コード例 #1
0
    def __init__(self):
        # Read ros parameters
        # OBJECT_POSITIONS will overwrite NUMBER_OF_OBSTACLES and RANDOMIZE_OBSTACLE_LOCATIONS
        self.object_locations = rospy.get_param("OBJECT_POSITIONS", [])
        self.num_obstacles = int(rospy.get_param("NUMBER_OF_OBSTACLES", 0)) \
                             if not self.object_locations else len(self.object_locations)
        self.min_obstacle_dist = float(rospy.get_param("MIN_DISTANCE_BETWEEN_OBSTACLES", 2.0))
        self.randomize = utils.str2bool(rospy.get_param("RANDOMIZE_OBSTACLE_LOCATIONS", False))
        self.use_bot_car = utils.str2bool(rospy.get_param("IS_OBSTACLE_BOT_CAR", False))
        self.obstacle_names = ["{}_{}".format(OBSTACLE_NAME_PREFIX, i) for i in range(self.num_obstacles)]
        self.obstacle_dimensions = ObstacleDimensions.BOT_CAR_DIMENSION if self.use_bot_car \
                                   else ObstacleDimensions.BOX_OBSTACLE_DIMENSION

        # track data
        self.track_data = TrackData.get_instance()

        # Wait for ros services
        rospy.wait_for_service(SPAWN_SDF_MODEL)
        rospy.wait_for_service(SPAWN_URDF_MODEL)
        self.spawn_sdf_model = ServiceProxyWrapper(SPAWN_SDF_MODEL, SpawnModel)
        self.spawn_urdf_model = ServiceProxyWrapper(SPAWN_URDF_MODEL, SpawnModel)

        # Load the obstacle sdf/urdf
        obstacle_model_folder = "bot_car" if self.use_bot_car else "box_obstacle"
        rospack = rospkg.RosPack()
        deepracer_path = rospack.get_path("deepracer_simulation_environment")
        obstacle_sdf_path = os.path.join(deepracer_path, "models", obstacle_model_folder, "model.sdf")
        with open(obstacle_sdf_path, "r") as fp:
            self.obstacle_sdf = fp.read()

        # Set obstacle poses and spawn the obstacles
        self.obstacle_poses = self._compute_obstacle_poses()
        self._spawn_obstacles()

        self._configure_randomizer()
コード例 #2
0
    def _get_agent_list(self, model_metadata, version):
        """Setup agent and get the agents list.

        Args:
            model_metadata (ModelMetadata): Current racer's model metadata
            version (str): The current racer's simapp version in the model metadata

        Returns:
            agent_list (list): The list of agents for the current racer
        """
        # setup agent
        agent_config = {
            "model_metadata": model_metadata,
            ConfigParams.CAR_CTRL_CONFIG.value: {
                ConfigParams.LINK_NAME_LIST.value: [
                    link_name.replace("racecar", self._current_car_model_state.model_name)
                    for link_name in LINK_NAMES
                ],
                ConfigParams.VELOCITY_LIST.value: [
                    velocity_topic.replace("racecar", self._current_car_model_state.model_name)
                    for velocity_topic in VELOCITY_TOPICS
                ],
                ConfigParams.STEERING_LIST.value: [
                    steering_topic.replace("racecar", self._current_car_model_state.model_name)
                    for steering_topic in STEERING_TOPICS
                ],
                ConfigParams.CHANGE_START.value: utils.str2bool(
                    rospy.get_param("CHANGE_START_POSITION", False)
                ),
                ConfigParams.ALT_DIR.value: utils.str2bool(
                    rospy.get_param("ALTERNATE_DRIVING_DIRECTION", False)
                ),
                ConfigParams.MODEL_METADATA.value: model_metadata,
                ConfigParams.REWARD.value: reward_function,
                ConfigParams.AGENT_NAME.value: self._current_car_model_state.model_name,
                ConfigParams.VERSION.value: version,
                ConfigParams.NUMBER_OF_RESETS.value: self._number_of_resets,
                ConfigParams.PENALTY_SECONDS.value: self._penalty_seconds,
                ConfigParams.NUMBER_OF_TRIALS.value: self._number_of_trials,
                ConfigParams.IS_CONTINUOUS.value: self._is_continuous,
                ConfigParams.RACE_TYPE.value: self._race_type,
                ConfigParams.COLLISION_PENALTY.value: self._collision_penalty,
                ConfigParams.OFF_TRACK_PENALTY.value: self._off_track_penalty,
                ConfigParams.START_POSITION.value: get_start_positions(1)[
                    0
                ],  # hard-coded to the first start position
                ConfigParams.DONE_CONDITION.value: self._done_condition,
                ConfigParams.IS_VIRTUAL_EVENT.value: True,
                ConfigParams.RACE_DURATION.value: self._race_duration,
            },
        }

        agent_list = list()
        agent_list.append(
            create_rollout_agent(agent_config, self._eval_metrics, self._run_phase_subject)
        )
        agent_list.append(create_obstacles_agent())
        agent_list.append(create_bot_cars_agent())
        return agent_list
コード例 #3
0
    def __init__(self):
        self.lock = threading.Lock()

