def __init__(self, queue_url, aws_region='us-east-1', race_duration=180, number_of_trials=3, number_of_resets=10000, penalty_seconds=2.0, off_track_penalty=2.0, collision_penalty=5.0, is_continuous=False, race_type="TIME_TRIAL"): # constructor arguments self._model_updater = ModelUpdater.get_instance() self._deepracer_path = rospkg.RosPack().get_path( DeepRacerPackages.DEEPRACER_SIMULATION_ENVIRONMENT) body_shell_path = os.path.join(self._deepracer_path, "meshes", "f1") self._valid_body_shells = \ set(".".join(f.split(".")[:-1]) for f in os.listdir(body_shell_path) if os.path.isfile( os.path.join(body_shell_path, f))) self._valid_body_shells.add(const.BodyShellType.DEFAULT.value) self._valid_car_colors = set(e.value for e in const.CarColorType if "f1" not in e.value) self._num_sectors = int(rospy.get_param("NUM_SECTORS", "3")) self._queue_url = queue_url self._region = aws_region self._number_of_trials = number_of_trials self._number_of_resets = number_of_resets self._penalty_seconds = penalty_seconds self._off_track_penalty = off_track_penalty self._collision_penalty = collision_penalty self._is_continuous = is_continuous self._race_type = race_type self._is_save_simtrace_enabled = False self._is_save_mp4_enabled = False self._is_event_end = False self._done_condition = any self._race_duration = race_duration self._enable_domain_randomization = False # sqs client # The boto client errors out after polling for 1 hour. self._sqs_client = SQSClient(queue_url=self._queue_url, region_name=self._region, max_num_of_msg=MAX_NUM_OF_SQS_MESSAGE, wait_time_sec=SQS_WAIT_TIME_SEC, session=refreshed_session(self._region)) self._s3_client = S3Client(region_name=self._region) # tracking current state information self._track_data = TrackData.get_instance() self._start_lane = self._track_data.center_line # keep track of the racer specific info, e.g. s3 locations, alias, car color etc. self._current_racer = None # keep track of the current race car we are using. It is always "racecar". car_model_state = ModelState() car_model_state.model_name = "racecar" self._current_car_model_state = car_model_state self._last_body_shell_type = None self._last_sensors = None self._racecar_model = AgentModel() # keep track of the current control agent we are using self._current_agent = None # keep track of the current control graph manager self._current_graph_manager = None # Keep track of previous model's name self._prev_model_name = None self._hide_position_idx = 0 self._hide_positions = get_hide_positions(race_car_num=1) self._run_phase_subject = RunPhaseSubject() self._simtrace_video_s3_writers = [] self._local_model_directory = './checkpoint' # virtual event only have single agent, so set agent_name to "agent" self._agent_name = "agent" # camera manager self._camera_manager = CameraManager.get_instance() # setting up virtual event top and follow camera in CameraManager # virtual event configure camera does not need to wait for car to spawm because # follow car camera is not tracking any car initially self._main_cameras, self._sub_camera = configure_camera( namespaces=[VIRTUAL_EVENT], is_wait_for_model=False) self._spawn_cameras() # pop out all cameras after configuration to prevent camera from moving self._camera_manager.pop(namespace=VIRTUAL_EVENT) dummy_metrics_s3_config = { MetricsS3Keys.METRICS_BUCKET.value: "dummy-bucket", MetricsS3Keys.METRICS_KEY.value: "dummy-key", MetricsS3Keys.REGION.value: self._region } self._eval_metrics = EvalMetrics( agent_name=self._agent_name, s3_dict_metrics=dummy_metrics_s3_config, is_continuous=self._is_continuous, pause_time_before_start=PAUSE_TIME_BEFORE_START) # upload a default best sector time for all sectors with time inf for each sector # if there is not best sector time existed in s3 # use the s3 bucket and prefix for yaml file stored as environment variable because # here is SimApp use only. For virtual event there is no s3 bucket and prefix past # through yaml file. All are past through sqs. For simplicity, reuse the yaml s3 bucket # and prefix environment variable. virtual_event_best_sector_time = VirtualEventBestSectorTime( bucket=os.environ.get("YAML_S3_BUCKET", ''), s3_key=get_s3_key(os.environ.get("YAML_S3_PREFIX", ''), SECTOR_TIME_S3_POSTFIX), region_name=os.environ.get("APP_REGION", "us-east-1"), local_path=SECTOR_TIME_LOCAL_PATH) response = virtual_event_best_sector_time.list() # this is used to handle situation such as robomaker job crash, so the next robomaker job # can catch the best sector time left over from crashed job if "Contents" not in response: virtual_event_best_sector_time.persist( body=json.dumps({ SECTOR_X_FORMAT.format(idx + 1): float("inf") for idx in range(self._num_sectors) }), s3_kms_extra_args=utils.get_s3_kms_extra_args()) # ROS service to indicate all the robomaker markov packages are ready for consumption signal_robomaker_markov_package_ready() PhaseObserver('/agent/training_phase', self._run_phase_subject) # setup mp4 services self._setup_mp4_services()
def main(): """ Main function for tournament worker """ parser = argparse.ArgumentParser() parser.add_argument('-p', '--preset', help="(string) Name of a preset to run \ (class name from the 'presets' directory.)", type=str, required=False) parser.add_argument('--s3_bucket', help='list(string) S3 bucket', type=str, nargs='+', default=rospy.get_param("MODEL_S3_BUCKET", ["gsaur-test"])) parser.add_argument('--s3_prefix', help='list(string) S3 prefix', type=str, nargs='+', default=rospy.get_param("MODEL_S3_PREFIX", ["sagemaker"])) parser.add_argument('--aws_region', help='(string) AWS region', type=str, default=rospy.get_param("AWS_REGION", "us-east-1")) parser.add_argument('--number_of_trials', help='(integer) Number of trials', type=int, default=int(rospy.get_param("NUMBER_OF_TRIALS", 10))) parser.add_argument( '-c', '--local_model_directory', help='(string) Path to a folder containing a checkpoint \ to restore the model from.', type=str, default='./checkpoint') parser.add_argument('--number_of_resets', help='(integer) Number of resets', type=int, default=int(rospy.get_param("NUMBER_OF_RESETS", 0))) parser.add_argument('--penalty_seconds', help='(float) penalty second', type=float, default=float(rospy.get_param("PENALTY_SECONDS", 2.0))) parser.add_argument('--job_type', help='(string) job type', type=str, default=rospy.get_param("JOB_TYPE", "EVALUATION")) parser.add_argument('--is_continuous', help='(boolean) is continous after lap completion', type=bool, default=utils.str2bool( rospy.get_param("IS_CONTINUOUS", False))) parser.add_argument('--race_type', help='(string) Race type', type=str, default=rospy.get_param("RACE_TYPE", "TIME_TRIAL")) parser.add_argument('--off_track_penalty', help='(float) off track penalty second', type=float, default=float(rospy.get_param("OFF_TRACK_PENALTY", 2.0))) parser.add_argument('--collision_penalty', help='(float) collision penalty second', type=float, default=float(rospy.get_param("COLLISION_PENALTY", 5.0))) args = parser.parse_args() arg_s3_bucket = args.s3_bucket arg_s3_prefix = args.s3_prefix logger.info("S3 bucket: %s \n S3 prefix: %s", arg_s3_bucket, arg_s3_prefix) # tournament_worker: names to be displayed in MP4. # This is racer alias in tournament worker case. display_names = rospy.get_param('DISPLAY_NAME', "") metrics_s3_buckets = rospy.get_param('METRICS_S3_BUCKET') metrics_s3_object_keys = rospy.get_param('METRICS_S3_OBJECT_KEY') arg_s3_bucket, arg_s3_prefix = utils.force_list( arg_s3_bucket), utils.force_list(arg_s3_prefix) metrics_s3_buckets = utils.force_list(metrics_s3_buckets) metrics_s3_object_keys = utils.force_list(metrics_s3_object_keys) validate_list = [ arg_s3_bucket, arg_s3_prefix, metrics_s3_buckets, metrics_s3_object_keys ] simtrace_s3_bucket = rospy.get_param('SIMTRACE_S3_BUCKET', None) mp4_s3_bucket = rospy.get_param('MP4_S3_BUCKET', None) if simtrace_s3_bucket: simtrace_s3_object_prefix = rospy.get_param('SIMTRACE_S3_PREFIX') simtrace_s3_bucket = utils.force_list(simtrace_s3_bucket) simtrace_s3_object_prefix = utils.force_list(simtrace_s3_object_prefix) validate_list.extend([simtrace_s3_bucket, simtrace_s3_object_prefix]) if mp4_s3_bucket: mp4_s3_object_prefix = rospy.get_param('MP4_S3_OBJECT_PREFIX') mp4_s3_bucket = utils.force_list(mp4_s3_bucket) mp4_s3_object_prefix = utils.force_list(mp4_s3_object_prefix) validate_list.extend([mp4_s3_bucket, mp4_s3_object_prefix]) if not all([lambda x: len(x) == len(validate_list[0]), validate_list]): utils.log_and_exit( "Eval worker error: Incorrect arguments passed: {}".format( validate_list), utils.SIMAPP_SIMULATION_WORKER_EXCEPTION, utils.SIMAPP_EVENT_ERROR_CODE_500) if args.number_of_resets != 0 and args.number_of_resets < MIN_RESET_COUNT: raise GenericRolloutException( "number of resets is less than {}".format(MIN_RESET_COUNT)) # Instantiate Cameras if len(arg_s3_bucket) == 1: configure_camera(namespaces=['racecar']) else: configure_camera(namespaces=[ 'racecar_{}'.format(str(agent_index)) for agent_index in range(len(arg_s3_bucket)) ]) agent_list = list() s3_bucket_dict = dict() s3_prefix_dict = dict() s3_writers = list() # tournament_worker: list of required S3 locations simtrace_s3_bucket_dict = dict() simtrace_s3_prefix_dict = dict() metrics_s3_bucket_dict = dict() metrics_s3_obect_key_dict = dict() mp4_s3_bucket_dict = dict() mp4_s3_object_prefix_dict = dict() for agent_index, s3_bucket_val in enumerate(arg_s3_bucket): agent_name = 'agent' if len(arg_s3_bucket) == 1 else 'agent_{}'.format( str(agent_index)) racecar_name = 'racecar' if len( arg_s3_bucket) == 1 else 'racecar_{}'.format(str(agent_index)) s3_bucket_dict[agent_name] = arg_s3_bucket[agent_index] s3_prefix_dict[agent_name] = arg_s3_prefix[agent_index] # tournament_worker: remap key with agent_name instead of agent_index for list of S3 locations. simtrace_s3_bucket_dict[agent_name] = simtrace_s3_bucket[agent_index] simtrace_s3_prefix_dict[agent_name] = simtrace_s3_object_prefix[ agent_index] metrics_s3_bucket_dict[agent_name] = metrics_s3_buckets[agent_index] metrics_s3_obect_key_dict[agent_name] = metrics_s3_object_keys[ agent_index] mp4_s3_bucket_dict[agent_name] = mp4_s3_bucket[agent_index] mp4_s3_object_prefix_dict[agent_name] = mp4_s3_object_prefix[ agent_index] s3_client = SageS3Client(bucket=arg_s3_bucket[agent_index], s3_prefix=arg_s3_prefix[agent_index], aws_region=args.aws_region) # Load the model metadata if not os.path.exists(os.path.join(CUSTOM_FILES_PATH, agent_name)): os.makedirs(os.path.join(CUSTOM_FILES_PATH, agent_name)) model_metadata_local_path = os.path.join( os.path.join(CUSTOM_FILES_PATH, agent_name), 'model_metadata.json') utils.load_model_metadata( s3_client, os.path.normpath("%s/model/model_metadata.json" % arg_s3_prefix[agent_index]), model_metadata_local_path) # Handle backward compatibility _, _, version = parse_model_metadata(model_metadata_local_path) if float(version) < float(utils.SIMAPP_VERSION) and \ not utils.has_current_ckpnt_name(arg_s3_bucket[agent_index], arg_s3_prefix[agent_index], args.aws_region): utils.make_compatible(arg_s3_bucket[agent_index], arg_s3_prefix[agent_index], args.aws_region, SyncFiles.TRAINER_READY.value) # Select the optimal model utils.do_model_selection(s3_bucket=arg_s3_bucket[agent_index], s3_prefix=arg_s3_prefix[agent_index], region=args.aws_region) # Download hyperparameters from SageMaker if not os.path.exists(agent_name): os.makedirs(agent_name) hyperparameters_file_success = False hyperparams_s3_key = os.path.normpath(arg_s3_prefix[agent_index] + "/ip/hyperparameters.json") hyperparameters_file_success = s3_client.download_file( s3_key=hyperparams_s3_key, local_path=os.path.join(agent_name, "hyperparameters.json")) sm_hyperparams_dict = {} if hyperparameters_file_success: logger.info("Received