def main(): screen.set_use_colors(False) parser = argparse.ArgumentParser() parser.add_argument('-pk', '--preset_s3_key', help="(string) Name of a preset to download from S3", type=str, required=False) parser.add_argument( '-ek', '--environment_s3_key', help="(string) Name of an environment file to download from S3", type=str, required=False) parser.add_argument('--model_metadata_s3_key', help="(string) Model Metadata File S3 Key", type=str, required=False) parser.add_argument( '-c', '--checkpoint_dir', help= '(string) Path to a folder containing a checkpoint to write the model to.', type=str, default='./checkpoint') parser.add_argument( '--pretrained_checkpoint_dir', help='(string) Path to a folder for downloading a pre-trained model', type=str, default=PRETRAINED_MODEL_DIR) parser.add_argument('--s3_bucket', help='(string) S3 bucket', type=str, default=os.environ.get( "SAGEMAKER_SHARED_S3_BUCKET_PATH", "gsaur-test")) parser.add_argument('--s3_prefix', help='(string) S3 prefix', type=str, default='sagemaker') parser.add_argument('--framework', help='(string) tensorflow or mxnet', type=str, default='tensorflow') parser.add_argument('--pretrained_s3_bucket', help='(string) S3 bucket for pre-trained model', type=str) parser.add_argument('--pretrained_s3_prefix', help='(string) S3 prefix for pre-trained model', type=str, default='sagemaker') parser.add_argument('--aws_region', help='(string) AWS region', type=str, default=os.environ.get("AWS_REGION", "us-east-1")) args, _ = parser.parse_known_args() s3_client = S3Client(region_name=args.aws_region, max_retry_attempts=0) # download model metadata # TODO: replace 'agent' with name of each agent model_metadata_download = ModelMetadata( bucket=args.s3_bucket, s3_key=args.model_metadata_s3_key, region_name=args.aws_region, local_path=MODEL_METADATA_LOCAL_PATH_FORMAT.format('agent')) model_metadata_info = model_metadata_download.get_model_metadata_info() network_type = model_metadata_info[ModelMetadataKeys.NEURAL_NETWORK.value] version = model_metadata_info[ModelMetadataKeys.VERSION.value] # upload model metadata model_metadata_upload = ModelMetadata( bucket=args.s3_bucket, s3_key=get_s3_key(args.s3_prefix, MODEL_METADATA_S3_POSTFIX), region_name=args.aws_region, local_path=MODEL_METADATA_LOCAL_PATH_FORMAT.format('agent')) model_metadata_upload.persist( s3_kms_extra_args=utils.get_s3_kms_extra_args()) shutil.copy2(model_metadata_download.local_path, SM_MODEL_OUTPUT_DIR) success_custom_preset = False if args.preset_s3_key: preset_local_path = "./markov/presets/preset.py" try: s3_client.download_file(bucket=args.s3_bucket, s3_key=args.preset_s3_key, local_path=preset_local_path) success_custom_preset = True except botocore.exceptions.ClientError: pass if not success_custom_preset: logger.info( "Could not download the preset file. Using the default DeepRacer preset." ) else: preset_location = "markov.presets.preset:graph_manager" graph_manager = short_dynamic_import(preset_location, ignore_module_case=True) s3_client.upload_file( bucket=args.s3_bucket, s3_key=os.path.normpath("%s/presets/preset.py" % args.s3_prefix), local_path=preset_local_path, s3_kms_extra_args=utils.get_s3_kms_extra_args()) if success_custom_preset: logger.info("Using preset: %s" % args.preset_s3_key) if not success_custom_preset: params_blob = os.environ.get('SM_TRAINING_ENV', '') if params_blob: params = json.loads(params_blob) sm_hyperparams_dict = params["hyperparameters"] else: sm_hyperparams_dict = {} #! TODO each agent should have own config agent_config = { 'model_metadata': model_metadata_download, ConfigParams.CAR_CTRL_CONFIG.value: { ConfigParams.LINK_NAME_LIST.value: [], ConfigParams.VELOCITY_LIST.value: {}, ConfigParams.STEERING_LIST.value: {}, ConfigParams.CHANGE_START.value: None, ConfigParams.ALT_DIR.value: None, ConfigParams.MODEL_METADATA.value: model_metadata_download, ConfigParams.REWARD.value: None, ConfigParams.AGENT_NAME.value: 'racecar' } } agent_list = list() agent_list.append(create_training_agent(agent_config)) graph_manager, robomaker_hyperparams_json = get_graph_manager( hp_dict=sm_hyperparams_dict, agent_list=agent_list, run_phase_subject=None, run_type=str(RunType.TRAINER)) # Upload hyperparameters to SageMaker shared s3 bucket hyperparameters = Hyperparameters(bucket=args.s3_bucket, s3_key=get_s3_key( args.s3_prefix, HYPERPARAMETER_S3_POSTFIX), region_name=args.aws_region) hyperparameters.persist( hyperparams_json=robomaker_hyperparams_json, s3_kms_extra_args=utils.get_s3_kms_extra_args()) # Attach sample collector to graph_manager only if sample count > 0 max_sample_count = int(sm_hyperparams_dict.get("max_sample_count", 0)) if max_sample_count > 0: sample_collector = SampleCollector( bucket=args.s3_bucket, s3_prefix=args.s3_prefix, region_name=args.aws_region, max_sample_count=max_sample_count, sampling_frequency=int( sm_hyperparams_dict.get("sampling_frequency", 1))) graph_manager.sample_collector = sample_collector # persist IP config from sagemaker to s3 ip_config = IpConfig(bucket=args.s3_bucket, s3_prefix=args.s3_prefix, region_name=args.aws_region) ip_config.persist(s3_kms_extra_args=utils.get_s3_kms_extra_args()) training_algorithm = model_metadata_download.training_algorithm output_head_format = FROZEN_HEAD_OUTPUT_GRAPH_FORMAT_MAPPING[ training_algorithm] use_pretrained_model = args.pretrained_s3_bucket and args.pretrained_s3_prefix # Handle backward compatibility if use_pretrained_model: # checkpoint s3 instance for pretrained model # TODO: replace 'agent' for multiagent training checkpoint = Checkpoint(bucket=args.pretrained_s3_bucket, s3_prefix=args.pretrained_s3_prefix, region_name=args.aws_region, agent_name='agent', checkpoint_dir=args.pretrained_checkpoint_dir, output_head_format=output_head_format) # make coach checkpoint compatible if version < SIMAPP_VERSION_2 and not checkpoint.rl_coach_checkpoint.is_compatible( ): checkpoint.rl_coach_checkpoint.make_compatible( checkpoint.syncfile_ready) # get best model checkpoint string model_checkpoint_name = checkpoint.deepracer_checkpoint_json.get_deepracer_best_checkpoint( ) # Select the best checkpoint model by uploading rl coach .coach_checkpoint file checkpoint.rl_coach_checkpoint.update( model_checkpoint_name=model_checkpoint_name, s3_kms_extra_args=utils.get_s3_kms_extra_args()) # add checkpoint into checkpoint_dict checkpoint_dict = {'agent': checkpoint} # load pretrained model ds_params_instance_pretrained = S3BotoDataStoreParameters( checkpoint_dict=checkpoint_dict) data_store_pretrained = S3BotoDataStore(ds_params_instance_pretrained, graph_manager, True) data_store_pretrained.load_from_store() memory_backend_params = DeepRacerRedisPubSubMemoryBackendParameters( redis_address="localhost", redis_port=6379, run_type=str(RunType.TRAINER), channel=args.s3_prefix, network_type=network_type) graph_manager.memory_backend_params = memory_backend_params # checkpoint s3 instance for training model checkpoint = Checkpoint(bucket=args.s3_bucket, s3_prefix=args.s3_prefix, region_name=args.aws_region, agent_name='agent', checkpoint_dir=args.checkpoint_dir, output_head_format=output_head_format) checkpoint_dict = {'agent': checkpoint} ds_params_instance = S3BotoDataStoreParameters( checkpoint_dict=checkpoint_dict) graph_manager.data_store_params = ds_params_instance graph_manager.data_store = S3BotoDataStore(ds_params_instance, graph_manager) task_parameters = TaskParameters() task_parameters.experiment_path = SM_MODEL_OUTPUT_DIR task_parameters.checkpoint_save_secs = 20 if use_pretrained_model: task_parameters.checkpoint_restore_path = args.pretrained_checkpoint_dir task_parameters.checkpoint_save_dir = args.checkpoint_dir training_worker( graph_manager=graph_manager, task_parameters=task_parameters, user_batch_size=json.loads(robomaker_hyperparams_json)["batch_size"], user_episode_per_rollout=json.loads( robomaker_hyperparams_json)["num_episodes_between_training"], training_algorithm=training_algorithm)