        # Read ros parameters
        self.num_bot_cars = int(rospy.get_param("NUMBER_OF_BOT_CARS", 0))
        self.min_bot_car_dist = float(
            rospy.get_param("MIN_DISTANCE_BETWEEN_BOT_CARS", 2.0))
        self.randomize = utils.str2bool(
            rospy.get_param("RANDOMIZE_BOT_CAR_LOCATIONS", False))
        self.bot_car_speed = float(rospy.get_param("BOT_CAR_SPEED", 0.2))
        self.is_lane_change = utils.str2bool(
            rospy.get_param("IS_LANE_CHANGE", False))
        self.lower_lane_change_time = float(
            rospy.get_param("LOWER_LANE_CHANGE_TIME", 3.0))
        self.upper_lane_change_time = float(
            rospy.get_param("UPPER_LANE_CHANGE_TIME", 5.0))
        self.lane_change_distance = float(
            rospy.get_param("LANE_CHANGE_DISTANCE", 1.0))
        self.penalty_seconds = float(rospy.get_param("PENALTY_SECONDS", 2.0))
        self.lane_change_duration = self.lane_change_distance / self.bot_car_speed
        self.bot_car_names = [
            "bot_car_{}".format(i) for i in range(self.num_bot_cars)
        ]
        self.bot_car_poses = []
        self.bot_car_progresses = {}
        self.bot_car_phase = AgentPhase.RUN.value
        self.bot_car_dimensions = ObstacleDimensions.BOT_CAR_DIMENSION
        self.bot_car_crash_count = 0
        self.pause_end_time = 0.0

        # track date
        self.track_data = TrackData.get_instance()
        self.reverse_dir = self.track_data.reverse_dir

        # Wait for ros services
        rospy.wait_for_service(SET_MODEL_STATE)
        rospy.wait_for_service(SPAWN_SDF_MODEL)
        self.set_model_state = ServiceProxyWrapper(SET_MODEL_STATE,
                                                   SetModelState)
        self.spawn_sdf_model = ServiceProxyWrapper(SPAWN_SDF_MODEL, SpawnModel)

        # Build splines for inner/outer lanes
        self.inner_lane = TrackSpline(lane_name=TrackLane.INNER_LANE.value)
        self.outer_lane = TrackSpline(lane_name=TrackLane.OUTER_LANE.value)

        # Spawn the bot cars
        self._reset_sim_time()
        self._spawn_bot_cars()

        self._configure_randomizer()

        # Subscribe to the Gazebo clock and model states
        rospy.Subscriber('/clock', Clock, self._update_sim_time)
コード例 #4
0
    def __init__(self):
        self.track_data = TrackData.get_instance()

        # Read ros parameters
        self.num_obstacles = int(rospy.get_param("NUMBER_OF_OBSTACLES", 0))
        self.min_obstacle_dist = float(
            rospy.get_param("MIN_DISTANCE_BETWEEN_OBSTACLES", 2.0))
        self.randomize = utils.str2bool(
            rospy.get_param("RANDOMIZE_OBSTACLE_LOCATIONS", False))
        self.use_bot_car_urdf = utils.str2bool(
            rospy.get_param("IS_OBSTACLE_BOT_CAR", False))
        self.obstacle_names = [
            "obstacle_{}".format(i) for i in range(self.num_obstacles)
        ]
        self.obstacle_dimensions = ObstacleDimensions.BOT_CAR_DIMENSION if self.use_bot_car_urdf \
                                   else ObstacleDimensions.BOX_OBSTACLE_DIMENSION

        # Wait for ros services
        rospy.wait_for_service(SET_MODEL_STATE)
        rospy.wait_for_service(SPAWN_SDF_MODEL)
        rospy.wait_for_service(SPAWN_URDF_MODEL)
        self.set_model_state = ServiceProxyWrapper(SET_MODEL_STATE,
                                                   SetModelState)
        self.spawn_sdf_model = ServiceProxyWrapper(SPAWN_SDF_MODEL, SpawnModel)
        self.spawn_urdf_model = ServiceProxyWrapper(SPAWN_URDF_MODEL,
                                                    SpawnModel)

        # Load the obstacle sdf/urdf
        if self.use_bot_car_urdf:
            self.bot_car_urdf = rospy.get_param('robot_description_bot')
        else:
            rospack = rospkg.RosPack()
            deepracer_path = rospack.get_path(
                "deepracer_simulation_environment")
            obstacle_sdf_path = os.path.join(deepracer_path, "models",
                                             "box_obstacle", "model.sdf")
            with open(obstacle_sdf_path, "r") as fp:
                self.obstacle_sdf = fp.read()

        # Spawn the obstacles
        self._spawn_obstacles()
コード例 #5
0
def main():
    """ Main function for tournament worker """
    parser = argparse.ArgumentParser()
    parser.add_argument('-p',
                        '--preset',
                        help="(string) Name of a preset to run \
                             (class name from the 'presets' directory.)",
                        type=str,
                        required=False)
    parser.add_argument('--s3_bucket',
                        help='list(string) S3 bucket',
                        type=str,
                        nargs='+',
                        default=rospy.get_param("MODEL_S3_BUCKET",
                                                ["gsaur-test"]))
    parser.add_argument('--s3_prefix',
                        help='list(string) S3 prefix',
                        type=str,
                        nargs='+',
                        default=rospy.get_param("MODEL_S3_PREFIX",
                                                ["sagemaker"]))
    parser.add_argument('--aws_region',
                        help='(string) AWS region',
                        type=str,
                        default=rospy.get_param("AWS_REGION", "us-east-1"))
    parser.add_argument('--number_of_trials',
                        help='(integer) Number of trials',
                        type=int,
                        default=int(rospy.get_param("NUMBER_OF_TRIALS", 10)))
    parser.add_argument(
        '-c',
        '--local_model_directory',
        help='(string) Path to a folder containing a checkpoint \
                             to restore the model from.',
        type=str,
        default='./checkpoint')
    parser.add_argument('--number_of_resets',
                        help='(integer) Number of resets',
                        type=int,
                        default=int(rospy.get_param("NUMBER_OF_RESETS", 0)))
    parser.add_argument('--penalty_seconds',
                        help='(float) penalty second',
                        type=float,
                        default=float(rospy.get_param("PENALTY_SECONDS", 2.0)))
    parser.add_argument('--job_type',
                        help='(string) job type',
                        type=str,
                        default=rospy.get_param("JOB_TYPE", "EVALUATION"))
    parser.add_argument('--is_continuous',
                        help='(boolean) is continous after lap completion',
                        type=bool,
                        default=utils.str2bool(
                            rospy.get_param("IS_CONTINUOUS", False)))
    parser.add_argument('--race_type',
                        help='(string) Race type',
                        type=str,
                        default=rospy.get_param("RACE_TYPE", "TIME_TRIAL"))
    parser.add_argument('--off_track_penalty',
                        help='(float) off track penalty second',
                        type=float,
                        default=float(rospy.get_param("OFF_TRACK_PENALTY",
                                                      2.0)))
    parser.add_argument('--collision_penalty',
                        help='(float) collision penalty second',
                        type=float,
                        default=float(rospy.get_param("COLLISION_PENALTY",
                                                      5.0)))