Sagemaker hyperparameters successfully!") with open(os.path.join(agent_name, "hyperparameters.json")) as file: sm_hyperparams_dict = json.load(file) else: logger.info("SageMaker hyperparameters not found.") agent_config = { 'model_metadata': model_metadata_local_path, ConfigParams.CAR_CTRL_CONFIG.value: { ConfigParams.LINK_NAME_LIST.value: [ link_name.replace('racecar', racecar_name) for link_name in LINK_NAMES ], ConfigParams.VELOCITY_LIST.value: [ velocity_topic.replace('racecar', racecar_name) for velocity_topic in VELOCITY_TOPICS ], ConfigParams.STEERING_LIST.value: [ steering_topic.replace('racecar', racecar_name) for steering_topic in STEERING_TOPICS ], ConfigParams.CHANGE_START.value: utils.str2bool(rospy.get_param('CHANGE_START_POSITION', False)), ConfigParams.ALT_DIR.value: utils.str2bool( rospy.get_param('ALTERNATE_DRIVING_DIRECTION', False)), ConfigParams.ACTION_SPACE_PATH.value: 'custom_files/' + agent_name + '/model_metadata.json', ConfigParams.REWARD.value: reward_function, ConfigParams.AGENT_NAME.value: racecar_name, ConfigParams.VERSION.value: version, ConfigParams.NUMBER_OF_RESETS.value: args.number_of_resets, ConfigParams.PENALTY_SECONDS.value: args.penalty_seconds, ConfigParams.NUMBER_OF_TRIALS.value: args.number_of_trials, ConfigParams.IS_CONTINUOUS.value: args.is_continuous, ConfigParams.RACE_TYPE.value: args.race_type, ConfigParams.COLLISION_PENALTY.value: args.collision_penalty, ConfigParams.OFF_TRACK_PENALTY.value: args.off_track_penalty } } metrics_s3_config = { MetricsS3Keys.METRICS_BUCKET.value: metrics_s3_buckets[agent_index], MetricsS3Keys.METRICS_KEY.value: metrics_s3_object_keys[agent_index], # Replaced rospy.get_param('AWS_REGION') to be equal to the argument being passed # or default argument set MetricsS3Keys.REGION.value: args.aws_region, # Replaced rospy.get_param('MODEL_S3_BUCKET') to be equal to the argument being passed # or default argument set MetricsS3Keys.STEP_BUCKET.value: arg_s3_bucket[agent_index], # Replaced rospy.get_param('MODEL_S3_PREFIX') to be equal to the argument being passed # or default argument set MetricsS3Keys.STEP_KEY.value: os.path.join(arg_s3_prefix[agent_index], EVALUATION_SIMTRACE_DATA_S3_OBJECT_KEY) } aws_region = rospy.get_param('AWS_REGION', args.aws_region) s3_writer_job_info = [] if simtrace_s3_bucket: s3_writer_job_info.append( IterationData( 'simtrace', simtrace_s3_bucket[agent_index], simtrace_s3_object_prefix[agent_index], aws_region, os.path.join( ITERATION_DATA_LOCAL_FILE_PATH, agent_name, IterationDataLocalFileNames. SIM_TRACE_EVALUATION_LOCAL_FILE.value))) if mp4_s3_bucket: s3_writer_job_info.extend([ IterationData( 'pip', mp4_s3_bucket[agent_index], mp4_s3_object_prefix[agent_index], aws_region, os.path.join( ITERATION_DATA_LOCAL_FILE_PATH, agent_name, IterationDataLocalFileNames. CAMERA_PIP_MP4_VALIDATION_LOCAL_PATH.value)), IterationData( '45degree', mp4_s3_bucket[agent_index], mp4_s3_object_prefix[agent_index], aws_region, os.path.join( ITERATION_DATA_LOCAL_FILE_PATH, agent_name, IterationDataLocalFileNames. CAMERA_45DEGREE_MP4_VALIDATION_LOCAL_PATH.value)), IterationData( 'topview', mp4_s3_bucket[agent_index], mp4_s3_object_prefix[agent_index], aws_region, os.path.join( ITERATION_DATA_LOCAL_FILE_PATH, agent_name, IterationDataLocalFileNames. CAMERA_TOPVIEW_MP4_VALIDATION_LOCAL_PATH.value)) ]) s3_writers.append(S3Writer(job_info=s3_writer_job_info)) run_phase_subject = RunPhaseSubject() agent_list.append( create_rollout_agent(agent_config, EvalMetrics(agent_name, metrics_s3_config), run_phase_subject)) agent_list.append(create_obstacles_agent()) agent_list.append(create_bot_cars_agent()) # ROS service to indicate all the robomaker markov packages are ready for consumption signal_robomaker_markov_package_ready() PhaseObserver('/agent/training_phase', run_phase_subject) graph_manager, _ = get_graph_manager(hp_dict=sm_hyperparams_dict, agent_list=agent_list, run_phase_subject=run_phase_subject) ds_params_instance = S3BotoDataStoreParameters( aws_region=args.aws_region, bucket_names=s3_bucket_dict, base_checkpoint_dir=args.local_model_directory, s3_folders=s3_prefix_dict) graph_manager.data_store = S3BotoDataStore(params=ds_params_instance, graph_manager=graph_manager, ignore_lock=True) graph_manager.env_params.seed = 0 task_parameters = TaskParameters() task_parameters.checkpoint_restore_path = args.local_model_directory tournament_worker(graph_manager=graph_manager, number_of_trials=args.number_of_trials, task_parameters=task_parameters, s3_writers=s3_writers, is_continuous=args.is_continuous) # tournament_worker: write race report to local file. write_race_report(graph_manager, model_s3_bucket_map=s3_bucket_dict, model_s3_prefix_map=s3_prefix_dict, metrics_s3_bucket_map=metrics_s3_bucket_dict, metrics_s3_key_map=metrics_s3_obect_key_dict, simtrace_s3_bucket_map=simtrace_s3_bucket_dict, simtrace_s3_prefix_map=simtrace_s3_prefix_dict, mp4_s3_bucket_map=mp4_s3_bucket_dict, mp4_s3_prefix_map=mp4_s3_object_prefix_dict, display_names=display_names) # tournament_worker: terminate tournament_race_node. terminate_tournament_race()
class VirtualEventManager(object): """ This is the manager that manages the live virtual event. """ def __init__(self, queue_url, aws_region='us-east-1', race_duration=180, number_of_trials=3, number_of_resets=10000, penalty_seconds=2.0, off_track_penalty=2.0, collision_penalty=5.0, is_continuous=False, race_type="TIME_TRIAL"): # constructor arguments self._model_updater = ModelUpdater.get_instance() self._deepracer_path = rospkg.RosPack().get_path( DeepRacerPackages.DEEPRACER_SIMULATION_ENVIRONMENT) body_shell_path = os.path.join(self._deepracer_path, "meshes", "f1") self._valid_body_shells = \ set(".".join(f.split(".")[:-1]) for f in os.listdir(body_shell_path) if os.path.isfile( os.path.join(body_shell_path, f))) self._valid_body_shells.add(const.BodyShellType.DEFAULT.value) self._valid_car_colors = set(e.value for e in const.CarColorType if "f1" not in e.value) self._num_sectors = int(rospy.get_param("NUM_SECTORS", "3")) self._queue_url = queue_url self._region = aws_region self._number_of_trials = number_of_trials self._number_of_resets = number_of_resets self._penalty_seconds = penalty_seconds self._off_track_penalty = off_track_penalty self._collision_penalty = collision_penalty self._is_continuous = is_continuous self._race_type = race_type self._is_save_simtrace_enabled = False self._is_save_mp4_enabled = False self._is_event_end = False self._done_condition = any self._race_duration = race_duration self._enable_domain_randomization = False # sqs client # The boto client errors out after polling for 1 hour. self._sqs_client = SQSClient(queue_url=self._queue_url, region_name=self._region, max_num_of_msg=MAX_NUM_OF_SQS_MESSAGE, wait_time_sec=SQS_WAIT_TIME_SEC, session=refreshed_session(self._region)) self._s3_client = S3Client(region_name=self._region) # tracking current state information self._track_data = TrackData.get_instance() self._start_lane = self._track_data.center_line # keep track of the racer specific info, e.g. s3 locations, alias, car color etc. self._current_racer = None # keep track of the current race car we are using. It is always "racecar". car_model_state = ModelState() car_model_state.model_name = "racecar" self._current_car_model_state = car_model_state self._last_body_shell_type = None self._last_sensors = None self._racecar_model = AgentModel() # keep track of the current control agent we are using self._current_agent = None # keep track of the current control graph manager self._current_graph_manager = None # Keep track of previous model's name self._prev_model_name = None self._hide_position_idx = 0 self._hide_positions = get_hide_positions(race_car_num=1) self._run_phase_subject = RunPhaseSubject() self._simtrace_video_s3_writers = [] self._local_model_directory = './checkpoint' # virtual event only have single agent, so set agent_name to "agent" self._agent_name = "agent" # camera manager self._camera_manager = CameraManager.get_instance() # setting up virtual event top and follow camera in CameraManager # virtual event configure camera does not need to wait for car to spawm because # follow car camera is not tracking any car initially self._main_cameras, self._sub_camera = configure_camera( namespaces=[VIRTUAL_EVENT], is_wait_for_model=False) self._spawn_cameras() # pop out all cameras after configuration to prevent camera from moving self._camera_manager.pop(namespace=VIRTUAL_EVENT) dummy_metrics_s3_config = { MetricsS3Keys.METRICS_BUCKET.value: "dummy-bucket", MetricsS3Keys.METRICS_KEY.value: "dummy-key", MetricsS3Keys.REGION.value: self._region } self._eval_metrics = EvalMetrics( agent_name=self._agent_name, s3_dict_metrics=dummy_metrics_s3_config, is_continuous=self._is_continuous, pause_time_before_start=PAUSE_TIME_BEFORE_START) # upload a default best sector time for all sectors with time inf for each sector # if there is not best sector time existed in s3 # use the s3 bucket and prefix for yaml file stored as environment variable because # here is SimApp use only. For virtual event there is no s3 bucket and prefix past # through yaml file. All are past through sqs. For simplicity, reuse the yaml s3 bucket # and prefix environment variable. virtual_event_best_sector_time = VirtualEventBestSectorTime( bucket=os.environ.get("YAML_S3_BUCKET", ''), s3_key=get_s3_key(os.environ.get("YAML_S3_PREFIX", ''), SECTOR_TIME_S3_POSTFIX), region_name=os.environ.get("APP_REGION", "us-east-1"), local_path=SECTOR_TIME_LOCAL_PATH) response = virtual_event_best_sector_time.list() # this is used to handle situation such as robomaker job crash, so the next robomaker job # can catch the best sector time left over from crashed job if "Contents" not in response: virtual_event_best_sector_time.persist( body=json.dumps({ SECTOR_X_FORMAT.format(idx + 1): float("inf") for idx in range(self._num_sectors) }), s3_kms_extra_args=utils.get_s3_kms_extra_args()) # ROS service to indicate all the robomaker markov packages are ready for consumption signal_robomaker_markov_package_ready() PhaseObserver('/agent/training_phase', self._run_phase_subject) # setup mp4 services self._setup_mp4_services() @property def current_racer(self): """ Get the current racer object. Returns: RacerInformation: Information about current racer that was passed-in from the queue. """ return self._current_racer @property def is_event_end(self): """Return True if the service has signaled event end Returns: boolean: Is it the time to kill everything and die """ return self._is_event_end def _spawn_cameras(self): '''helper method for initializing cameras ''' # virtual event configure camera does not need to wait for car to spawm because # follow car camera is not tracking any car initially camera_manager = CameraManager.get_instance() # pop all camera under virtual event namespace camera_manager.pop(namespace=VIRTUAL_EVENT) # Spawn the follow car camera LOG.info( "[virtual event manager] Spawning virtual event follow car camera model" ) initial_pose = self._track_data.get_racecar_start_pose( racecar_idx=0, racer_num=1, start_position=get_start_positions(1)[0]) self._main_cameras[VIRTUAL_EVENT].spawn_model( initial_pose, os.path.join(self._deepracer_path, "models", "camera", "model.sdf")) LOG.info("[virtual event manager] Spawning sub camera model") # Spawn the top camera model self._sub_camera.spawn_model( None, os.path.join(self._deepracer_path, "models", "top_camera", "model.sdf")) def poll_next_racer(self): """ Poll from sqs the next racer information. """ received_racer = False while not received_racer: # Polling MAX_NUM_OF_SQS_MESSAGE=1 message from sqs # with wait time specified in SQS_WAIT_TIME_SEC response = self._sqs_client.get_messages() # valid