Surrounding structure

    this_nacelle.length = 1.50*this_nacelle.width

    this_nacelle.net_wetted_area = numpy.pi*this_nacelle.width*this_nacelle.length        # Nacelle wetted area

    this_nacelle.bnd_layer = body_bnd_layer

    this_nacelle.body_length = body_length

    return
コード例 #10
0
def eval_hybrid_engine_design(aircraft):
    """
    Thermal propulsive architecture design
    """

    design_driver = aircraft.design_driver
    fuselage = aircraft.fuselage

    propulsion = aircraft.propulsion
    engine = aircraft.turbofan_engine
    nacelle = aircraft.turbofan_nacelle

    battery = aircraft.battery
    power_elec = aircraft.power_elec_chain
    e_engine = aircraft.electric_engine
    e_nacelle = aircraft.electric_nacelle

    low_speed = aircraft.low_speed

    (MTO,MCN,MCL,MCR,FID) = propulsion.rating_code

    # Propulsion architecture design, definition of e-fan power in each fligh t phase
    #-----------------------------------------------------------------------------------------------------------

    # Initialisation
    crm = design_driver.cruise_mach
    toc = design_driver.top_of_climb_altp
    rca = design_driver.ref_cruise_altp
    roa = low_speed.req_oei_altp

    #                      MTO   MCN    MCL  MCR  FIR
    fd_disa = numpy.array([15. , 0.   , 0. , 0. , 0. ])
    fd_altp = numpy.array([0.  , roa  , toc, rca, rca])
    fd_mach = numpy.array([0.25, crm/2, crm, crm, crm])
    fd_nei  = numpy.array([0.  , 1.   , 0. , 0. , 0. ])

    e_engine.flight_data = {"disa":fd_disa, "altp":fd_altp, "mach":fd_mach, "nei":fd_nei}

    e_fan_power = numpy.array([power_elec.mto,
                               power_elec.mcn,
                               power_elec.mcl,
                               power_elec.mcr,
                               power_elec.fid])

    # Battery power feed is used in temporary phases only (take off and climb)
    battery_power_feed = numpy.array([1,0,1,0,0])*battery.power_feed \
                                                 *e_nacelle.controller_efficiency \
                                                 *e_nacelle.motor_efficiency

    e_power_ratio = numpy.zeros(5)
    e_shaft_power = numpy.zeros(5)

    for rating in propulsion.rating_code:

        (Pamb,Tamb,Tstd,dTodZ) = earth.atmosphere(fd_altp[rating],fd_disa[rating])
        (fn,data) = turbofan_thrust(aircraft,Pamb,Tamb,fd_mach[rating],rating,fd_nei[rating])
        (fn_core,fn_fan0,fn0,shaft_power0) = data

        if e_fan_power[rating]>1:       # required eFan shaft power is given, turbofan shaft power ratio is deduced

            # Fraction of the turbofan shaft power dedicated to electric generation
            e_power_ratio[rating] =  ( (e_fan_power[rating] - battery_power_feed[rating] \
                                        )/ power_elec.overall_efficiency \
                                      )/((shaft_power0)*(engine.n_engine-fd_nei[rating]))

            # e-fan shaft power
            e_shaft_power[rating] = e_fan_power[rating]

        else:       # required turbofan shaft power ration is given, absolute shaft power is deduced

            # Shaft power dedicated to electric generator
            shaft_power2 = e_power_ratio[rating]*shaft_power0*(engine.n_engine-fd_nei[rating])

            # Fraction of the shaft power dedicated to the electric generation
            e_power_ratio[rating] = e_fan_power[rating]

            e_shaft_power[rating] =   shaft_power2*power_elec.overall_efficiency \
                                    + battery_power_feed[rating]

    # Storing results
    e_engine.mto_e_power_ratio = e_power_ratio[MTO]
    e_engine.mcn_e_power_ratio = e_power_ratio[MCN]
    e_engine.mcl_e_power_ratio = e_power_ratio[MCL]
    e_engine.mcr_e_power_ratio = e_power_ratio[MCR]
    e_engine.fid_e_power_ratio = e_power_ratio[FID]

    e_engine.mto_e_shaft_power = e_shaft_power[MTO]
    e_engine.mcn_e_shaft_power = e_shaft_power[MCN]
    e_engine.mcl_e_shaft_power = e_shaft_power[MCL]
    e_engine.mcr_e_shaft_power = e_shaft_power[MCR]
    e_engine.fid_e_shaft_power = e_shaft_power[FID]