    args = parser.parse_args()
    arg_s3_bucket = args.s3_bucket
    arg_s3_prefix = args.s3_prefix
    logger.info("S3 bucket: %s \n S3 prefix: %s", arg_s3_bucket, arg_s3_prefix)

    # tournament_worker: names to be displayed in MP4.
    # This is racer alias in tournament worker case.
    display_names = rospy.get_param('DISPLAY_NAME', "")

    metrics_s3_buckets = rospy.get_param('METRICS_S3_BUCKET')
    metrics_s3_object_keys = rospy.get_param('METRICS_S3_OBJECT_KEY')

    arg_s3_bucket, arg_s3_prefix = utils.force_list(
        arg_s3_bucket), utils.force_list(arg_s3_prefix)
    metrics_s3_buckets = utils.force_list(metrics_s3_buckets)
    metrics_s3_object_keys = utils.force_list(metrics_s3_object_keys)

    validate_list = [
        arg_s3_bucket, arg_s3_prefix, metrics_s3_buckets,
        metrics_s3_object_keys
    ]

    simtrace_s3_bucket = rospy.get_param('SIMTRACE_S3_BUCKET', None)
    mp4_s3_bucket = rospy.get_param('MP4_S3_BUCKET', None)
    if simtrace_s3_bucket:
        simtrace_s3_object_prefix = rospy.get_param('SIMTRACE_S3_PREFIX')
        simtrace_s3_bucket = utils.force_list(simtrace_s3_bucket)
        simtrace_s3_object_prefix = utils.force_list(simtrace_s3_object_prefix)
        validate_list.extend([simtrace_s3_bucket, simtrace_s3_object_prefix])
    if mp4_s3_bucket:
        mp4_s3_object_prefix = rospy.get_param('MP4_S3_OBJECT_PREFIX')
        mp4_s3_bucket = utils.force_list(mp4_s3_bucket)
        mp4_s3_object_prefix = utils.force_list(mp4_s3_object_prefix)
        validate_list.extend([mp4_s3_bucket, mp4_s3_object_prefix])

    if not all([lambda x: len(x) == len(validate_list[0]), validate_list]):
        utils.log_and_exit(
            "Eval worker error: Incorrect arguments passed: {}".format(
                validate_list), utils.SIMAPP_SIMULATION_WORKER_EXCEPTION,
            utils.SIMAPP_EVENT_ERROR_CODE_500)
    if args.number_of_resets != 0 and args.number_of_resets < MIN_RESET_COUNT:
        raise GenericRolloutException(
            "number of resets is less than {}".format(MIN_RESET_COUNT))

    # Instantiate Cameras
    if len(arg_s3_bucket) == 1:
        configure_camera(namespaces=['racecar'])
    else:
        configure_camera(namespaces=[
            'racecar_{}'.format(str(agent_index))
            for agent_index in range(len(arg_s3_bucket))
        ])

    agent_list = list()
    s3_bucket_dict = dict()
    s3_prefix_dict = dict()
    s3_writers = list()

    # tournament_worker: list of required S3 locations
    simtrace_s3_bucket_dict = dict()
    simtrace_s3_prefix_dict = dict()
    metrics_s3_bucket_dict = dict()
    metrics_s3_obect_key_dict = dict()
    mp4_s3_bucket_dict = dict()
    mp4_s3_object_prefix_dict = dict()

    for agent_index, s3_bucket_val in enumerate(arg_s3_bucket):
        agent_name = 'agent' if len(arg_s3_bucket) == 1 else 'agent_{}'.format(
            str(agent_index))
        racecar_name = 'racecar' if len(
            arg_s3_bucket) == 1 else 'racecar_{}'.format(str(agent_index))
        s3_bucket_dict[agent_name] = arg_s3_bucket[agent_index]
        s3_prefix_dict[agent_name] = arg_s3_prefix[agent_index]

        # tournament_worker: remap key with agent_name instead of agent_index for list of S3 locations.
        simtrace_s3_bucket_dict[agent_name] = simtrace_s3_bucket[agent_index]
        simtrace_s3_prefix_dict[agent_name] = simtrace_s3_object_prefix[
            agent_index]
        metrics_s3_bucket_dict[agent_name] = metrics_s3_buckets[agent_index]
        metrics_s3_obect_key_dict[agent_name] = metrics_s3_object_keys[
            agent_index]
        mp4_s3_bucket_dict[agent_name] = mp4_s3_bucket[agent_index]
        mp4_s3_object_prefix_dict[agent_name] = mp4_s3_object_prefix[
            agent_index]

        s3_client = SageS3Client(bucket=arg_s3_bucket[agent_index],
                                 s3_prefix=arg_s3_prefix[agent_index],
                                 aws_region=args.aws_region)