response is non-empty list if response: message_body = response[0] try: # validate the current racer information. validate_json_input(message_body, RACER_INFO_JSON_SCHEMA) # Parse JSON into an racer information object # with attributes corresponding to dict keys self._current_racer = json.loads( message_body, object_hook=lambda d: namedtuple( RACER_INFO_OBJECT, d.keys())(*d.values())) # only set received_racer to True after making sure the message is valid. received_racer = True LOG.info( "[virtual event manager] Received next racer's information %s", self._current_racer) except GenericNonFatalException as ex: ex.log_except_and_continue() def setup_race(self): """ Setting up the race for the current racer. Returns: bool: True if setup race is successful. False is a non fatal exception occurred. """ LOG.info("[virtual event manager] Setting up race for racer") try: self._model_updater.unpause_physics() LOG.info( "[virtual event manager] Unpause physics in current world to setup race." ) # step 1: hide the racecar to a position that camera cannot see self._hide_racecar_model( model_name=self._current_car_model_state.model_name) # step 2: set camera to starting position after previous car is deleted initial_pose = self._track_data.get_racecar_start_pose( racecar_idx=0, racer_num=1, start_position=get_start_positions(1)[0]) self._main_cameras[VIRTUAL_EVENT].reset_pose(car_pose=initial_pose) LOG.info("[virtual event manager] Reset camera to starting line.") # step 3: download model metadata from s3 sensors, version, model_metadata = self._download_model_metadata() # step 4: check whether body shell and sensors have been updated # to decide whether need to delete and re-spawn. Then, update # shell or color accordingly if hasattr(self._current_racer, "carConfig") and \ hasattr(self._current_racer.carConfig, "bodyShellType"): body_shell_type = self._current_racer.carConfig.bodyShellType \ if self._current_racer.carConfig.bodyShellType in self._valid_body_shells \ else const.BodyShellType.DEFAULT.value else: body_shell_type = const.BodyShellType.DEFAULT.value # check whether need to delete and respawn racecar # re-spawn if sensor or body shell type changed if self._last_body_shell_type != body_shell_type or \ self._last_sensors != sensors: # delete last racecar self._racecar_model.delete() # respawn a new racecar hide_pose = Pose() hide_pose.position.x = self._hide_positions[ self._hide_position_idx][0] hide_pose.position.y = self._hide_positions[ self._hide_position_idx][1] self._racecar_model.spawn( name=self._current_car_model_state.model_name, pose=hide_pose, include_second_camera="true" if Input.STEREO.value in sensors else "false", include_lidar_sensor=str( any(["lidar" in sensor.lower() for sensor in sensors])).lower(), body_shell_type=body_shell_type, lidar_360_degree_sample=str(LIDAR_360_DEGREE_SAMPLE), lidar_360_degree_horizontal_resolution=str( LIDAR_360_DEGREE_HORIZONTAL_RESOLUTION), lidar_360_degree_min_angle=str(LIDAR_360_DEGREE_MIN_ANGLE), lidar_360_degree_max_angle=str(LIDAR_360_DEGREE_MAX_ANGLE), lidar_360_degree_min_range=str(LIDAR_360_DEGREE_MIN_RANGE), lidar_360_degree_max_range=str(LIDAR_360_DEGREE_MAX_RANGE), lidar_360_degree_range_resolution=str( LIDAR_360_DEGREE_RANGE_RESOLUTION), lidar_360_degree_noise_mean=str( LIDAR_360_DEGREE_NOISE_MEAN), lidar_360_degree_noise_stddev=str( LIDAR_360_DEGREE_NOISE_STDDEV)) self._last_body_shell_type = body_shell_type self._last_sensors = sensors # step 5: download checkpoint, setup simtrace, mp4, clear metrics, and setup graph manager # download checkpoint from s3 checkpoint = self._download_checkpoint(version) # setup the simtrace and mp4 writers if the s3 locations are available self._setup_simtrace_mp4_writers() # reset the metrics s3 location for the current racer self._reset_metrics_loc() # setup agents agent_list = self._get_agent_list(model_metadata, version) # after _setup_graph_manager finishes, physics is paused # physics will be unpaused again when race start self._setup_graph_manager(checkpoint, agent_list) LOG.info( "[virtual event manager] Graph manager successfully created the graph: setup race successful." ) # step 6: update body shell or color # treat amazon van digital reward specially by also hiding the collision wheel visuals = self._model_updater.get_model_visuals( self._current_car_model_state.model_name) if const.F1 in body_shell_type: self._model_updater.hide_visuals( visuals=visuals, ignore_keywords=["f1_body_link"] if "with_wheel" in body_shell_type.lower() else ["wheel", "f1_body_link"]) else: if hasattr(self._current_racer, "carConfig") and \ hasattr(self._current_racer.carConfig, "carColor"): car_color = self._current_racer.carConfig.carColor if self._current_racer.carConfig.carColor in self._valid_car_colors \ else DEFAULT_COLOR else: car_color = DEFAULT_COLOR self._model_updater.update_color(visuals, car_color) return True except GenericNonFatalException as ex: ex.log_except_and_continue() self.upload_race_status(status_code=ex.error_code, error_name=ex.error_name, error_details=ex.error_msg) self._clean_up_race() return False except Exception as ex: log_and_exit( "[virtual event manager] Something really wrong happened when setting up the race. {}" .format(ex), SIMAPP_VIRTUAL_EVENT_RACE_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_500) def _download_checkpoint(self, version): """Setup the Checkpoint object and selete the best checkpoint. Args: version (float): SimApp version Returns: Checkpoint: Checkpoint class instance """ # download checkpoint from s3 checkpoint = Checkpoint( bucket=self._current_racer.inputModel.s3BucketName, s3_prefix=self._current_racer.inputModel.s3KeyPrefix, region_name=self._region, agent_name=self._agent_name, checkpoint_dir=self._local_model_directory) # make coach checkpoint compatible if version < SIMAPP_VERSION_2 and not checkpoint.rl_coach_checkpoint.is_compatible( ): checkpoint.rl_coach_checkpoint.make_compatible( checkpoint.syncfile_ready) # get best model checkpoint string model_checkpoint_name = checkpoint.deepracer_checkpoint_json.get_deepracer_best_checkpoint( ) # Select the best checkpoint model by uploading rl coach .coach_checkpoint file model_kms = self._current_racer.inputModel.s3KmsKeyArn if hasattr( self._current_racer.inputModel, 's3KmsKeyArn') else None checkpoint.rl_coach_checkpoint.update( model_checkpoint_name=model_checkpoint_name, s3_kms_extra_args=utils.get_s3_extra_args(model_kms)) return checkpoint def _download_model_metadata(self): """ Attempt to download model metadata from s3. Raises: GenericNonFatalException: An non fatal exception which we will catch and proceed with work loop. Returns: sensors, version, model_metadata: The needed information from model metadata. """ model_metadata_s3_key = get_s3_key( self._current_racer.inputModel.s3KeyPrefix, MODEL_METADATA_S3_POSTFIX) try: model_metadata = ModelMetadata( bucket=self._current_racer.inputModel.s3BucketName, s3_key=model_metadata_s3_key, region_name=self._region, local_path=MODEL_METADATA_LOCAL_PATH_FORMAT.format( self._agent_name)) model_metadata_info = model_metadata.get_model_metadata_info() sensors = model_metadata_info[ModelMetadataKeys.SENSOR.value] simapp_version = model_metadata_info[ ModelMetadataKeys.VERSION.value] except botocore.exceptions.ClientError as err: error_msg = "[s3] Client Error: Failed to download model_metadata file: \ s3_bucket: {}, s3_key: {}, {}.".format( self._current_racer.inputModel.s3BucketName, model_metadata_s3_key, err) raise GenericNonFatalException( error_msg=error_msg, error_code=SIMAPP_EVENT_ERROR_CODE_400, error_name=SIMAPP_EVENT_USER_ERROR) except Exception as err: error_msg = "[s3] System Error: Failed to download model_metadata file: \ s3_bucket: {}, s3_key: {}, {}.".format( self._current_racer.inputModel.s3BucketName, model_metadata_s3_key, err) raise GenericNonFatalException( error_msg=error_msg, error_code=SIMAPP_EVENT_ERROR_CODE_500, error_name=SIMAPP_EVENT_SYSTEM_ERROR) return sensors, simapp_version, model_metadata def start_race(self): """ Start the race (evaluation) for the current racer. """ LOG.info("[virtual event manager] Starting race for racer %s", self._current_racer.racerAlias) # send request if self._is_save_mp4_enabled: # racecar_color is not used for virtual event image editing, so simply pass default "Black" self._subscribe_to_save_mp4( VirtualEventVideoEditSrvRequest( display_name=self._current_racer.racerAlias, racecar_color=DEFAULT_COLOR)) configure_environment_randomizer() self._model_updater.unpause_physics() LOG.info("[virtual event manager] Unpaused physics in current world.") if self._is_continuous: self._evaluate() else: self._evaluate() for _ in range(self._number_of_trials - 1): self._current_graph_manager.evaluate(EnvironmentSteps(1)) def _evaluate(self): """Evaluate: step order is important and do not change First, reset internal state such as reset metrics, wait for sensor to be ready and reset the agent to the starting position. Second, it adds the virtual event camera to camera manager to follow specific agent. Third, call evaluate without reset again. This order is critical important and should not be changed for below reason. In the first step, a manual reset is done. In this manual reset step. It will 1. reset agent metrics such as add pause second to total race second and clean up previous left over parameters. 2. wait for sensor topics to become ready. Especially, when use LIDAR, LIDAR topic can take longer to come up. 3. reset agent to the start line After the first step, camera is then attached to racecar through camera manager add. We should not add camera into camera manager before graph manager manual reset internal state. The reason is because racecar is initially spawn at a hide location. If we add camera before reset_internal_state, camera will record video at hide position. Last, we will start evaluate without reset again because we have already manually reset. It is critical here to NOT reset again. If we reset for a second time, we will double count the prepare time before the race """ self._current_graph_manager.reset_internal_state( force_environment_reset=True) # Update CameraManager by adding cameras into the current namespace. By doing so # a single follow car camera will follow the current active racecar. self._camera_manager.add(self._main_cameras[VIRTUAL_EVENT], self._current_car_model_state.model_name) self._camera_manager.add(self._sub_camera, self._current_car_model_state.model_name) self._current_graph_manager.evaluate(EnvironmentSteps(1), reset_before_eval=False) def finish_race(self): """ Finish the race for the current racer. """ # pause physics of the world self._model_updater.pause_physics() time.sleep(1) # unsubscribe mp4 if self._is_save_mp4_enabled: self._unsubscribe_from_save_mp4(EmptyRequest()) self._track_data.remove_object( name=self._current_car_model_state.model_name) LOG.info("[virtual event manager] Finish Race - remove object %s.", self._current_car_model_state.model_name) # pop out current racecar from camera namespace to prevent camera from moving self._camera_manager.pop( namespace=self._current_car_model_state.model_name) # upload simtrace and mp4 into s3 bucket self._save_simtrace_mp4() self.upload_race_status(status_code=200) # keep track of the previous model name self._prev_model_name = self._current_car_model_state.model_name # clean up local trace of current race self._clean_up_race() def _clean_up_race(self): """Helper function to clean up everything related to the ex-racer and get ready for the next racer. """ self._simtrace_video_s3_writers = [] # clean up local checkpoints etc. self._clean_local_directory() # reset the tensorflow graph to avoid errors with the global session