def main(): screen.set_use_colors(False) parser = argparse.ArgumentParser() parser.add_argument( '-c', '--checkpoint_dir', help= '(string) Path to a folder containing a checkpoint to restore the model from.', type=str, default='./checkpoint') parser.add_argument('--s3_bucket', help='(string) S3 bucket', type=str, default=rospy.get_param("SAGEMAKER_SHARED_S3_BUCKET", "gsaur-test")) parser.add_argument('--s3_prefix', help='(string) S3 prefix', type=str, default=rospy.get_param("SAGEMAKER_SHARED_S3_PREFIX", "sagemaker")) parser.add_argument( '--num_workers', help="(int) The number of workers started in this pool", type=int, default=int(rospy.get_param("NUM_WORKERS", 1))) parser.add_argument('--rollout_idx', help="(int) The index of current rollout worker", type=int, default=0) parser.add_argument('-r', '--redis_ip', help="(string) IP or host for the redis server", default='localhost', type=str) parser.add_argument('-rp', '--redis_port', help="(int) Port of the redis server", default=6379, type=int) parser.add_argument('--aws_region', help='(string) AWS region', type=str, default=rospy.get_param("AWS_REGION", "us-east-1")) parser.add_argument('--reward_file_s3_key', help='(string) Reward File S3 Key', type=str, default=rospy.get_param("REWARD_FILE_S3_KEY", None)) parser.add_argument('--model_metadata_s3_key', help='(string) Model Metadata File S3 Key', type=str, default=rospy.get_param("MODEL_METADATA_FILE_S3_KEY", None)) # For training job, reset is not allowed. penalty_seconds, off_track_penalty, and # collision_penalty will all be 0 be default parser.add_argument('--number_of_resets', help='(integer) Number of resets', type=int, default=int(rospy.get_param("NUMBER_OF_RESETS", 0))) parser.add_argument('--penalty_seconds', help='(float) penalty second', type=float, default=float(rospy.get_param("PENALTY_SECONDS", 0.0))) parser.add_argument('--job_type', help='(string) job type', type=str, default=rospy.get_param("JOB_TYPE", "TRAINING")) parser.add_argument('--is_continuous', help='(boolean) is continous after lap completion', type=bool, default=utils.str2bool( rospy.get_param("IS_CONTINUOUS", False))) parser.add_argument('--race_type', help='(string) Race type', type=str, default=rospy.get_param("RACE_TYPE", "TIME_TRIAL")) parser.add_argument('--off_track_penalty', help='(float) off track penalty second', type=float, default=float(rospy.get_param("OFF_TRACK_PENALTY", 0.0))) parser.add_argument('--collision_penalty', help='(float) collision penalty second', type=float, default=float(rospy.get_param("COLLISION_PENALTY", 0.0))) args = parser.parse_args() logger.info("S3 bucket: %s", args.s3_bucket) logger.info("S3 prefix: %s", args.s3_prefix) # Download and import reward function # TODO: replace 'agent' with name of each agent for multi-agent training reward_function_file = RewardFunction( bucket=args.s3_bucket, s3_key=args.reward_file_s3_key, region_name=args.aws_region, local_path=REWARD_FUCTION_LOCAL_PATH_FORMAT.format('agent')) reward_function = reward_function_file.get_reward_function() # Instantiate Cameras configure_camera(namespaces=['racecar']) preset_file_success, _ = download_custom_files_if_present( s3_bucket=args.s3_bucket, s3_prefix=args.s3_prefix, aws_region=args.aws_region) # download model metadata # TODO: replace 'agent' with name of each agent model_metadata = ModelMetadata( bucket=args.s3_bucket, s3_key=args.model_metadata_s3_key, region_name=args.aws_region, local_path=MODEL_METADATA_LOCAL_PATH_FORMAT.format('agent')) model_metadata_info = model_metadata.get_model_metadata_info() version = model_metadata_info[ModelMetadataKeys.VERSION.value] agent_config = { 'model_metadata': model_metadata, ConfigParams.CAR_CTRL_CONFIG.value: { ConfigParams.LINK_NAME_LIST.value: LINK_NAMES, ConfigParams.VELOCITY_LIST.value: VELOCITY_TOPICS, ConfigParams.STEERING_LIST.value: STEERING_TOPICS, ConfigParams.CHANGE_START.value: utils.str2bool(rospy.get_param('CHANGE_START_POSITION', True)), ConfigParams.ALT_DIR.value: utils.str2bool( rospy.get_param('ALTERNATE_DRIVING_DIRECTION', False)), ConfigParams.MODEL_METADATA.value: model_metadata, ConfigParams.REWARD.value: reward_function, ConfigParams.AGENT_NAME.value: 'racecar', ConfigParams.VERSION.value: version, ConfigParams.NUMBER_OF_RESETS.value: args.number_of_resets, ConfigParams.PENALTY_SECONDS.value: args.penalty_seconds, ConfigParams.NUMBER_OF_TRIALS.value: None, ConfigParams.IS_CONTINUOUS.value: args.is_continuous, ConfigParams.RACE_TYPE.value: args.race_type, ConfigParams.COLLISION_PENALTY.value: args.collision_penalty, ConfigParams.OFF_TRACK_PENALTY.value: args.off_track_penalty } } #! TODO each agent should have own s3 bucket metrics_key = rospy.get_param('METRICS_S3_OBJECT_KEY') if args.num_workers > 1 and args.rollout_idx > 0: key_tuple = os.path.splitext(metrics_key) metrics_key = "{}_{}{}".format(key_tuple[0], str(args.rollout_idx), key_tuple[1]) metrics_s3_config = { MetricsS3Keys.METRICS_BUCKET.value: rospy.get_param('METRICS_S3_BUCKET'), MetricsS3Keys.METRICS_KEY.value: metrics_key, MetricsS3Keys.REGION.value: rospy.get_param('AWS_REGION') } run_phase_subject = RunPhaseSubject() agent_list = list() #TODO: replace agent for multi agent training # checkpoint s3 instance # TODO replace agent with agent_0 and so on for multiagent case checkpoint = Checkpoint(bucket=args.s3_bucket, s3_prefix=args.s3_prefix, region_name=args.aws_region, agent_name='agent', checkpoint_dir=args.checkpoint_dir) agent_list.append( create_rollout_agent( agent_config, TrainingMetrics( agent_name='agent', s3_dict_metrics=metrics_s3_config, deepracer_checkpoint_json=checkpoint.deepracer_checkpoint_json, ckpnt_dir=os.path.join(args.checkpoint_dir, 'agent'), run_phase_sink=run_phase_subject, use_model_picker=(args.rollout_idx == 0)), run_phase_subject)) agent_list.append(create_obstacles_agent()) agent_list.append(create_bot_cars_agent()) # ROS service to indicate all the robomaker markov packages are ready for consumption signal_robomaker_markov_package_ready() PhaseObserver('/agent/training_phase', run_phase_subject) aws_region = rospy.get_param('AWS_REGION', args.aws_region) simtrace_s3_bucket = rospy.get_param('SIMTRACE_S3_BUCKET', None) mp4_s3_bucket = rospy.get_param('MP4_S3_BUCKET', None) if args.rollout_idx == 0 else None if simtrace_s3_bucket: simtrace_s3_object_prefix = rospy.get_param('SIMTRACE_S3_PREFIX') if args.num_workers > 1: simtrace_s3_object_prefix = os.path.join(simtrace_s3_object_prefix, str(args.rollout_idx)) if mp4_s3_bucket: mp4_s3_object_prefix = rospy.get_param('MP4_S3_OBJECT_PREFIX') simtrace_video_s3_writers = [] #TODO: replace 'agent' with 'agent_0' for multi agent training and # mp4_s3_object_prefix, mp4_s3_bucket will be a list, so need to access with index if simtrace_s3_bucket: simtrace_video_s3_writers.append( SimtraceVideo( upload_type=SimtraceVideoNames.SIMTRACE_TRAINING.value, bucket=simtrace_s3_bucket, s3_prefix=simtrace_s3_object_prefix, region_name=aws_region, local_path=SIMTRACE_TRAINING_LOCAL_PATH_FORMAT.format( 'agent'))) if mp4_s3_bucket: simtrace_video_s3_writers.extend([ SimtraceVideo( upload_type=SimtraceVideoNames.PIP.value, bucket=mp4_s3_bucket, s3_prefix=mp4_s3_object_prefix, region_name=aws_region, local_path=CAMERA_PIP_MP4_LOCAL_PATH_FORMAT.format('agent')), SimtraceVideo( upload_type=SimtraceVideoNames.DEGREE45.value, bucket=mp4_s3_bucket, s3_prefix=mp4_s3_object_prefix, region_name=aws_region, local_path=CAMERA_45DEGREE_LOCAL_PATH_FORMAT.format('agent')), SimtraceVideo( upload_type=SimtraceVideoNames.TOPVIEW.value, bucket=mp4_s3_bucket, s3_prefix=mp4_s3_object_prefix, region_name=aws_region, local_path=CAMERA_TOPVIEW_LOCAL_PATH_FORMAT.format('agent')) ]) # TODO: replace 'agent' with specific agent name for multi agent training ip_config = IpConfig(bucket=args.s3_bucket, s3_prefix=args.s3_prefix, region_name=args.aws_region, local_path=IP_ADDRESS_LOCAL_PATH.format('agent')) redis_ip = ip_config.get_ip_config() # Download hyperparameters from SageMaker shared s3 bucket # TODO: replace 'agent' with name of each agent hyperparameters = Hyperparameters( bucket=args.s3_bucket, s3_key=get_s3_key(args.s3_prefix, HYPERPARAMETER_S3_POSTFIX), region_name=args.aws_region, local_path=HYPERPARAMETER_LOCAL_PATH_FORMAT.format('agent')) sm_hyperparams_dict = hyperparameters.get_hyperparameters_dict() enable_domain_randomization = utils.str2bool( rospy.get_param('ENABLE_DOMAIN_RANDOMIZATION', False)) # Make the clients that will allow us to pause and unpause the physics rospy.wait_for_service('/gazebo/pause_physics_dr') rospy.wait_for_service('/gazebo/unpause_physics_dr') pause_physics = ServiceProxyWrapper('/gazebo/pause_physics_dr', Empty) unpause_physics = ServiceProxyWrapper('/gazebo/unpause_physics_dr', Empty) if preset_file_success: preset_location = os.path.join(CUSTOM_FILES_PATH, "preset.py") preset_location += ":graph_manager" graph_manager = short_dynamic_import(preset_location, ignore_module_case=True) logger.info("Using custom preset file!") else: graph_manager, _ = get_graph_manager( hp_dict=sm_hyperparams_dict, agent_list=agent_list, run_phase_subject=run_phase_subject, enable_domain_randomization=enable_domain_randomization, pause_physics=pause_physics, unpause_physics=unpause_physics) # If num_episodes_between_training is smaller than num_workers then cancel worker early. episode_steps_per_rollout = graph_manager.agent_params.algorithm.num_consecutive_playing_steps.num_steps # Reduce number of workers if allocated more than num_episodes_between_training if args.num_workers > episode_steps_per_rollout: logger.info( "Excess worker allocated. Reducing from {} to {}...".format( args.num_workers, episode_steps_per_rollout)) args.num_workers = episode_steps_per_rollout if args.rollout_idx >= episode_steps_per_rollout or args.rollout_idx >= args.num_workers: err_msg_format = "Exiting excess worker..." err_msg_format += "(rollout_idx[{}] >= num_workers[{}] or num_episodes_between_training[{}])" logger.info( err_msg_format.format(args.rollout_idx, args.num_workers, episode_steps_per_rollout)) # Close the down the job utils.cancel_simulation_job() memory_backend_params = DeepRacerRedisPubSubMemoryBackendParameters( redis_address=redis_ip, redis_port=6379, run_type=str(RunType.ROLLOUT_WORKER), channel=args.s3_prefix, num_workers=args.num_workers, rollout_idx=args.rollout_idx) graph_manager.memory_backend_params = memory_backend_params checkpoint_dict = {'agent': checkpoint} ds_params_instance = S3BotoDataStoreParameters( checkpoint_dict=checkpoint_dict) graph_manager.data_store = S3BotoDataStore(ds_params_instance, graph_manager) task_parameters = TaskParameters() task_parameters.checkpoint_restore_path = args.checkpoint_dir rollout_worker(graph_manager=graph_manager, num_workers=args.num_workers, rollout_idx=args.rollout_idx, task_parameters=task_parameters, simtrace_video_s3_writers=simtrace_video_s3_writers, pause_physics=pause_physics, unpause_physics=unpause_physics)