        # Load the model metadata
        if not os.path.exists(os.path.join(CUSTOM_FILES_PATH, agent_name)):
            os.makedirs(os.path.join(CUSTOM_FILES_PATH, agent_name))
        model_metadata_local_path = os.path.join(
            os.path.join(CUSTOM_FILES_PATH, agent_name), 'model_metadata.json')
        utils.load_model_metadata(
            s3_client,
            os.path.normpath("%s/model/model_metadata.json" %
                             arg_s3_prefix[agent_index]),
            model_metadata_local_path)
        # Handle backward compatibility
        _, _, version = parse_model_metadata(model_metadata_local_path)
        if float(version) < float(utils.SIMAPP_VERSION) and \
        not utils.has_current_ckpnt_name(arg_s3_bucket[agent_index], arg_s3_prefix[agent_index], args.aws_region):
            utils.make_compatible(arg_s3_bucket[agent_index],
                                  arg_s3_prefix[agent_index], args.aws_region,
                                  SyncFiles.TRAINER_READY.value)

        # Select the optimal model
        utils.do_model_selection(s3_bucket=arg_s3_bucket[agent_index],
                                 s3_prefix=arg_s3_prefix[agent_index],
                                 region=args.aws_region)

        # Download hyperparameters from SageMaker
        if not os.path.exists(agent_name):
            os.makedirs(agent_name)
        hyperparameters_file_success = False
        hyperparams_s3_key = os.path.normpath(arg_s3_prefix[agent_index] +
                                              "/ip/hyperparameters.json")
        hyperparameters_file_success = s3_client.download_file(
            s3_key=hyperparams_s3_key,
            local_path=os.path.join(agent_name, "hyperparameters.json"))
        sm_hyperparams_dict = {}
        if hyperparameters_file_success:
            logger.info("Received Sagemaker hyperparameters successfully!")
            with open(os.path.join(agent_name,
                                   "hyperparameters.json")) as file:
                sm_hyperparams_dict = json.load(file)
        else:
            logger.info("SageMaker hyperparameters not found.")

        agent_config = {
            'model_metadata': model_metadata_local_path,
            ConfigParams.CAR_CTRL_CONFIG.value: {
                ConfigParams.LINK_NAME_LIST.value: [
                    link_name.replace('racecar', racecar_name)
                    for link_name in LINK_NAMES
                ],
                ConfigParams.VELOCITY_LIST.value: [
                    velocity_topic.replace('racecar', racecar_name)
                    for velocity_topic in VELOCITY_TOPICS
                ],
                ConfigParams.STEERING_LIST.value: [
                    steering_topic.replace('racecar', racecar_name)
                    for steering_topic in STEERING_TOPICS
                ],
                ConfigParams.CHANGE_START.value:
                utils.str2bool(rospy.get_param('CHANGE_START_POSITION',
                                               False)),
                ConfigParams.ALT_DIR.value:
                utils.str2bool(
                    rospy.get_param('ALTERNATE_DRIVING_DIRECTION', False)),
                ConfigParams.ACTION_SPACE_PATH.value:
                'custom_files/' + agent_name + '/model_metadata.json',
                ConfigParams.REWARD.value:
                reward_function,
                ConfigParams.AGENT_NAME.value:
                racecar_name,
                ConfigParams.VERSION.value:
                version,
                ConfigParams.NUMBER_OF_RESETS.value:
                args.number_of_resets,
                ConfigParams.PENALTY_SECONDS.value:
                args.penalty_seconds,
                ConfigParams.NUMBER_OF_TRIALS.value:
                args.number_of_trials,
                ConfigParams.IS_CONTINUOUS.value:
                args.is_continuous,
                ConfigParams.RACE_TYPE.value:
                args.race_type,
                ConfigParams.COLLISION_PENALTY.value:
                args.collision_penalty,
                ConfigParams.OFF_TRACK_PENALTY.value:
                args.off_track_penalty
            }
        }

        metrics_s3_config = {
            MetricsS3Keys.METRICS_BUCKET.value:
            metrics_s3_buckets[agent_index],
            MetricsS3Keys.METRICS_KEY.value:
            metrics_s3_object_keys[agent_index],
            # Replaced rospy.get_param('AWS_REGION') to be equal to the argument being passed
            # or default argument set
            MetricsS3Keys.REGION.value:
            args.aws_region,
            # Replaced rospy.get_param('MODEL_S3_BUCKET') to be equal to the argument being passed
            # or default argument set
            MetricsS3Keys.STEP_BUCKET.value:
            arg_s3_bucket[agent_index],
            # Replaced rospy.get_param('MODEL_S3_PREFIX') to be equal to the argument being passed
            # or default argument set
            MetricsS3Keys.STEP_KEY.value:
            os.path.join(arg_s3_prefix[agent_index],
                         EVALUATION_SIMTRACE_DATA_S3_OBJECT_KEY)
        }
        aws_region = rospy.get_param('AWS_REGION', args.aws_region)
        s3_writer_job_info = []
        if simtrace_s3_bucket:
            s3_writer_job_info.append(
                IterationData(
                    'simtrace', simtrace_s3_bucket[agent_index],
                    simtrace_s3_object_prefix[agent_index], aws_region,
                    os.path.join(
                        ITERATION_DATA_LOCAL_FILE_PATH, agent_name,
                        IterationDataLocalFileNames.
                        SIM_TRACE_EVALUATION_LOCAL_FILE.value)))
        if mp4_s3_bucket:
            s3_writer_job_info.extend([
                IterationData(
                    'pip', mp4_s3_bucket[agent_index],
                    mp4_s3_object_prefix[agent_index], aws_region,
                    os.path.join(
                        ITERATION_DATA_LOCAL_FILE_PATH, agent_name,
                        IterationDataLocalFileNames.
                        CAMERA_PIP_MP4_VALIDATION_LOCAL_PATH.value)),
                IterationData(
                    '45degree', mp4_s3_bucket[agent_index],
                    mp4_s3_object_prefix[agent_index], aws_region,
                    os.path.join(
                        ITERATION_DATA_LOCAL_FILE_PATH, agent_name,
                        IterationDataLocalFileNames.
                        CAMERA_45DEGREE_MP4_VALIDATION_LOCAL_PATH.value)),
                IterationData(
                    'topview', mp4_s3_bucket[agent_index],
                    mp4_s3_object_prefix[agent_index], aws_region,
                    os.path.join(
                        ITERATION_DATA_LOCAL_FILE_PATH, agent_name,
                        IterationDataLocalFileNames.
                        CAMERA_TOPVIEW_MP4_VALIDATION_LOCAL_PATH.value))
            ])