tf.reset_default_graph() # reset the current racer self._current_racer = None self._current_agent = None self._current_graph_manager = None self._hide_position_idx = 0 def _save_simtrace_mp4(self): """Get the appropriate kms key and save the simtrace and mp4 files. """ # TODO: It might be theorically possible to have different kms keys for simtrace and mp4 # but we are using the same key now since that's what happens in real life # consider refactor the simtrace_video_s3_writers later. if hasattr(self._current_racer.outputMp4, 's3KmsKeyArn'): simtrace_mp4_kms = self._current_racer.outputMp4.s3KmsKeyArn elif hasattr(self._current_racer.outputSimTrace, 's3KmsKeyArn'): simtrace_mp4_kms = self._current_racer.outputSimTrace.s3KmsKeyArn else: simtrace_mp4_kms = None for s3_writer in self._simtrace_video_s3_writers: s3_writer.persist(utils.get_s3_extra_args(simtrace_mp4_kms)) def _reset_metrics_loc(self): """Reset the metrics location as new racer is loaded. """ metrics_s3_config = { MetricsS3Keys.METRICS_BUCKET.value: self._current_racer.outputMetrics.s3BucketName, MetricsS3Keys.METRICS_KEY.value: self._current_racer.outputMetrics.s3KeyPrefix, MetricsS3Keys.REGION.value: self._region } self._eval_metrics.reset_metrics( s3_dict_metrics=metrics_s3_config, is_save_simtrace_enabled=self._is_save_simtrace_enabled) def _setup_simtrace_mp4_writers(self): """Setup the simtrace and mp4 writers if the locations are passed in. """ self._is_save_simtrace_enabled = False self._is_save_mp4_enabled = False if hasattr(self._current_racer, 'outputSimTrace'): self._simtrace_video_s3_writers.append( SimtraceVideo( upload_type=SimtraceVideoNames.SIMTRACE_EVAL.value, bucket=self._current_racer.outputSimTrace.s3BucketName, s3_prefix=self._current_racer.outputSimTrace.s3KeyPrefix, region_name=self._region, local_path=SIMTRACE_EVAL_LOCAL_PATH_FORMAT.format( self._agent_name))) self._is_save_simtrace_enabled = True if hasattr(self._current_racer, 'outputMp4'): self._simtrace_video_s3_writers.extend([ SimtraceVideo( upload_type=SimtraceVideoNames.PIP.value, bucket=self._current_racer.outputMp4.s3BucketName, s3_prefix=self._current_racer.outputMp4.s3KeyPrefix, region_name=self._region, local_path=CAMERA_PIP_MP4_LOCAL_PATH_FORMAT.format( self._agent_name)), SimtraceVideo( upload_type=SimtraceVideoNames.DEGREE45.value, bucket=self._current_racer.outputMp4.s3BucketName, s3_prefix=self._current_racer.outputMp4.s3KeyPrefix, region_name=self._region, local_path=CAMERA_45DEGREE_LOCAL_PATH_FORMAT.format( self._agent_name)), SimtraceVideo( upload_type=SimtraceVideoNames.TOPVIEW.value, bucket=self._current_racer.outputMp4.s3BucketName, s3_prefix=self._current_racer.outputMp4.s3KeyPrefix, region_name=self._region, local_path=CAMERA_TOPVIEW_LOCAL_PATH_FORMAT.format( self._agent_name)) ]) self._is_save_mp4_enabled = True def _setup_graph_manager(self, checkpoint, agent_list): """Sets up graph manager based on the checkpoint file and agents list. Args: checkpoint (Checkpoint): The model checkpoints we just downloaded. agent_list (list[Agent]): List of agents we want to setup graph manager for. """ sm_hyperparams_dict = {} self._current_graph_manager, _ = get_graph_manager( hp_dict=sm_hyperparams_dict, agent_list=agent_list, run_phase_subject=self._run_phase_subject, enable_domain_randomization=self._enable_domain_randomization, done_condition=self._done_condition, pause_physics=self._model_updater.pause_physics_service, unpause_physics=self._model_updater.unpause_physics_service) checkpoint_dict = dict() checkpoint_dict[self._agent_name] = checkpoint ds_params_instance = S3BotoDataStoreParameters( checkpoint_dict=checkpoint_dict) self._current_graph_manager.data_store = S3BotoDataStore( params=ds_params_instance, graph_manager=self._current_graph_manager, ignore_lock=True, log_and_cont=True) self._current_graph_manager.env_params.seed = 0 self._current_graph_manager.data_store.wait_for_checkpoints() self._current_graph_manager.data_store.modify_checkpoint_variables() task_parameters = TaskParameters() task_parameters.checkpoint_restore_path = self._local_model_directory self._current_graph_manager.create_graph( task_parameters=task_parameters, stop_physics=self._model_updater.pause_physics_service, start_physics=self._model_updater.unpause_physics_service, empty_service_call=EmptyRequest) def _get_agent_list(self, model_metadata, version): """Setup agent and get the agents list. Args: model_metadata (ModelMetadata): Current racer's model metadata version (str): The current racer's simapp version in the model metadata Returns: agent_list (list): The list of agents for the current racer """ # setup agent agent_config = { 'model_metadata': model_metadata, ConfigParams.CAR_CTRL_CONFIG.value: { ConfigParams.LINK_NAME_LIST.value: [ link_name.replace('racecar', self._current_car_model_state.model_name) for link_name in LINK_NAMES ], ConfigParams.VELOCITY_LIST.value: [ velocity_topic.replace( 'racecar', self._current_car_model_state.model_name) for velocity_topic in VELOCITY_TOPICS ], ConfigParams.STEERING_LIST.value: [ steering_topic.replace( 'racecar', self._current_car_model_state.model_name) for steering_topic in STEERING_TOPICS ], ConfigParams.CHANGE_START.value: utils.str2bool(rospy.get_param('CHANGE_START_POSITION', False)), ConfigParams.ALT_DIR.value: utils.str2bool( rospy.get_param('ALTERNATE_DRIVING_DIRECTION', False)), ConfigParams.MODEL_METADATA.value: model_metadata, ConfigParams.REWARD.value: reward_function, ConfigParams.AGENT_NAME.value: self._current_car_model_state.model_name, ConfigParams.VERSION.value: version, ConfigParams.NUMBER_OF_RESETS.value: self._number_of_resets, ConfigParams.PENALTY_SECONDS.value: self._penalty_seconds, ConfigParams.NUMBER_OF_TRIALS.value: self._number_of_trials, ConfigParams.IS_CONTINUOUS.value: self._is_continuous, ConfigParams.RACE_TYPE.value: self._race_type, ConfigParams.COLLISION_PENALTY.value: self._collision_penalty, ConfigParams.OFF_TRACK_PENALTY.value: self._off_track_penalty, ConfigParams.START_POSITION.value: get_start_positions(1) [0], # hard-coded to the first start position ConfigParams.DONE_CONDITION.value: self._done_condition, ConfigParams.IS_VIRTUAL_EVENT.value: True, ConfigParams.RACE_DURATION.value: self._race_duration } } agent_list = list() agent_list.append( create_rollout_agent(agent_config, self._eval_metrics, self._run_phase_subject)) agent_list.append(create_obstacles_agent()) agent_list.append( create_bot_cars_agent( pause_time_before_start=PAUSE_TIME_BEFORE_START)) return agent_list def _setup_mp4_services(self): """ Setting up the mp4 ros services if mp4s need to be saved. """ mp4_sub = "/{}/save_mp4/subscribe_to_save_mp4".format(VIRTUAL_EVENT) mp4_unsub = "/{}/save_mp4/unsubscribe_from_save_mp4".format( VIRTUAL_EVENT) rospy.wait_for_service(mp4_sub) rospy.wait_for_service(mp4_unsub) self._subscribe_to_save_mp4 = ServiceProxyWrapper( mp4_sub, VirtualEventVideoEditSrv) self._unsubscribe_from_save_mp4 = ServiceProxyWrapper(mp4_unsub, Empty) def _clean_local_directory(self): """Clean up the local directory after race ends. """ LOG.info( "[virtual event manager] cleaning up the local directory after race ends." ) for root, _, files in os.walk(self._local_model_directory): for f in files: os.remove(os.path.join(root, f)) def _hide_racecar_model(self, model_name): """hide racecar model into hide location Args: model_name (str): model name """ # set the car at the pit parking position yaw = 0.0 if self._track_data.is_ccw else math.pi self._model_updater.set_model_position( model_name, self._hide_positions[self._hide_position_idx], yaw, is_blocking=True) LOG.info("[virtual event manager] hide {}".format(model_name)) def upload_race_status(self, status_code, error_name=None, error_details=None): """Upload race status into s3. Args: status_code (str): Status code for race. error_name (str, optional): The name of the error if is 4xx or 5xx. Defaults to "". error_details (str, optional): The detail message of the error if is 4xx or 5xx. Defaults to "". """ # persist s3 status file if error_name is not None and error_details is not None: status = { RaceStatusKeys.STATUS_CODE.value: status_code, RaceStatusKeys.ERROR_NAME.value: error_name, RaceStatusKeys.ERROR_DETAILS.value: error_details } else: status = {RaceStatusKeys.STATUS_CODE.value: status_code} status_json = json.dumps(status) s3_key = os.path.normpath( os.path.join(self._current_racer.outputStatus.s3KeyPrefix, S3_RACE_STATUS_FILE_NAME)) race_status_kms = self._current_racer.outputStatus.s3KmsKeyArn if \ hasattr(self._current_racer.outputStatus, 's3KmsKeyArn') else None self._s3_client.upload_fileobj( bucket=self._current_racer.outputStatus.s3BucketName, s3_key=s3_key, fileobj=io.BytesIO(status_json.encode()), s3_kms_extra_args=utils.get_s3_extra_args(race_status_kms)) LOG.info( "[virtual event manager] Successfully uploaded race status file to \ s3 bucket {} with s3 key {}.".format( self._current_racer.outputStatus.s3BucketName, s3_key))
def main(): """ Main function for evaluation worker """ parser = argparse.ArgumentParser() parser.add_argument('-p', '--preset', help="(string) Name of a preset to run \ (class name from the 'presets' directory.)", type=str, required=False) parser.add_argument('--s3_bucket', help='list(string) S3 bucket', type=str, nargs='+', default=rospy.get_param("MODEL_S3_BUCKET", ["gsaur-test"])) parser.add_argument('--s3_prefix', help='list(string) S3 prefix', type=str, nargs='+', default=rospy.get_param("MODEL_S3_PREFIX", ["sagemaker"])) parser.add_argument('--aws_region', help='(string) AWS region', type=str, default=rospy.get_param("AWS_REGION", "us-east-1")) parser.add_argument('--number_of_trials', help='(integer) Number of trials', type=int, default=int(rospy.get_param("NUMBER_OF_TRIALS", 10))) parser.add_argument( '-c', '--local_model_directory', help='(string) Path to a folder containing a checkpoint \ to restore the model from.', type=str, default='./checkpoint') parser.add_argument('--number_of_resets', help='(integer) Number of resets', type=int, default=int(rospy.get_param("NUMBER_OF_RESETS", 0))) parser.add_argument('--penalty_seconds', help='(float) penalty second', type=float, default=float(rospy.get_param("PENALTY_SECONDS", 2.0))) parser.add_argument('--job_type', help='(string) job type', type=str, default=rospy.get_param("JOB_TYPE", "EVALUATION")) parser.add_argument('--is_continuous', help='(boolean) is continous after lap completion', type=bool, default=utils.str2bool( rospy.get_param("IS_CONTINUOUS", False))) parser.add_argument('--race_type', help='(string) Race type', type=str, default=rospy.get_param("RACE_TYPE", "TIME_TRIAL")) parser.add_argument('--off_track_penalty', help='(float) off track penalty second', type=float, default=float(rospy.get_param("OFF_TRACK_PENALTY", 2.0))) parser.add_argument('--collision_penalty', help='(float) collision penalty second', type=float, default=float(rospy.get_param("COLLISION_PENALTY", 5.0))) args = parser.parse_args() arg_s3_bucket = args.s3_bucket arg_s3_prefix = args.s3_prefix logger.info("S3 bucket: %s \n S3 prefix: %s", arg_s3_bucket, arg_s3_prefix) metrics_s3_buckets = rospy.get_param('METRICS_S3_BUCKET') metrics_s3_object_keys = rospy.get_param('METRICS_S3_OBJECT_KEY') arg_s3_bucket, arg_s3_prefix = utils.force_list( arg_s3_bucket), utils.force_list(arg_s3_prefix) metrics_s3_buckets = utils.force_list(metrics_s3_buckets) metrics_s3_object_keys = utils.force_list(metrics_s3_object_keys) validate_list = [ arg_s3_bucket, arg_s3_prefix, metrics_s3_buckets, metrics_s3_object_keys ] simtrace_s3_bucket = rospy.get_param('SIMTRACE_S3_BUCKET', None) mp4_s3_bucket = rospy.get_param('MP4_S3_BUCKET', None) if simtrace_s3_bucket: simtrace_s3_object_prefix = rospy.get_param('SIMTRACE_S3_PREFIX') simtrace_s3_bucket = utils.force_list(simtrace_s3_bucket) simtrace_s3_object_prefix = utils.force_list(simtrace_s3_object_prefix) validate_list.extend([simtrace_s3_bucket, simtrace_s3_object_prefix]) if mp4_s3_bucket: mp4_s3_object_prefix = rospy.get_param('MP4_S3_OBJECT_PREFIX') mp4_s3_bucket = utils.force_list(mp4_s3_bucket) mp4_s3_object_prefix = utils.force_list(mp4_s3_object_prefix) validate_list.extend([mp4_s3_bucket, mp4_s3_object_prefix]) if not all([lambda x: len(x) == len(validate_list[0]), validate_list]): log_and_exit( "Eval worker error: Incorrect arguments passed: {}".format( validate_list), SIMAPP_SIMULATION_WORKER_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_500) if args.number_of_resets != 0 and args.number_of_resets < MIN_RESET_COUNT: raise GenericRolloutException( "number of resets is less than {}".format(MIN_RESET_COUNT)) # Instantiate Cameras if len(arg_s3_bucket) == 1: configure_camera(namespaces=['racecar']) else: configure_camera(namespaces=[ 'racecar_{}'.format(str(agent_index)) for agent_index in range(len(arg_s3_bucket)) ]) agent_list = list() s3_bucket_dict = dict() s3_prefix_dict = dict() checkpoint_dict = dict() simtrace_video_s3_writers = [] start_positions = get_start_positions(len(arg_s3_bucket)) done_condition = utils.str_to_done_condition( rospy.get_param("DONE_CONDITION", any)) park_positions = utils.pos_2d_str_to_list( rospy.get_param("PARK_POSITIONS", [])) # if not pass in park positions for all done condition case, use default if not park_positions: park_positions = [DEFAULT_PARK_POSITION for _ in arg_s3_bucket] for agent_index, _ in enumerate(arg_s3_bucket): agent_name = 'agent' if len(arg_s3_bucket) == 1 else 'agent_{}'.format( str(agent_index)) racecar_name = 'racecar' if len( arg_s3_bucket) == 1 else 'racecar_{}'.format(str(agent_index)) s3_bucket_dict[agent_name] = arg_s3_bucket[agent_index] s3_prefix_dict[agent_name] = arg_s3_prefix[agent_index] # download model metadata model_metadata = ModelMetadata( bucket=arg_s3_bucket[agent_index], s3_key=get_s3_key(arg_s3_prefix[agent_index], MODEL_METADATA_S3_POSTFIX), region_name=args.aws_region, local_path=MODEL_METADATA_LOCAL_PATH_FORMAT.format(agent_name)) model_metadata_info = model_metadata.get_model_metadata_info() version = model_metadata_info[ModelMetadataKeys.VERSION.value] # checkpoint s3 instance checkpoint = Checkpoint(bucket=arg_s3_bucket[agent_index], s3_prefix=arg_s3_prefix[agent_index], region_name=args.aws_region, agent_name=agent_name, checkpoint_dir=args.local_model_directory) # make coach checkpoint compatible if version < SIMAPP_VERSION_2 and not checkpoint.rl_coach_checkpoint.is_compatible( ): checkpoint.rl_coach_checkpoint.make_compatible( checkpoint.syncfile_ready) # get best model checkpoint string model_checkpoint_name = checkpoint.deepracer_checkpoint_json.get_deepracer_best_checkpoint( ) # Select the best checkpoint model by uploading rl coach .coach_checkpoint file checkpoint.rl_coach_checkpoint.update( model_checkpoint_name=model_checkpoint_name, s3_kms_extra_args=utils.get_s3_kms_extra_args()) checkpoint_dict[agent_name] = checkpoint agent_config = { 'model_metadata': model_metadata, ConfigParams.CAR_CTRL_CONFIG.value: { ConfigParams.LINK_NAME_LIST.value: [ link_name.replace('racecar', racecar_name) for link_name in LINK_NAMES ], ConfigParams.VELOCITY_LIST.value: [ velocity_topic.replace('racecar', racecar_name) for velocity_topic in VELOCITY_TOPICS ], ConfigParams.STEERING_LIST.value: [ steering_topic.replace('racecar', racecar_name) for steering_topic in STEERING_TOPICS ], ConfigParams.CHANGE_START.value: utils.str2bool(rospy.get_param('CHANGE_START_POSITION', False)), ConfigParams.ALT_DIR.value: utils.str2bool( rospy.get_param('ALTERNATE_DRIVING_DIRECTION', False)), ConfigParams.MODEL_METADATA.value: model_metadata, ConfigParams.REWARD.value: reward_function, ConfigParams.AGENT_NAME.value: racecar_name, ConfigParams.VERSION.value: version, ConfigParams.NUMBER_OF_RESETS.value: args.number_of_resets, ConfigParams.PENALTY_SECONDS.value: args.penalty_seconds, ConfigParams.NUMBER_OF_TRIALS.value: args.number_of_trials, ConfigParams.IS_CONTINUOUS.value: args.is_continuous, ConfigParams.RACE_TYPE.value: args.race_type, ConfigParams.COLLISION_PENALTY.value: args.collision_penalty, ConfigParams.OFF_TRACK_PENALTY.value: args.off_track_penalty, ConfigParams.START_POSITION.value: start_positions[agent_index], ConfigParams.DONE_CONDITION.value: done_condition } } metrics_s3_config = { MetricsS3Keys.METRICS_BUCKET.value: metrics_s3_buckets[agent_index], MetricsS3Keys.METRICS_KEY.value: metrics_s3_object_keys[agent_index], # Replaced rospy.get_param('AWS_REGION') to be equal to the argument being passed # or default argument set MetricsS3Keys.REGION.value: args.aws_region } aws_region = rospy.get_param('AWS_REGION', args.aws_region) if simtrace_s3_bucket: simtrace_video_s3_writers.append( SimtraceVideo( upload_type=SimtraceVideoNames.SIMTRACE_EVAL.value, bucket=simtrace_s3_bucket[agent_index], s3_prefix=simtrace_s3_object_prefix[agent_index], region_name=aws_region, local_path=SIMTRACE_EVAL_LOCAL_PATH_FORMAT.format( agent_name))) if mp4_s3_bucket: simtrace_video_s3_writers.extend([ SimtraceVideo( upload_type=SimtraceVideoNames.PIP.value, bucket=mp4_s3_bucket[agent_index], s3_prefix=mp4_s3_object_prefix[agent_index], region_name=aws_region, local_path=CAMERA_PIP_MP4_LOCAL_PATH_FORMAT.format( agent_name)), SimtraceVideo( upload_type=SimtraceVideoNames.DEGREE45.value, bucket=mp4_s3_bucket[agent_index], s3_prefix=mp4_s3_object_prefix[agent_index], region_name=aws_region, local_path=CAMERA_45DEGREE_LOCAL_PATH_FORMAT.format( agent_name)), SimtraceVideo( upload_type=SimtraceVideoNames.TOPVIEW.value, bucket=mp4_s3_bucket[agent_index], s3_prefix=mp4_s3_object_prefix[agent_index], region_name=aws_region, local_path=CAMERA_TOPVIEW_LOCAL_PATH_FORMAT.format( agent_name)) ]) run_phase_subject = RunPhaseSubject() agent_list.append( create_rollout_agent( agent_config, EvalMetrics(agent_name, metrics_s3_config, args.is_continuous), run_phase_subject)) agent_list.append(create_obstacles_agent()) agent_list.append(create_bot_cars_agent()) # ROS service to indicate all the robomaker markov packages are ready for consumption signal_robomaker_markov_package_ready() PhaseObserver('/agent/training_phase', run_phase_subject) enable_domain_randomization = utils.str2bool( rospy.get_param('ENABLE_DOMAIN_RANDOMIZATION', False)) sm_hyperparams_dict = {} # Make the clients that will allow us to pause and unpause the physics rospy.wait_for_service('/gazebo/pause_physics_dr') rospy.wait_for_service('/gazebo/unpause_physics_dr') pause_physics = ServiceProxyWrapper('/gazebo/pause_physics_dr', Empty) unpause_physics = ServiceProxyWrapper('/gazebo/unpause_physics_dr', Empty) graph_manager, _ = get_graph_manager( hp_dict=sm_hyperparams_dict, agent_list=agent_list, run_phase_subject=run_phase_subject, enable_domain_randomization=enable_domain_randomization, done_condition=done_condition, pause_physics=pause_physics, unpause_physics=unpause_physics) ds_params_instance = S3BotoDataStoreParameters( checkpoint_dict=checkpoint_dict) graph_manager.data_store = S3BotoDataStore(params=ds_params_instance, graph_manager=graph_manager, ignore_lock=True) graph_manager.env_params.seed = 0 task_parameters = TaskParameters() task_parameters.checkpoint_restore_path = args.local_model_directory evaluation_worker(graph_manager=graph_manager, number_of_trials=args.number_of_trials, task_parameters=task_parameters, simtrace_video_s3_writers=simtrace_video_s3_writers, is_continuous=args.is_continuous, park_positions=park_positions, race_type=args.race_type, pause_physics=pause_physics, unpause_physics=unpause_physics)
class VirtualEventManager(object): """ This is the manager that manages the live virtual event. """ def __init__(self, queue_url, aws_region='us-east-1', race_duration=180, number_of_trials=3, number_of_resets=10000, penalty_seconds=2.0, off_track_penalty=2.0, collision_penalty=5.0, is_continuous=False, race_type="TIME_TRIAL", body_shell_type="deepracer"): # constructor arguments self._body_shell_type = body_shell_type self._num_sectors = int(rospy.get_param("NUM_SECTORS", "3")) self._queue_url = queue_url self._region = aws_region self._number_of_trials = number_of_trials self._number_of_resets = number_of_resets self._penalty_seconds = penalty_seconds self._off_track_penalty = off_track_penalty self._collision_penalty = collision_penalty self._is_continuous = is_continuous self._race_type = race_type self._is_save_simtrace_enabled = False self._is_save_mp4_enabled = False self._is_event_end = False self._done_condition = any self._race_duration = race_duration self._enable_domain_randomization = False # sqs client # The boto client errors out after polling for 1 hour. self._sqs_client = SQSClient(queue_url=self._queue_url, region_name=self._region, max_num_of_msg=MAX_NUM_OF_SQS_MESSAGE, wait_time_sec=SQS_WAIT_TIME_SEC, session=refreshed_session(self._region)) self._s3_client = S3Client(region_name=self._region) self._model_updater = ModelUpdater.get_instance() # tracking current state information self._track_data = TrackData.get_instance() self._start_lane = self._track_data.center_line # keep track of the racer specific info, e.g. s3 locations, alias, car color etc. self._current_racer = None # keep track of the current race car we are using, e.g. racecar_0 self._current_car_model_state = None # keep track of the current control agent we are using self._current_agent = None # keep track of the current control graph manager self._current_graph_manager = None # Keep track of previous model's name self._prev_model_name = None self._park_position_idx = 0 self._park_positions = get_hide_positions(len(SENSOR_MODEL_MAP)) self._run_phase_subject = RunPhaseSubject() self._simtrace_video_s3_writers = [] self._local_model_directory = './checkpoint' # virtual event only have single agent, so set agent_name to "agent" self._agent_name = "agent" # camera manager self._camera_manager = CameraManager.get_instance() # setting up virtual event top and follow camera in CameraManager # virtual event configure camera does not need to wait for car to spawm because # follow car camera is not tracking any car initially self._main_cameras, self._sub_camera = configure_camera(namespaces=[VIRTUAL_EVENT], is_wait_for_model=False) # pop out all cameras after configuration to prevent camera from moving self._camera_manager.pop(namespace=VIRTUAL_EVENT) dummy_metrics_s3_config = {MetricsS3Keys.METRICS_BUCKET.value: "dummy-bucket", MetricsS3Keys.METRICS_KEY.value: "dummy-key", MetricsS3Keys.REGION.value: self._region} self._eval_metrics = EvalMetrics(agent_name=self._agent_name, s3_dict_metrics=dummy_metrics_s3_config, is_continuous=self._is_continuous, pause_time_before_start=PAUSE_TIME_BEFORE_START) # upload a default best sector time for all sectors with time inf for each sector # if there is not best sector time existed in s3 # use the s3 bucket and prefix for yaml file stored as environment variable because # here is SimApp use only. For virtual event there is no s3 bucket and prefix past # through yaml file. All are past through sqs. For simplicity, reuse the yaml s3 bucket # and prefix environment variable. virtual_event_best_sector_time = VirtualEventBestSectorTime( bucket=os.environ.get("YAML_S3_BUCKET", ''), s3_key=get_s3_key(os.environ.get("YAML_S3_PREFIX", ''), SECTOR_TIME_S3_POSTFIX), region_name=os.environ.get("APP_REGION", "us-east-1"), local_path=SECTOR_TIME_LOCAL_PATH) response = virtual_event_best_sector_time.list() # this is used to handle situation such as robomaker job crash, so the next robomaker job # can catch the best sector time left over from