    # Engine performance update
    #-----------------------------------------------------------------------------------------------------------
    (Pamb,Tamb,Tstd,dTodZ) = earth.atmosphere(fd_altp[MTO],fd_disa[MTO])
    (fn,data) = turbofan_thrust(aircraft,Pamb,Tamb,fd_mach[MTO],MTO,fd_nei[MTO])
    (fn_core,fn_fan0,fn0,shaft_power0) = data

    shaft_power1 = (1-e_power_ratio[MTO])*shaft_power0     # Shaft power dedicated to the fan at take off

    Vsnd = earth.sound_speed(Tamb)
    Vair = Vsnd*fd_mach[MTO]

    fn_fan1 = nacelle.efficiency_prop*shaft_power1/Vair     # Effective fan thrust

    engine.kfn_off_take = (fn_core + fn_fan1)/fn0       # Thrust reduction due to power off take for the e-fan

    return
コード例 #11
0
def eval_hybrid_nacelle_design(aircraft):
    """
    Hybrid propulsive architecture design
    """

    design_driver = aircraft.design_driver
    fuselage = aircraft.fuselage
    wing = aircraft.wing

    propulsion = aircraft.propulsion

    engine = aircraft.turbofan_engine
    nacelle = aircraft.turbofan_nacelle

    e_engine = aircraft.electric_engine
    e_nacelle = aircraft.electric_nacelle

    (MTO,MCN,MCL,MCR,FID) = propulsion.rating_code

    # Turbofan nacelles geometry adjustment
    #-----------------------------------------------------------------------------------------------------------
    nacWidth0 = 0.49*engine.bpr**0.67 + 4.8e-6*engine.reference_thrust      # Reference dimensions of the nacelle without power off take

    nacLength0 = 0.86*nacWidth0 + engine.bpr**0.37

    kSize = numpy.sqrt(engine.kfn_off_take)      # Diameter decrease due to max thrust decrease

    kSize_eff = (kSize + engine.core_width_ratio * (1-kSize))      # Diameter decrease considering core is unchanged

    nacelle.width = nacWidth0*kSize_eff     # Real nacelle diameter assuming core section remains unchanged

    nacelle.length = nacLength0*kSize_eff   # Nacelle length is reduced according to the same factor

    knac = numpy.pi*nacelle.width*nacelle.length

    nacelle.net_wetted_area = knac*(1.48 - 0.0076*knac)*engine.n_engine

    tan_phi0 = 0.25*(wing.c_kink-wing.c_tip)/(wing.y_tip-wing.y_kink) + numpy.tan(wing.sweep)

    if (nacelle.attachment == 1) :  # Nacelles are attached under the wing

        nacelle.y_ext = 0.7 * fuselage.width + 1.4 * nacelle.width      # statistical regression

        nacelle.x_ext = wing.x_root + (nacelle.y_ext-wing.y_root)*tan_phi0 - 0.7*nacelle.length

        nacelle.z_ext = - 0.5 * fuselage.height \
                    + (nacelle.y_ext - 0.5 * fuselage.width) * numpy.tan(wing.dihedral) \
                    - 0.5*nacelle.width

    elif (nacelle.attachment == 2) :    # Nacelles are attached on rear fuselage

        nacelle.y_ext = 0.5 * fuselage.width + 0.6 * nacelle.width      # statistical regression

        nacelle.x_ext = wing.x_root + (nacelle.y_ext-wing.y_root)*tan_phi0 - 0.7*nacelle.length

        nacelle.z_ext = 0.5 * fuselage.height

    # Electric nacelle is design by cruise conditions
    #-----------------------------------------------------------------------------------------------------------
    dISA = 0.
    Altp = design_driver.ref_cruise_altp
    Mach = design_driver.cruise_mach