        s3_writers.append(S3Writer(job_info=s3_writer_job_info))
        run_phase_subject = RunPhaseSubject()
        agent_list.append(
            create_rollout_agent(agent_config,
                                 EvalMetrics(agent_name, metrics_s3_config),
                                 run_phase_subject))
    agent_list.append(create_obstacles_agent())
    agent_list.append(create_bot_cars_agent())
    # ROS service to indicate all the robomaker markov packages are ready for consumption
    signal_robomaker_markov_package_ready()

    PhaseObserver('/agent/training_phase', run_phase_subject)

    graph_manager, _ = get_graph_manager(hp_dict=sm_hyperparams_dict,
                                         agent_list=agent_list,
                                         run_phase_subject=run_phase_subject)

    ds_params_instance = S3BotoDataStoreParameters(
        aws_region=args.aws_region,
        bucket_names=s3_bucket_dict,
        base_checkpoint_dir=args.local_model_directory,
        s3_folders=s3_prefix_dict)

    graph_manager.data_store = S3BotoDataStore(params=ds_params_instance,
                                               graph_manager=graph_manager,
                                               ignore_lock=True)
    graph_manager.env_params.seed = 0

    task_parameters = TaskParameters()
    task_parameters.checkpoint_restore_path = args.local_model_directory

    tournament_worker(graph_manager=graph_manager,
                      number_of_trials=args.number_of_trials,
                      task_parameters=task_parameters,
                      s3_writers=s3_writers,
                      is_continuous=args.is_continuous)

    # tournament_worker: write race report to local file.
    write_race_report(graph_manager,
                      model_s3_bucket_map=s3_bucket_dict,
                      model_s3_prefix_map=s3_prefix_dict,
                      metrics_s3_bucket_map=metrics_s3_bucket_dict,
                      metrics_s3_key_map=metrics_s3_obect_key_dict,
                      simtrace_s3_bucket_map=simtrace_s3_bucket_dict,
                      simtrace_s3_prefix_map=simtrace_s3_prefix_dict,
                      mp4_s3_bucket_map=mp4_s3_bucket_dict,
                      mp4_s3_prefix_map=mp4_s3_object_prefix_dict,
                      display_names=display_names)

    # tournament_worker: terminate tournament_race_node.
    terminate_tournament_race()
コード例 #6
0
def main():
    screen.set_use_colors(False)
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '-c',
        '--checkpoint_dir',
        help=
        '(string) Path to a folder containing a checkpoint to restore the model from.',
        type=str,
        default='./checkpoint')
    parser.add_argument('--s3_bucket',
                        help='(string) S3 bucket',
                        type=str,
                        default=rospy.get_param("SAGEMAKER_SHARED_S3_BUCKET",
                                                "gsaur-test"))
    parser.add_argument('--s3_prefix',
                        help='(string) S3 prefix',
                        type=str,
                        default=rospy.get_param("SAGEMAKER_SHARED_S3_PREFIX",
                                                "sagemaker"))
    parser.add_argument(
        '--num_workers',
        help="(int) The number of workers started in this pool",
        type=int,
        default=int(rospy.get_param("NUM_WORKERS", 1)))
    parser.add_argument('--rollout_idx',
                        help="(int) The index of current rollout worker",
                        type=int,
                        default=0)
    parser.add_argument('-r',
                        '--redis_ip',
                        help="(string) IP or host for the redis server",
                        default='localhost',
                        type=str)
    parser.add_argument('-rp',
                        '--redis_port',
                        help="(int) Port of the redis server",
                        default=6379,
                        type=int)
    parser.add_argument('--aws_region',
                        help='(string) AWS region',
                        type=str,
                        default=rospy.get_param("AWS_REGION", "us-east-1"))
    parser.add_argument('--reward_file_s3_key',
                        help='(string) Reward File S3 Key',
                        type=str,
                        default=rospy.get_param("REWARD_FILE_S3_KEY", None))
    parser.add_argument('--model_metadata_s3_key',
                        help='(string) Model Metadata File S3 Key',
                        type=str,
                        default=rospy.get_param("MODEL_METADATA_FILE_S3_KEY",
                                                None))
    # For training job, reset is not allowed. penalty_seconds, off_track_penalty, and
    # collision_penalty will all be 0 be default
    parser.add_argument('--number_of_resets',
                        help='(integer) Number of resets',
                        type=int,
                        default=int(rospy.get_param("NUMBER_OF_RESETS", 0)))
    parser.add_argument('--penalty_seconds',
                        help='(float) penalty second',
                        type=float,
                        default=float(rospy.get_param("PENALTY_SECONDS", 0.0)))
    parser.add_argument('--job_type',
                        help='(string) job type',
                        type=str,
                        default=rospy.get_param("JOB_TYPE", "TRAINING"))
    parser.add_argument('--is_continuous',
                        help='(boolean) is continous after lap completion',
                        type=bool,
                        default=utils.str2bool(
                            rospy.get_param("IS_CONTINUOUS", False)))
    parser.add_argument('--race_type',
                        help='(string) Race type',
                        type=str,
                        default=rospy.get_param("RACE_TYPE", "TIME_TRIAL"))
    parser.add_argument('--off_track_penalty',
                        help='(float) off track penalty second',
                        type=float,
                        default=float(rospy.get_param("OFF_TRACK_PENALTY",
                                                      0.0)))
    parser.add_argument('--collision_penalty',
                        help='(float) collision penalty second',
                        type=float,
                        default=float(rospy.get_param("COLLISION_PENALTY",
                                                      0.0)))