crashed job if "Contents" not in response: virtual_event_best_sector_time.persist(body=json.dumps( {SECTOR_X_FORMAT.format(idx + 1): float("inf") for idx in range(self._num_sectors)}), s3_kms_extra_args=utils.get_s3_kms_extra_args()) # ROS service to indicate all the robomaker markov packages are ready for consumption signal_robomaker_markov_package_ready() PhaseObserver('/agent/training_phase', self._run_phase_subject) # setup mp4 services self._setup_mp4_services() @property def current_racer(self): """ Get the current racer object. Returns: RacerInformation: Information about current racer that was passed-in from the queue. """ return self._current_racer @property def is_event_end(self): """Return True if the service has signaled event end Returns: boolean: Is it the time to kill everything and die """ return self._is_event_end def poll_next_racer(self): """ Poll from sqs the next racer information. """ received_racer = False error_counter = 0 while not received_racer: # Polling MAX_NUM_OF_SQS_MESSAGE=1 message from sqs # with wait time specified in SQS_WAIT_TIME_SEC response = self._sqs_client.get_messages() # If polling message is successful, it will return a list of payloads # If polling message failed, it will return an integer # 1=ClientError Or FailedToDeleteMessage # 2=SystemError if isinstance(response, int): error_counter += response if error_counter >= MAX_NUM_OF_SQS_ERROR: # something went really wrong with the sqs queue... log_and_exit("[virtual event manager] Too many exceptions (num={}) in \ receiving message from sqs queue: {}".format(error_counter, self._queue_url), SIMAPP_SQS_RECEIVE_MESSAGE_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_500) elif isinstance(response, list) and len(response) == 1: message_body = response[0] try: # validate the current racer information. validate_json_input(message_body, RACER_INFO_JSON_SCHEMA) # Parse JSON into an racer information object # with attributes corresponding to dict keys self._current_racer = json.loads(message_body, object_hook=lambda d: namedtuple(RACER_INFO_OBJECT, d.keys())(*d.values())) # only set received_racer to True after making sure the message is valid. received_racer = True LOG.info("[virtual event manager] Received next racer's information %s", self._current_racer) except GenericNonFatalException as ex: ex.log_except_and_continue() def setup_race(self): """ Setting up the race for the current racer. Returns: bool: True if setup race is successful. False is a non fatal exception occurred. """ LOG.info("[virtual event manager] Setting up race for racer") try: # unpause the physics in current world self._model_updater.unpause_physics() LOG.info("[virtual event manager] Unpaused physics in current world.") # set camera to starting position initial_pose = self._track_data.get_racecar_start_pose( racecar_idx=0, racer_num=1, start_position=get_start_positions(1)[0]) self._main_cameras[VIRTUAL_EVENT].reset_pose( car_pose=initial_pose) LOG.info("[virtual event manager] Reset camera to starting line.") if self._prev_model_name is not None: # NOTE: it's by design that we immediately part the previous car to pit # location right after unpause physics. This prevents any unwanted # leftover behavior to happen self._park_at_pit_location(self._prev_model_name) LOG.info("[virtual event manager] Parked previous model %s to pit location.", self._prev_model_name) self._model_updater.pause_physics() LOG.info("[virtual event manager] Paused physics in current world.") # download model metadata from s3 sensors, version, model_metadata = self._download_model_metadata() # based on model metadata, select racecar self._current_car_model_state = self._get_car_model_state(sensors) # download checkpoint from s3 checkpoint = self._download_checkpoint(version) # setup the simtrace and mp4 writers if the s3 locations are available self._setup_simtrace_mp4_writers() # reset the metrics s3 location for the current racer self._reset_metrics_loc() # setup agents agent_list = self._get_agent_list(model_metadata, version) self._setup_graph_manager(checkpoint, agent_list) LOG.info("[virtual event manager] Graph manager successfully created the graph: setup race successful.") return True except GenericNonFatalException as ex: ex.log_except_and_continue() self.upload_race_status(status_code=ex.error_code, error_name=ex.error_name, error_details=ex.error_msg) self._clean_up_race() return False except Exception as ex: log_and_exit("[virtual event manager] Something really wrong happened when setting up the race. {}".format(ex), SIMAPP_VIRTUAL_EVENT_RACE_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_500) def _download_checkpoint(self, version): """Setup the Checkpoint object and selete the best checkpoint. Args: version (float): SimApp version Returns: Checkpoint: Checkpoint class instance """ # download checkpoint from s3 checkpoint = Checkpoint(bucket=self._current_racer.inputModel.s3BucketName, s3_prefix=self._current_racer.inputModel.s3KeyPrefix, region_name=self._region, agent_name=self._agent_name, checkpoint_dir=self._local_model_directory) # make coach checkpoint compatible if version < SIMAPP_VERSION_2 and not checkpoint.rl_coach_checkpoint.is_compatible(): checkpoint.rl_coach_checkpoint.make_compatible(checkpoint.syncfile_ready) # get best model checkpoint string model_checkpoint_name = checkpoint.deepracer_checkpoint_json.get_deepracer_best_checkpoint() # Select the best checkpoint model by uploading rl coach .coach_checkpoint file model_kms = self._current_racer.inputModel.s3KmsKeyArn if hasattr(self._current_racer.inputModel, 's3KmsKeyArn') else None checkpoint.rl_coach_checkpoint.update( model_checkpoint_name=model_checkpoint_name, s3_kms_extra_args=utils.get_s3_extra_args(model_kms)) return checkpoint def _download_model_metadata(self): """ Attempt to download model metadata from s3. Raises: GenericNonFatalException: An non fatal exception which we will catch and proceed with work loop. Returns: sensors, version, model_metadata: The needed information from model metadata. """ model_metadata_s3_key = get_s3_key(self._current_racer.inputModel.s3KeyPrefix, MODEL_METADATA_S3_POSTFIX) try: model_metadata = ModelMetadata(bucket=self._current_racer.inputModel.s3BucketName, s3_key=model_metadata_s3_key, region_name=self._region, local_path=MODEL_METADATA_LOCAL_PATH_FORMAT.format(self._agent_name)) model_metadata_info = model_metadata.get_model_metadata_info() sensors = model_metadata_info[ModelMetadataKeys.SENSOR.value] simapp_version = model_metadata_info[ModelMetadataKeys.VERSION.value] except botocore.exceptions.ClientError as err: error_msg = "[s3] Client Error: Failed to download model_metadata file: \ s3_bucket: {}, s3_key: {}, {}.".format(self._current_racer.inputModel.s3BucketName, model_metadata_s3_key, err) raise GenericNonFatalException(error_msg=error_msg, error_code=SIMAPP_EVENT_ERROR_CODE_400, error_name=SIMAPP_EVENT_USER_ERROR) except Exception as err: error_msg = "[s3] System Error: Failed to download model_metadata file: \ s3_bucket: {}, s3_key: {}, {}.".format(self._current_racer.inputModel.s3BucketName, model_metadata_s3_key, err) raise GenericNonFatalException(error_msg=error_msg, error_code=SIMAPP_EVENT_ERROR_CODE_500, error_name=SIMAPP_EVENT_SYSTEM_ERROR) return sensors, simapp_version, model_metadata def start_race(self): """ Start the race (evaluation) for the current racer. """ LOG.info("[virtual event manager] Starting race for racer %s", self._current_racer.racerAlias) # update the car on current model if does not use f1 or tron type of shell if const.F1 not in self._body_shell_type.lower(): self._model_updater.update_model_color(self._current_car_model_state.model_name, self._current_racer.carConfig.carColor) # send request if self._is_save_mp4_enabled: self._subscribe_to_save_mp4(VirtualEventVideoEditSrvRequest( display_name=self._current_racer.racerAlias, racecar_color=self._current_racer.carConfig.carColor)) # Update CameraManager by adding cameras into the current namespace. By doing so # a single follow car camera will follow the current active racecar. self._camera_manager.add(self._main_cameras[VIRTUAL_EVENT], self._current_car_model_state.model_name) self._camera_manager.add(self._sub_camera, self._current_car_model_state.model_name) configure_environment_randomizer() # strip index for park position self._park_position_idx = get_racecar_idx(self._current_car_model_state.model_name) # set the park position in track and do evaluation # Before each evaluation episode (single lap for non-continuous race and complete race for # continuous race), a new copy of park_positions needs to be loaded into track_data because # a park position will be pop from park_positions when a racer car need to be parked. # unpause the physics in current world self._model_updater.unpause_physics() LOG.info("[virtual event manager] Unpaused physics in current world.") if self._prev_model_name is not None and \ self._prev_model_name != self._current_car_model_state.model_name: # disable the links on the prev car # we are doing it here because we don't want the car to float around # after the link is disabled prev_car_model_state = ModelState() prev_car_model_state.model_name = self._prev_model_name LOG.info("[virtual event manager] Unpaused model for current car.") if self._is_continuous: self._track_data.park_positions = [self._park_positions[self._park_position_idx]] self._current_graph_manager.evaluate(EnvironmentSteps(1)) else: for _ in range(self._number_of_trials): self._track_data.park_positions = [self._park_positions[self._park_position_idx]] self._current_graph_manager.evaluate(EnvironmentSteps(1)) def finish_race(self): """ Finish the race for the current racer. """ # pause physics of the world self._model_updater.pause_physics() time.sleep(1) # unsubscribe mp4 if self._is_save_mp4_enabled: self._unsubscribe_from_save_mp4(EmptyRequest()) self._track_data.remove_object(name=self._current_car_model_state.model_name) LOG.info("[virtual event manager] Finish Race - remove object %s.", self._current_car_model_state.model_name) # pop out current racecar from camera namespace to prevent camera from moving self._camera_manager.pop(namespace=self._current_car_model_state.model_name) # upload simtrace and mp4 into s3 bucket self._save_simtrace_mp4() self.upload_race_status(status_code=200) # keep track of the previous model name self._prev_model_name = self._current_car_model_state.model_name # clean up local trace of current race self._clean_up_race() def _clean_up_race(self): """Helper function to clean up everything related to the ex-racer and get ready for the next racer. """ self._simtrace_video_s3_writers = [] # clean up local checkpoints etc. self._clean_local_directory() # reset the tensorflow graph to avoid errors with the global session tf.reset_default_graph() # reset the current racer self._current_racer = None self._current_agent = None self._current_car_model_state = None self._current_graph_manager = None self._park_position_idx = 0 def _save_simtrace_mp4(self): """Get the appropriate kms key and save the simtrace and mp4 files. """ # TODO: It might be theorically possible to have different kms keys for simtrace and mp4 # but we are using the same key now since that's what happens in real life # consider refactor the simtrace_video_s3_writers later. if hasattr(self._current_racer.outputMp4, 's3KmsKeyArn'): simtrace_mp4_kms = self._current_racer.outputMp4.s3KmsKeyArn elif hasattr(self._current_racer.outputSimTrace, 's3KmsKeyArn'): simtrace_mp4_kms = self._current_racer.outputSimTrace.s3KmsKeyArn else: simtrace_mp4_kms = None for s3_writer in self._simtrace_video_s3_writers: s3_writer.persist(utils.get_s3_extra_args(simtrace_mp4_kms)) def _reset_metrics_loc(self): """Reset the metrics location as new racer is loaded. """ metrics_s3_config = {MetricsS3Keys.METRICS_BUCKET.value: self._current_racer.outputMetrics.s3BucketName, MetricsS3Keys.METRICS_KEY.value: self._current_racer.outputMetrics.s3KeyPrefix, MetricsS3Keys.REGION.value: self._region} self._eval_metrics.reset_metrics(s3_dict_metrics=metrics_s3_config, is_save_simtrace_enabled=self._is_save_simtrace_enabled) def _setup_simtrace_mp4_writers(self): """Setup the simtrace and mp4 writers if the locations are passed in. """ self._is_save_simtrace_enabled = False self._is_save_mp4_enabled = False if hasattr(self._current_racer, 'outputSimTrace'): self._simtrace_video_s3_writers.append( SimtraceVideo(upload_type=SimtraceVideoNames.SIMTRACE_EVAL.value, bucket=self._current_racer.outputSimTrace.s3BucketName, s3_prefix=self._current_racer.outputSimTrace.s3KeyPrefix, region_name=self._region, local_path=SIMTRACE_EVAL_LOCAL_PATH_FORMAT.format(self._agent_name))) self._is_save_simtrace_enabled = True if hasattr(self._current_racer, 'outputMp4'): self._simtrace_video_s3_writers.extend([ SimtraceVideo(upload_type=SimtraceVideoNames.PIP.value, bucket=self._current_racer.outputMp4.s3BucketName, s3_prefix=self._current_racer.outputMp4.s3KeyPrefix, region_name=self._region, local_path=CAMERA_PIP_MP4_LOCAL_PATH_FORMAT.format(self._agent_name)), SimtraceVideo(upload_type=SimtraceVideoNames.DEGREE45.value, bucket=self._current_racer.outputMp4.s3BucketName, s3_prefix=self._current_racer.outputMp4.s3KeyPrefix, region_name=self._region, local_path=CAMERA_45DEGREE_LOCAL_PATH_FORMAT.format(self._agent_name)), SimtraceVideo(upload_type=SimtraceVideoNames.TOPVIEW.value, bucket=self._current_racer.outputMp4.s3BucketName, s3_prefix=self._current_racer.outputMp4.s3KeyPrefix, region_name=self._region, local_path=CAMERA_TOPVIEW_LOCAL_PATH_FORMAT.format(self._agent_name))]) self._is_save_mp4_enabled = True def _setup_graph_manager(self, checkpoint, agent_list): """Sets up graph manager based on the checkpoint file and agents list. Args: checkpoint (Checkpoint): The model checkpoints we just downloaded. agent_list (list[Agent]): List of agents we want to setup graph manager for. """ sm_hyperparams_dict = {} self._current_graph_manager, _ = get_graph_manager(hp_dict=sm_hyperparams_dict, agent_list=agent_list, run_phase_subject=self._run_phase_subject, enable_domain_randomization=self._enable_domain_randomization, done_condition=self._done_condition, pause_physics=self._model_updater.pause_physics_service, unpause_physics=self._model_updater.unpause_physics_service) checkpoint_dict = dict() checkpoint_dict[self._agent_name] = checkpoint ds_params_instance = S3BotoDataStoreParameters(checkpoint_dict=checkpoint_dict) self._current_graph_manager.data_store = S3BotoDataStore(params=ds_params_instance, graph_manager=self._current_graph_manager, ignore_lock=True, log_and_cont=True) self._current_graph_manager.env_params.seed = 0 self._current_graph_manager.data_store.wait_for_checkpoints() self._current_graph_manager.data_store.modify_checkpoint_variables() task_parameters = TaskParameters() task_parameters.checkpoint_restore_path = self._local_model_directory self._current_graph_manager.create_graph(task_parameters=task_parameters, stop_physics=self._model_updater.pause_physics_service, start_physics=self._model_updater.unpause_physics_service, empty_service_call=EmptyRequest) def _get_agent_list(self, model_metadata, version): """Setup agent and get the agents list. Args: model_metadata (ModelMetadata): Current racer's model metadata version (str): The current racer's simapp version in the model metadata Returns: agent_list (list): The list of agents for the current racer """ # setup agent agent_config = { 'model_metadata': model_metadata, ConfigParams.CAR_CTRL_CONFIG.value: { ConfigParams.LINK_NAME_LIST.value: [ link_name.replace('racecar', self._current_car_model_state.model_name) for link_name in LINK_NAMES], ConfigParams.VELOCITY_LIST.value: [ velocity_topic.replace('racecar', self._current_car_model_state.model_name) for velocity_topic in VELOCITY_TOPICS], ConfigParams.STEERING_LIST.value: [ steering_topic.replace('racecar', self._current_car_model_state.model_name) for steering_topic in STEERING_TOPICS], ConfigParams.CHANGE_START.value: utils.str2bool(rospy.get_param('CHANGE_START_POSITION', False)), ConfigParams.ALT_DIR.value: utils.str2bool(rospy.get_param('ALTERNATE_DRIVING_DIRECTION', False)), ConfigParams.MODEL_METADATA.value: model_metadata, ConfigParams.REWARD.value: reward_function, ConfigParams.AGENT_NAME.value: self._current_car_model_state.model_name, ConfigParams.VERSION.value: version, ConfigParams.NUMBER_OF_RESETS.value: self._number_of_resets, ConfigParams.PENALTY_SECONDS.value: self._penalty_seconds, ConfigParams.NUMBER_OF_TRIALS.value: self._number_of_trials, ConfigParams.IS_CONTINUOUS.value: self._is_continuous, ConfigParams.RACE_TYPE.value: self._race_type, ConfigParams.COLLISION_PENALTY.value: self._collision_penalty, ConfigParams.OFF_TRACK_PENALTY.value: self._off_track_penalty, ConfigParams.START_POSITION.value: get_start_positions(1)[0], # hard-coded to the first start position ConfigParams.DONE_CONDITION.value: self._done_condition, ConfigParams.IS_VIRTUAL_EVENT.value: True, ConfigParams.RACE_DURATION.value: self._race_duration}} agent_list = list() agent_list.append(create_rollout_agent(agent_config, self._eval_metrics, self._run_phase_subject)) agent_list.append(create_obstacles_agent()) agent_list.append(create_bot_cars_agent()) return agent_list def _setup_mp4_services(self): """ Setting up the mp4 ros services if mp4s need to be saved. """ mp4_sub = "/{}/save_mp4/subscribe_to_save_mp4".format(VIRTUAL_EVENT) mp4_unsub = "/{}/save_mp4/unsubscribe_from_save_mp4".format(VIRTUAL_EVENT) rospy.wait_for_service(mp4_sub) rospy.wait_for_service(mp4_unsub) self._subscribe_to_save_mp4 = ServiceProxyWrapper(mp4_sub, VirtualEventVideoEditSrv) self._unsubscribe_from_save_mp4 = ServiceProxyWrapper(mp4_unsub, Empty) def _get_car_model_state(self, sensors: list) -> ModelState: """Get the current car model state according to sensors configuration. Args: sensors (list): sensors in the model metadata Returns: ModelState: a model state object with the current racecar name """ is_stereo = False is_lidar = False if Input.STEREO.value in sensors: is_stereo = True LOG.info("[virtual event manager] stereo camera present") if Input.LIDAR.value in sensors or Input.SECTOR_LIDAR.value in sensors: is_lidar = True LOG.info("[virtual event manager] lidar present") car_model_state = ModelState() if is_stereo: if is_lidar: car_model_state.model_name = SENSOR_MODEL_MAP['stereo_camera_lidar'] else: car_model_state.model_name = SENSOR_MODEL_MAP['stereo_camera'] else: if is_lidar: car_model_state.model_name = SENSOR_MODEL_MAP['single_camera_lidar'] else: car_model_state.model_name = SENSOR_MODEL_MAP['single_camera'] return car_model_state def _clean_local_directory(self): """Clean up the local directory after race ends. """ LOG.info("[virtual event manager] cleaning up the local directory after race ends.") for root, _, files in os.walk(self._local_model_directory): for f in files: os.remove(os.path.join(root, f)) def _park_at_pit_location(self, model_name): """Reset car to inital position. """ # set the car at the pit parking position yaw = 0.0 if self._track_data.is_ccw else math.pi self._model_updater.set_model_position(model_name, self._park_positions[self._park_position_idx], yaw, is_blocking=True) LOG.info("[virtual event manager] parked car to pit position.") def upload_race_status(self, status_code, error_name=None, error_details=None): """Upload race status into s3. Args: status_code (str): Status code for race. error_name (str, optional): The name of the error if is 4xx or 5xx. Defaults to "". error_details (str, optional): The detail message of the error if is 4xx or 5xx. Defaults to "". """ # persist s3 status file if error_name is not None and error_details is not None: status = {RaceStatusKeys.STATUS_CODE.value: status_code, RaceStatusKeys.ERROR_NAME.value: error_name, RaceStatusKeys.ERROR_DETAILS.value: error_details} else: status = {RaceStatusKeys.STATUS_CODE.value: status_code} status_json = json.dumps(status) s3_key = os.path.normpath(os.path.join(self._current_racer.outputStatus.s3KeyPrefix, S3_RACE_STATUS_FILE_NAME)) race_status_kms = self._current_racer.outputStatus.s3KmsKeyArn if \ hasattr(self._current_racer.outputStatus, 's3KmsKeyArn') else None self._s3_client.upload_fileobj(bucket=self._current_racer.outputStatus.s3BucketName, s3_key=s3_key, fileobj=io.BytesIO(status_json.encode()), s3_kms_extra_args=utils.get_s3_extra_args(race_status_kms)) LOG.info("[virtual event manager] Successfully uploaded race status file to \ s3 bucket {} with s3 key {}.".format(self._current_racer.outputStatus.s3BucketName, s3_key))
def main(): parser = argparse.ArgumentParser() parser.add_argument('-p', '--preset', help="(string) Name of a preset to run \ (class name from the 'presets' directory.)", type=str, required=False) parser.add_argument('--s3_bucket', help='(string) S3 bucket', type=str, default=rospy.get_param("MODEL_S3_BUCKET", "gsaur-test")) parser.add_argument('--s3_prefix', help='(string) S3 prefix', type=str, default=rospy.get_param("MODEL_S3_PREFIX", "sagemaker")) parser.add_argument('--aws_region', help='(string) AWS region', type=str, default=rospy.get_param("AWS_REGION", "us-east-1")) parser.add_argument('--number_of_trials', help='(integer) Number of trials', type=int, default=int(rospy.get_param("NUMBER_OF_TRIALS", 10))) parser.add_argument( '-c', '--local_model_directory', help='(string) Path to a folder containing a checkpoint \ to restore the model from.', type=str, default='./checkpoint') args = parser.parse_args() logger.info("S3 bucket: %s \n S3 prefix: %s", args.s3_bucket, args.s3_prefix) s3_client = SageS3Client(bucket=args.s3_bucket, s3_prefix=args.s3_prefix, aws_region=args.aws_region) # Load the model metadata model_metadata_local_path = os.path.join(CUSTOM_FILES_PATH, 'model_metadata.json') utils.load_model_metadata( s3_client, os.path.normpath("%s/model/model_metadata.json" % args.s3_prefix), model_metadata_local_path) # Handle backward compatibility _, _, version = parse_model_metadata(model_metadata_local_path) if float(version) < float(utils.SIMAPP_VERSION) and \ not utils.has_current_ckpnt_name(args.s3_bucket, args.s3_prefix, args.aws_region): utils.make_compatible(args.s3_bucket, args.s3_prefix, args.aws_region, SyncFiles.TRAINER_READY.value) # Download hyperparameters from SageMaker hyperparameters_file_success = False hyperparams_s3_key = os.path.normpath(args.s3_prefix + "/ip/hyperparameters.json") hyperparameters_file_success = s3_client.download_file( s3_key=hyperparams_s3_key, local_path="hyperparameters.json") sm_hyperparams_dict = {} if hyperparameters_file_success: logger.info("Received Sagemaker hyperparameters successfully!") with open("hyperparameters.json") as file: sm_hyperparams_dict = json.load(file) else: logger.info("SageMaker hyperparameters not found.") #! TODO each agent should have own config _, _, version = utils_parse_model_metadata.parse_model_metadata( model_metadata_local_path) agent_config = { 'model_metadata': model_metadata_local_path, 'car_ctrl_cnfig': { ConfigParams.LINK_NAME_LIST.value: LINK_NAMES, ConfigParams.VELOCITY_LIST.value: VELOCITY_TOPICS, ConfigParams.STEERING_LIST.value: STEERING_TOPICS, ConfigParams.CHANGE_START.value: utils.str2bool(rospy.get_param('CHANGE_START_POSITION', False)), ConfigParams.ALT_DIR.value: utils.str2bool( rospy.get_param('ALTERNATE_DRIVING_DIRECTION', False)), ConfigParams.ACTION_SPACE_PATH.value: 'custom_files/model_metadata.json', ConfigParams.REWARD.value: reward_function, ConfigParams.AGENT_NAME.value: 'racecar', ConfigParams.VERSION.value: version } } #! TODO each agent should have own s3 bucket metrics_s3_config = { MetricsS3Keys.METRICS_BUCKET.value: rospy.get_param('METRICS_S3_BUCKET'), MetricsS3Keys.METRICS_KEY.value: rospy.get_param('METRICS_S3_OBJECT_KEY'), MetricsS3Keys.REGION.value: rospy.get_param('AWS_REGION'), MetricsS3Keys.STEP_BUCKET.value: rospy.get_param('MODEL_S3_BUCKET'), MetricsS3Keys.STEP_KEY.value: os.path.join(rospy.get_param('MODEL_S3_PREFIX'), EVALUATION_SIMTRACE_DATA_S3_OBJECT_KEY) } agent_list = list() agent_list.append( create_rollout_agent(agent_config, EvalMetrics(metrics_s3_config))) agent_list.append(create_obstacles_agent()) agent_list.append(create_bot_cars_agent()) graph_manager, _ = get_graph_manager(sm_hyperparams_dict, agent_list) ds_params_instance = S3BotoDataStoreParameters( aws_region=args.aws_region, bucket_name=args.s3_bucket, checkpoint_dir=args.local_model_directory, s3_folder=args.s3_prefix) data_store = S3BotoDataStore(ds_params_instance) data_store.graph_manager = graph_manager graph_manager.data_store = data_store graph_manager.env_params.seed = 0 task_parameters = TaskParameters() task_parameters.checkpoint_restore_path = args.local_model_directory evaluation_worker( graph_manager=graph_manager, data_store=data_store, number_of_trials=args.number_of_trials, task_parameters=task_parameters, )