    (Pamb,Tamb,Tstd,dTodZ) = earth.atmosphere(Altp,dISA)

    shaft_power = e_engine.mcr_e_shaft_power
    hub_width = 0.5     # Diameter of the e fan hub

    body_length = fuselage.length
    body_width = fuselage.width

    eval_bli_nacelle_design(e_nacelle,Pamb,Tamb,Mach,shaft_power,hub_width,body_length,body_width)

    e_nacelle.x_axe = fuselage.length + 0.2*e_nacelle.width
    e_nacelle.y_axe = 0
    e_nacelle.z_axe = 0.91*fuselage.height - 0.55*fuselage.height

    # Engine performance update
    #-----------------------------------------------------------------------------------------------------------
    fd = e_engine.flight_data

    e_fan_thrust = numpy.zeros(5)

    for rating in propulsion.rating_code:

        altp = fd.get("altp")[rating]
        disa = fd.get("disa")[rating]
        mach = fd.get("mach")[rating]
        nei = fd.get("nei")[rating]

        (Pamb,Tamb,Tstd,dTodZ) = earth.atmosphere(altp,disa)
        (fn,sec,data) = hybrid_thrust(aircraft,Pamb,Tamb,mach,rating,nei)
        (fn_core,fn_fan1,fn_fan2,dVbli_o_V,shaft_power2,fn0,shaft_power0) = data

        e_fan_thrust[rating] = fn_fan2

    e_engine.mto_e_fan_thrust = e_fan_thrust[MTO]
    e_engine.mcn_e_fan_thrust = e_fan_thrust[MCN]
    e_engine.mcl_e_fan_thrust = e_fan_thrust[MCL]
    e_engine.mcr_e_fan_thrust = e_fan_thrust[MCR]
    e_engine.fid_e_fan_thrust = e_fan_thrust[FID]

    Vair = Mach*earth.sound_speed(Tamb)

    (eFanFnBli,q1,dVbli) = jet.fan_thrust_with_bli(e_nacelle,Pamb,Tamb,Mach,shaft_power)

    (eFanFn,q0) = jet.fan_thrust(e_nacelle,Pamb,Tamb,Mach,shaft_power)

    propulsion.bli_e_thrust_factor = eFanFnBli / eFanFn     # Thrust increase due to BLI at iso shaft power for the e-fan

    propulsion.bli_thrust_factor = 1.     # Thrust increase due to BLI at iso shaft power for the turbofans (provision)

    return
コード例 #12
0
def fan_thrust(nacelle, Pamb, Tamb, Mach, PwShaft):
    """
    Compute the thrust of a fan of given geometry swallowing free air stream
    """

    gam = earth.heat_ratio()
    r = earth.gaz_constant()
    Cp = earth.heat_constant(gam, r)

    #===========================================================================================================
    def fct_power(q, PwShaft, Pamb, Ttot, Vair, NozzleArea):

        Vinlet = Vair
        PwInput = nacelle.efficiency_fan * PwShaft
        Vjet = numpy.sqrt(2. * PwInput / q +
                          Vinlet**2)  # Supposing isentropic compression
        TtotJet = Ttot + PwShaft / (
            q * Cp)  # Stagnation temperature increases due to introduced work
        TstatJet = TtotJet - 0.5 * Vjet**2 / Cp  # Static temperature
        VsndJet = earth.sound_speed(TstatJet)  # Sound speed at nozzle exhaust
        MachJet = Vjet / VsndJet  # Mach number at nozzle output
        PtotJet = earth.total_pressure(
            Pamb, MachJet)  # total pressure at nozzle exhaust (P = Pamb)
        CQoA1 = corrected_air_flow(
            PtotJet, TtotJet,
            MachJet)  # Corrected air flow per area at fan position
        q0 = CQoA1 * NozzleArea

        y = q0 - q

        return y

    #-----------------------------------------------------------------------------------------------------------

    NozzleArea = nacelle.nozzle_area
    FanWidth = nacelle.fan_width

    Ptot = earth.total_pressure(Pamb, Mach)  # Total pressure at inlet position
    Ttot = earth.total_temperature(Tamb,
                                   Mach)  # Total temperature at inlet position