    args = parser.parse_args()

    s3_client = SageS3Client(bucket=args.s3_bucket,
                             s3_prefix=args.s3_prefix,
                             aws_region=args.aws_region)
    logger.info("S3 bucket: %s", args.s3_bucket)
    logger.info("S3 prefix: %s", args.s3_prefix)

    # Load the model metadata
    model_metadata_local_path = os.path.join(CUSTOM_FILES_PATH,
                                             'model_metadata.json')
    utils.load_model_metadata(s3_client, args.model_metadata_s3_key,
                              model_metadata_local_path)

    # Download and import reward function
    if not args.reward_file_s3_key:
        log_and_exit(
            "Reward function code S3 key not available for S3 bucket {} and prefix {}"
            .format(args.s3_bucket, args.s3_prefix),
            SIMAPP_SIMULATION_WORKER_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_500)
    download_customer_reward_function(s3_client, args.reward_file_s3_key)

    try:
        from custom_files.customer_reward_function import reward_function
    except Exception as e:
        log_and_exit("Failed to import user's reward_function: {}".format(e),
                     SIMAPP_SIMULATION_WORKER_EXCEPTION,
                     SIMAPP_EVENT_ERROR_CODE_400)

    # Instantiate Cameras
    configure_camera(namespaces=['racecar'])

    preset_file_success, _ = download_custom_files_if_present(
        s3_client, args.s3_prefix)

    #! TODO each agent should have own config
    _, _, version = utils_parse_model_metadata.parse_model_metadata(
        model_metadata_local_path)
    agent_config = {
        'model_metadata': model_metadata_local_path,
        ConfigParams.CAR_CTRL_CONFIG.value: {
            ConfigParams.LINK_NAME_LIST.value:
            LINK_NAMES,
            ConfigParams.VELOCITY_LIST.value:
            VELOCITY_TOPICS,
            ConfigParams.STEERING_LIST.value:
            STEERING_TOPICS,
            ConfigParams.CHANGE_START.value:
            utils.str2bool(rospy.get_param('CHANGE_START_POSITION', True)),
            ConfigParams.ALT_DIR.value:
            utils.str2bool(
                rospy.get_param('ALTERNATE_DRIVING_DIRECTION', False)),
            ConfigParams.ACTION_SPACE_PATH.value:
            'custom_files/model_metadata.json',
            ConfigParams.REWARD.value:
            reward_function,
            ConfigParams.AGENT_NAME.value:
            'racecar',
            ConfigParams.VERSION.value:
            version,
            ConfigParams.NUMBER_OF_RESETS.value:
            args.number_of_resets,
            ConfigParams.PENALTY_SECONDS.value:
            args.penalty_seconds,
            ConfigParams.NUMBER_OF_TRIALS.value:
            None,
            ConfigParams.IS_CONTINUOUS.value:
            args.is_continuous,
            ConfigParams.RACE_TYPE.value:
            args.race_type,
            ConfigParams.COLLISION_PENALTY.value:
            args.collision_penalty,
            ConfigParams.OFF_TRACK_PENALTY.value:
            args.off_track_penalty
        }
    }

    #! TODO each agent should have own s3 bucket
    step_metrics_prefix = rospy.get_param('SAGEMAKER_SHARED_S3_PREFIX')
    if args.num_workers > 1:
        step_metrics_prefix = os.path.join(step_metrics_prefix,
                                           str(args.rollout_idx))
    metrics_s3_config = {
        MetricsS3Keys.METRICS_BUCKET.value:
        rospy.get_param('METRICS_S3_BUCKET'),
        MetricsS3Keys.METRICS_KEY.value:
        rospy.get_param('METRICS_S3_OBJECT_KEY'),
        MetricsS3Keys.REGION.value: rospy.get_param('AWS_REGION')
    }
    metrics_s3_model_cfg = {
        MetricsS3Keys.METRICS_BUCKET.value:
        args.s3_bucket,
        MetricsS3Keys.METRICS_KEY.value:
        os.path.join(args.s3_prefix, DEEPRACER_CHKPNT_KEY_SUFFIX),
        MetricsS3Keys.REGION.value:
        args.aws_region
    }
    run_phase_subject = RunPhaseSubject()

    agent_list = list()
    agent_list.append(
        create_rollout_agent(
            agent_config,
            TrainingMetrics(agent_name='agent',
                            s3_dict_metrics=metrics_s3_config,
                            s3_dict_model=metrics_s3_model_cfg,
                            ckpnt_dir=args.checkpoint_dir,
                            run_phase_sink=run_phase_subject,
                            use_model_picker=(args.rollout_idx == 0)),
            run_phase_subject))
    agent_list.append(create_obstacles_agent())
    agent_list.append(create_bot_cars_agent())
    # ROS service to indicate all the robomaker markov packages are ready for consumption
    signal_robomaker_markov_package_ready()