def main(): """ Main function for evaluation worker """ parser = argparse.ArgumentParser() parser.add_argument('-p', '--preset', help="(string) Name of a preset to run \ (class name from the 'presets' directory.)", type=str, required=False) parser.add_argument('--s3_bucket', help='list(string) S3 bucket', type=str, nargs='+', default=rospy.get_param("MODEL_S3_BUCKET", ["gsaur-test"])) parser.add_argument('--s3_prefix', help='list(string) S3 prefix', type=str, nargs='+', default=rospy.get_param("MODEL_S3_PREFIX", ["sagemaker"])) parser.add_argument('--s3_endpoint_url', help='(string) S3 endpoint URL', type=str, default=rospy.get_param("S3_ENDPOINT_URL", None)) parser.add_argument('--aws_region', help='(string) AWS region', type=str, default=rospy.get_param("AWS_REGION", "us-east-1")) parser.add_argument('--number_of_trials', help='(integer) Number of trials', type=int, default=int(rospy.get_param("NUMBER_OF_TRIALS", 10))) parser.add_argument( '-c', '--local_model_directory', help='(string) Path to a folder containing a checkpoint \ to restore the model from.', type=str, default='./checkpoint') parser.add_argument('--number_of_resets', help='(integer) Number of resets', type=int, default=int(rospy.get_param("NUMBER_OF_RESETS", 0))) parser.add_argument('--penalty_seconds', help='(float) penalty second', type=float, default=float(rospy.get_param("PENALTY_SECONDS", 2.0))) parser.add_argument('--job_type', help='(string) job type', type=str, default=rospy.get_param("JOB_TYPE", "EVALUATION")) parser.add_argument('--is_continuous', help='(boolean) is continous after lap completion', type=bool, default=utils.str2bool( rospy.get_param("IS_CONTINUOUS", False))) parser.add_argument('--race_type', help='(string) Race type', type=str, default=rospy.get_param("RACE_TYPE", "TIME_TRIAL")) parser.add_argument('--off_track_penalty', help='(float) off track penalty second', type=float, default=float(rospy.get_param("OFF_TRACK_PENALTY", 2.0))) parser.add_argument('--collision_penalty', help='(float) collision penalty second', type=float, default=float(rospy.get_param("COLLISION_PENALTY", 5.0))) parser.add_argument('--round_robin_advance_dist', help='(float) round robin distance 0-1', type=float, default=float( rospy.get_param("ROUND_ROBIN_ADVANCE_DIST", 0.05))) parser.add_argument('--start_position_offset', help='(float) offset start 0-1', type=float, default=float( rospy.get_param("START_POSITION_OFFSET", 0.0))) args = parser.parse_args() arg_s3_bucket = args.s3_bucket arg_s3_prefix = args.s3_prefix logger.info("S3 bucket: %s \n S3 prefix: %s \n S3 endpoint URL: %s", args.s3_bucket, args.s3_prefix, args.s3_endpoint_url) metrics_s3_buckets = rospy.get_param('METRICS_S3_BUCKET') metrics_s3_object_keys = rospy.get_param('METRICS_S3_OBJECT_KEY') arg_s3_bucket, arg_s3_prefix = utils.force_list( arg_s3_bucket), utils.force_list(arg_s3_prefix) metrics_s3_buckets = utils.force_list(metrics_s3_buckets) metrics_s3_object_keys = utils.force_list(metrics_s3_object_keys) validate_list = [ arg_s3_bucket, arg_s3_prefix, metrics_s3_buckets, metrics_s3_object_keys ] simtrace_s3_bucket = rospy.get_param('SIMTRACE_S3_BUCKET', None) mp4_s3_bucket = rospy.get_param('MP4_S3_BUCKET', None) if simtrace_s3_bucket: simtrace_s3_object_prefix = rospy.get_param('SIMTRACE_S3_PREFIX') simtrace_s3_bucket = utils.force_list(simtrace_s3_bucket) simtrace_s3_object_prefix = utils.force_list(simtrace_s3_object_prefix) validate_list.extend([simtrace_s3_bucket, simtrace_s3_object_prefix]) if mp4_s3_bucket: mp4_s3_object_prefix = rospy.get_param('MP4_S3_OBJECT_PREFIX') mp4_s3_bucket = utils.force_list(mp4_s3_bucket) mp4_s3_object_prefix = utils.force_list(mp4_s3_object_prefix) validate_list.extend([mp4_s3_bucket, mp4_s3_object_prefix]) if not all([lambda x: len(x) == len(validate_list[0]), validate_list]): log_and_exit( "Eval worker error: Incorrect arguments passed: {}".format( validate_list), SIMAPP_SIMULATION_WORKER_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_500) if args.number_of_resets != 0 and args.number_of_resets < MIN_RESET_COUNT: raise GenericRolloutException( "number of resets is less than {}".format(MIN_RESET_COUNT)) # Instantiate Cameras if len(arg_s3_bucket) == 1: configure_camera(namespaces=['racecar']) else: configure_camera(namespaces=[ 'racecar_{}'.format(str(agent_index)) for agent_index in range(len(arg_s3_bucket)) ]) agent_list = list() s3_bucket_dict = dict() s3_prefix_dict = dict() s3_writers = list() start_positions = get_start_positions(len(arg_s3_bucket)) done_condition = utils.str_to_done_condition( rospy.get_param("DONE_CONDITION", any)) park_positions = utils.pos_2d_str_to_list( rospy.get_param("PARK_POSITIONS", [])) # if not pass in park positions for all done condition case, use default if not park_positions: park_positions = [DEFAULT_PARK_POSITION for _ in arg_s3_bucket] for agent_index, _ in enumerate(arg_s3_bucket): agent_name = 'agent' if len(arg_s3_bucket) == 1 else 'agent_{}'.format( str(agent_index)) racecar_name = 'racecar' if len( arg_s3_bucket) == 1 else 'racecar_{}'.format(str(agent_index)) s3_bucket_dict[agent_name] = arg_s3_bucket[agent_index] s3_prefix_dict[agent_name] = arg_s3_prefix[agent_index] # download model metadata model_metadata = ModelMetadata( bucket=arg_s3_bucket[agent_index], s3_key=get_s3_key(arg_s3_prefix[agent_index], MODEL_METADATA_S3_POSTFIX), region_name=args.aws_region, s3_endpoint_url=args.s3_endpoint_url, local_path=MODEL_METADATA_LOCAL_PATH_FORMAT.format(agent_name)) _, _, version = model_metadata.get_model_metadata_info() # Select the optimal model utils.do_model_selection(s3_bucket=arg_s3_bucket[agent_index], s3_prefix=arg_s3_prefix[agent_index], region=args.aws_region, s3_endpoint_url=args.s3_endpoint_url) agent_config = { 'model_metadata': model_metadata, ConfigParams.CAR_CTRL_CONFIG.value: { ConfigParams.LINK_NAME_LIST.value: [ link_name.replace('racecar', racecar_name) for link_name in LINK_NAMES ], ConfigParams.VELOCITY_LIST.value: [ velocity_topic.replace('racecar', racecar_name) for velocity_topic in VELOCITY_TOPICS ], ConfigParams.STEERING_LIST.value: [ steering_topic.replace('racecar', racecar_name) for steering_topic in STEERING_TOPICS ], ConfigParams.CHANGE_START.value: utils.str2bool(rospy.get_param('CHANGE_START_POSITION', False)), ConfigParams.ALT_DIR.value: utils.str2bool( rospy.get_param('ALTERNATE_DRIVING_DIRECTION', False)), ConfigParams.ACTION_SPACE_PATH.value: model_metadata.local_path, ConfigParams.REWARD.value: reward_function, ConfigParams.AGENT_NAME.value: racecar_name, ConfigParams.VERSION.value: version, ConfigParams.NUMBER_OF_RESETS.value: args.number_of_resets, ConfigParams.PENALTY_SECONDS.value: args.penalty_seconds, ConfigParams.NUMBER_OF_TRIALS.value: args.number_of_trials, ConfigParams.IS_CONTINUOUS.value: args.is_continuous, ConfigParams.RACE_TYPE.value: args.race_type, ConfigParams.COLLISION_PENALTY.value: args.collision_penalty, ConfigParams.OFF_TRACK_PENALTY.value: args.off_track_penalty, ConfigParams.START_POSITION.value: start_positions[agent_index], ConfigParams.DONE_CONDITION.value: done_condition, ConfigParams.ROUND_ROBIN_ADVANCE_DIST.value: args.round_robin_advance_dist, ConfigParams.START_POSITION_OFFSET.value: args.start_position_offset } } metrics_s3_config = { MetricsS3Keys.METRICS_BUCKET.value: metrics_s3_buckets[agent_index], MetricsS3Keys.METRICS_KEY.value: metrics_s3_object_keys[agent_index], MetricsS3Keys.ENDPOINT_URL.value: rospy.get_param('S3_ENDPOINT_URL', None), # Replaced rospy.get_param('AWS_REGION') to be equal to the argument being passed # or default argument set MetricsS3Keys.REGION.value: args.aws_region } aws_region = rospy.get_param('AWS_REGION', args.aws_region) s3_writer_job_info = [] if simtrace_s3_bucket: s3_writer_job_info.append( IterationData( 'simtrace', simtrace_s3_bucket[agent_index], simtrace_s3_object_prefix[agent_index], aws_region, os.path.join( ITERATION_DATA_LOCAL_FILE_PATH, agent_name, IterationDataLocalFileNames. SIM_TRACE_EVALUATION_LOCAL_FILE.value))) if mp4_s3_bucket: s3_writer_job_info.extend([ IterationData( 'pip', mp4_s3_bucket[agent_index], mp4_s3_object_prefix[agent_index], aws_region, os.path.join( ITERATION_DATA_LOCAL_FILE_PATH, agent_name, IterationDataLocalFileNames. CAMERA_PIP_MP4_VALIDATION_LOCAL_PATH.value)), IterationData( '45degree', mp4_s3_bucket[agent_index], mp4_s3_object_prefix[agent_index], aws_region, os.path.join( ITERATION_DATA_LOCAL_FILE_PATH, agent_name, IterationDataLocalFileNames. CAMERA_45DEGREE_MP4_VALIDATION_LOCAL_PATH.value)), IterationData( 'topview', mp4_s3_bucket[agent_index], mp4_s3_object_prefix[agent_index], aws_region, os.path.join( ITERATION_DATA_LOCAL_FILE_PATH, agent_name, IterationDataLocalFileNames. CAMERA_TOPVIEW_MP4_VALIDATION_LOCAL_PATH.value)) ]) s3_writers.append( S3Writer(job_info=s3_writer_job_info, s3_endpoint_url=args.s3_endpoint_url)) run_phase_subject = RunPhaseSubject() agent_list.append( create_rollout_agent( agent_config, EvalMetrics(agent_name, metrics_s3_config, args.is_continuous), run_phase_subject)) agent_list.append(create_obstacles_agent()) agent_list.append(create_bot_cars_agent()) # ROS service to indicate all the robomaker markov packages are ready for consumption signal_robomaker_markov_package_ready() PhaseObserver('/agent/training_phase', run_phase_subject) enable_domain_randomization = utils.str2bool( rospy.get_param('ENABLE_DOMAIN_RANDOMIZATION', False)) sm_hyperparams_dict = {} graph_manager, _ = get_graph_manager( hp_dict=sm_hyperparams_dict, agent_list=agent_list, run_phase_subject=run_phase_subject, enable_domain_randomization=enable_domain_randomization, done_condition=done_condition) ds_params_instance = S3BotoDataStoreParameters( aws_region=args.aws_region, bucket_names=s3_bucket_dict, base_checkpoint_dir=args.local_model_directory, s3_folders=s3_prefix_dict, s3_endpoint_url=args.s3_endpoint_url) graph_manager.data_store = S3BotoDataStore(params=ds_params_instance, graph_manager=graph_manager, ignore_lock=True) graph_manager.env_params.seed = 0 task_parameters = TaskParameters() task_parameters.checkpoint_restore_path = args.local_model_directory evaluation_worker(graph_manager=graph_manager, number_of_trials=args.number_of_trials, task_parameters=task_parameters, s3_writers=s3_writers, is_continuous=args.is_continuous, park_positions=park_positions)