    Vsnd = earth.sound_speed(Tamb)
    Vair = Vsnd * Mach

    fct_arg = (PwShaft, Pamb, Ttot, Vair, NozzleArea)

    CQoA0 = corrected_air_flow(
        Ptot, Ttot, Mach)  # Corrected air flow per area at fan position
    q0init = CQoA0 * (0.25 * numpy.pi * FanWidth**2)

    # Computation of the air flow swallowed by the inlet
    output_dict = fsolve(fct_power, x0=q0init, args=fct_arg, full_output=True)

    q0 = output_dict[0][0]
    if (output_dict[2] != 1):
        raise Exception("Convergence problem")

    Vinlet = Vair
    PwInput = nacelle.efficiency_fan * PwShaft
    Vjet = numpy.sqrt(2. * PwInput / q0 + Vinlet**2)

    eFn = q0 * (Vjet - Vinlet)

    return (eFn, q0)
コード例 #13
0
def fan_thrust_with_bli(nacelle, Pamb, Tamb, Mach, PwShaft):
    """
    Compute the thrust of a fan of a given geometry swallowing
    the boundary layer (BL) of a body of a given geometry
    The amount of swallowed BL depends on the given shaft power and flying
    conditions.
    """

    gam = earth.heat_ratio()
    r = earth.gaz_constant()
    Cp = earth.heat_constant(gam, r)

    #===========================================================================================================
    def fct_power_bli(y, PwShaft, Pamb, rho, Ttot, Vair, r1, d1, nozzle_area):

        (q0, q1, q2, Vinlet, dVbli) = air_flows(rho, Vair, r1, d1, y)
        PwInput = nacelle.efficiency_fan * PwShaft
        Vjet = numpy.sqrt(2. * PwInput / q1 + Vinlet**2)
        TtotJet = Ttot + PwShaft / (
            q1 * Cp)  # Stagnation temperature increases due to introduced work
        Tstat = TtotJet - 0.5 * Vjet**2 / Cp  # Static temperature
        VsndJet = earth.sound_speed(Tstat)  # Sound speed at nozzle exhaust
        MachJet = Vjet / VsndJet  # Mach number at nozzle output
        PtotJet = earth.total_pressure(
            Pamb, MachJet
        )  # total pressure at nozzle exhaust (P = Pamb) supposing adapted nozzle
        CQoA1 = corrected_air_flow(
            PtotJet, TtotJet,
            MachJet)  # Corrected air flow per area at nozzle position
        q = CQoA1 * nozzle_area

        y = q1 - q

        return y

    #-----------------------------------------------------------------------------------------------------------

    nozzle_area = nacelle.nozzle_area
    bnd_layer = nacelle.bnd_layer

    Re = earth.reynolds_number(Pamb, Tamb, Mach)

    d0 = boundary_layer(
        Re, nacelle.body_length
    )  # theorical thickness of the boundary layer without taking account of fuselage tapering
    r1 = 0.5 * nacelle.hub_width  # Radius of the hub of the eFan nacelle
    d1 = lin_interp_1d(d0, bnd_layer[:, 0],
                       bnd_layer[:, 1])  # Using the precomputed relation

    Ttot = earth.total_temperature(
        Tamb, Mach)  # Stagnation temperature at inlet position
    rho, sig = earth.air_density(Pamb, Tamb)
    Vsnd = earth.sound_speed(Tamb)
    Vair = Vsnd * Mach

    fct_arg = (PwShaft, Pamb, rho, Ttot, Vair, r1, d1, nozzle_area)

    # Computation of y1 : thikness of the vein swallowed by the inlet
    output_dict = fsolve(fct_power_bli,
                         x0=0.50,
                         args=fct_arg,
                         full_output=True)

    y = output_dict[0][0]
    if (output_dict[2] != 1):
        raise Exception("Convergence problem")

    (q0, q1, q2, Vinlet, dVbli) = air_flows(rho, Vair, r1, d1, y)
    PwInput = nacelle.efficiency_fan * PwShaft
    Vjet = numpy.sqrt(2. * PwInput / q1 + Vinlet**2)

    eFn = q1 * (Vjet - Vinlet)

    return (eFn, q1, dVbli)