    PhaseObserver('/agent/training_phase', run_phase_subject)

    aws_region = rospy.get_param('AWS_REGION', args.aws_region)
    simtrace_s3_bucket = rospy.get_param('SIMTRACE_S3_BUCKET', None)
    mp4_s3_bucket = rospy.get_param('MP4_S3_BUCKET',
                                    None) if args.rollout_idx == 0 else None
    if simtrace_s3_bucket:
        simtrace_s3_object_prefix = rospy.get_param('SIMTRACE_S3_PREFIX')
        if args.num_workers > 1:
            simtrace_s3_object_prefix = os.path.join(simtrace_s3_object_prefix,
                                                     str(args.rollout_idx))
    if mp4_s3_bucket:
        mp4_s3_object_prefix = rospy.get_param('MP4_S3_OBJECT_PREFIX')

    s3_writer_job_info = []
    if simtrace_s3_bucket:
        s3_writer_job_info.append(
            IterationData(
                'simtrace', simtrace_s3_bucket, simtrace_s3_object_prefix,
                aws_region,
                os.path.join(
                    ITERATION_DATA_LOCAL_FILE_PATH, 'agent',
                    IterationDataLocalFileNames.SIM_TRACE_TRAINING_LOCAL_FILE.
                    value)))
    if mp4_s3_bucket:
        s3_writer_job_info.extend([
            IterationData(
                'pip', mp4_s3_bucket, mp4_s3_object_prefix, aws_region,
                os.path.join(
                    ITERATION_DATA_LOCAL_FILE_PATH, 'agent',
                    IterationDataLocalFileNames.
                    CAMERA_PIP_MP4_VALIDATION_LOCAL_PATH.value)),
            IterationData(
                '45degree', mp4_s3_bucket, mp4_s3_object_prefix, aws_region,
                os.path.join(
                    ITERATION_DATA_LOCAL_FILE_PATH, 'agent',
                    IterationDataLocalFileNames.
                    CAMERA_45DEGREE_MP4_VALIDATION_LOCAL_PATH.value)),
            IterationData(
                'topview', mp4_s3_bucket, mp4_s3_object_prefix, aws_region,
                os.path.join(
                    ITERATION_DATA_LOCAL_FILE_PATH, 'agent',
                    IterationDataLocalFileNames.
                    CAMERA_TOPVIEW_MP4_VALIDATION_LOCAL_PATH.value))
        ])

    s3_writer = S3Writer(job_info=s3_writer_job_info)

    redis_ip = s3_client.get_ip()
    logger.info("Received IP from SageMaker successfully: %s", redis_ip)

    # Download hyperparameters from SageMaker
    hyperparameters_file_success = False
    hyperparams_s3_key = os.path.normpath(args.s3_prefix +
                                          "/ip/hyperparameters.json")
    hyperparameters_file_success = s3_client.download_file(
        s3_key=hyperparams_s3_key, local_path="hyperparameters.json")
    sm_hyperparams_dict = {}
    if hyperparameters_file_success:
        logger.info("Received Sagemaker hyperparameters successfully!")
        with open("hyperparameters.json") as filepointer:
            sm_hyperparams_dict = json.load(filepointer)
    else:
        logger.info("SageMaker hyperparameters not found.")

    enable_domain_randomization = utils.str2bool(
        rospy.get_param('ENABLE_DOMAIN_RANDOMIZATION', False))
    if preset_file_success:
        preset_location = os.path.join(CUSTOM_FILES_PATH, "preset.py")
        preset_location += ":graph_manager"
        graph_manager = short_dynamic_import(preset_location,
                                             ignore_module_case=True)
        logger.info("Using custom preset file!")
    else:
        graph_manager, _ = get_graph_manager(
            hp_dict=sm_hyperparams_dict,
            agent_list=agent_list,
            run_phase_subject=run_phase_subject,
            enable_domain_randomization=enable_domain_randomization)

    # If num_episodes_between_training is smaller than num_workers then cancel worker early.
    episode_steps_per_rollout = graph_manager.agent_params.algorithm.num_consecutive_playing_steps.num_steps
    # Reduce number of workers if allocated more than num_episodes_between_training
    if args.num_workers > episode_steps_per_rollout:
        logger.info(
            "Excess worker allocated. Reducing from {} to {}...".format(
                args.num_workers, episode_steps_per_rollout))
        args.num_workers = episode_steps_per_rollout
    if args.rollout_idx >= episode_steps_per_rollout or args.rollout_idx >= args.num_workers:
        err_msg_format = "Exiting excess worker..."
        err_msg_format += "(rollout_idx[{}] >= num_workers[{}] or num_episodes_between_training[{}])"
        logger.info(
            err_msg_format.format(args.rollout_idx, args.num_workers,
                                  episode_steps_per_rollout))
        # Close the down the job
        utils.cancel_simulation_job(
            os.environ.get('AWS_ROBOMAKER_SIMULATION_JOB_ARN'),
            rospy.get_param('AWS_REGION'))

    memory_backend_params = DeepRacerRedisPubSubMemoryBackendParameters(
        redis_address=redis_ip,
        redis_port=6379,
        run_type=str(RunType.ROLLOUT_WORKER),
        channel=args.s3_prefix,
        num_workers=args.num_workers,
        rollout_idx=args.rollout_idx)

    graph_manager.memory_backend_params = memory_backend_params

    ds_params_instance = S3BotoDataStoreParameters(
        aws_region=args.aws_region,
        bucket_names={'agent': args.s3_bucket},
        base_checkpoint_dir=args.checkpoint_dir,
        s3_folders={'agent': args.s3_prefix})

    graph_manager.data_store = S3BotoDataStore(ds_params_instance,
                                               graph_manager)

    task_parameters = TaskParameters()
    task_parameters.checkpoint_restore_path = args.checkpoint_dir

    rollout_worker(graph_manager=graph_manager,
                   num_workers=args.num_workers,
                   rollout_idx=args.rollout_idx,
                   task_parameters=task_parameters,
                   s3_writer=s3_writer)
コード例 #7
0
    def __init__(self):
        """Instantiates the class and creates clients for the relevant ROS services"""
        self._park_positions_ = deque()
        self._park_location = ParkLocation(
            rospy.get_param("PARK_LOCATION",
                            ParkLocation.BOTTOM.value).lower())
        self._reverse_dir_ = utils.str2bool(
            rospy.get_param("REVERSE_DIR", False))
        if TrackData._instance_ is not None:
            raise GenericRolloutException(
                "Attempting to construct multiple TrackData objects")
        try:
            rospack = rospkg.RosPack()
            deepracer_path = rospack.get_path(
                "deepracer_simulation_environment")
            waypoints_path = os.path.join(
                deepracer_path, "routes",
                "{}.npy".format(rospy.get_param("WORLD_NAME")))
            self._is_bot_car_ = int(rospy.get_param("NUMBER_OF_BOT_CARS",
                                                    0)) > 0
            self._bot_car_speed_ = float(rospy.get_param("BOT_CAR_SPEED", 0.0))
            waypoints = np.load(waypoints_path)

            self.is_loop = np.all(waypoints[0, :] == waypoints[-1, :])
            poly_func = LinearRing if self.is_loop else LineString
            # forward direction
            self._center_line_forward_ = TrackLine(poly_func(waypoints[:,
                                                                       0:2]))
            self._inner_border_forward_ = TrackLine(
                poly_func(waypoints[:, 2:4]))
            self._outer_border_forward_ = TrackLine(
                poly_func(waypoints[:, 4:6]))
            self._inner_lane_forward_ = TrackLine(
                poly_func((waypoints[:, 2:4] + waypoints[:, 0:2]) / 2))
            self._outer_lane_forward_ = TrackLine(
                poly_func((waypoints[:, 4:6] + waypoints[:, 0:2]) / 2))
            # reversed direction
            self._center_line_reverse_ = TrackLine(
                poly_func(waypoints[:, 0:2][::-1]))
            self._inner_border_reverse_ = TrackLine(
                poly_func(waypoints[:, 2:4][::-1]))
            self._outer_border_reverse_ = TrackLine(
                poly_func(waypoints[:, 4:6][::-1]))
            self._inner_lane_reverse_ = TrackLine(
                poly_func(
                    (waypoints[:, 2:4][::-1] + waypoints[:, 0:2][::-1]) / 2))
            self._outer_lane_reverse_ = TrackLine(
                poly_func(
                    (waypoints[:, 4:6][::-1] + waypoints[:, 0:2][::-1]) / 2))
            if self.is_loop:
                self._inner_poly_ = Polygon(self.center_line,
                                            [self.inner_border])
                self._road_poly_ = Polygon(self.outer_border,
                                           [self.inner_border])
                self._is_ccw_ = self._center_line_forward_.is_ccw
            else:
                self._inner_poly_ = Polygon(
                    np.vstack(
                        (self.center_line.line, np.flipud(self.inner_border))))
                self._road_poly_ = Polygon(
                    np.vstack(
                        (self.outer_border, np.flipud(self.inner_border))))
                self._is_ccw_ = True

            self.object_poses = OrderedDict()
            self.object_dims = OrderedDict()
            self.noncollidable_objects = set()
            self.noncollidable_object_lock = threading.Lock()

            # There should only be one track data object
            TrackData._instance_ = self
            # declare a lock to prevent read and write at the same time
            self._lock_ = threading.Lock()

        except Exception as ex:
            raise GenericRolloutException(
                "Failed to create track data: {}".format(ex))
コード例 #8
0
def get_robomaker_profiler_env():
    """Read robomaker profiler environment"""
    is_profiler_on = str2bool(rospy.get_param(ROBOMAKER_IS_PROFILER_ON, False))
    profiler_s3_bucker = rospy.get_param(ROBOMAKER_PROFILER_S3_BUCKET, None)
    profiler_s3_prefix = rospy.get_param(ROBOMAKER_PROFILER_S3_PREFIX, None)
    return is_profiler_on, profiler_s3_bucker, profiler_s3_prefix
コード例 #9
0
def main():
    screen.set_use_colors(False)
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '-c',
        '--checkpoint_dir',
        help=
        '(string) Path to a folder containing a checkpoint to restore the model from.',
        type=str,
        default='./checkpoint')
    parser.add_argument('--s3_bucket',
                        help='(string) S3 bucket',
                        type=str,
                        default=rospy.get_param("SAGEMAKER_SHARED_S3_BUCKET",
                                                "gsaur-test"))
    parser.add_argument('--s3_prefix',
                        help='(string) S3 prefix',
                        type=str,
                        default=rospy.get_param("SAGEMAKER_SHARED_S3_PREFIX",
                                                "sagemaker"))
    parser.add_argument(
        '--num_workers',
        help="(int) The number of workers started in this pool",
        type=int,
        default=int(rospy.get_param("NUM_WORKERS", 1)))
    parser.add_argument('--rollout_idx',
                        help="(int) The index of current rollout worker",
                        type=int,
                        default=0)
    parser.add_argument('-r',
                        '--redis_ip',
                        help="(string) IP or host for the redis server",
                        default='localhost',
                        type=str)
    parser.add_argument('-rp',
                        '--redis_port',
                        help="(int) Port of the redis server",
                        default=6379,
                        type=int)
    parser.add_argument('--aws_region',
                        help='(string) AWS region',
                        type=str,
                        default=rospy.get_param("AWS_REGION", "us-east-1"))
    parser.add_argument('--reward_file_s3_key',
                        help='(string) Reward File S3 Key',
                        type=str,
                        default=rospy.get_param("REWARD_FILE_S3_KEY", None))
    parser.add_argument('--model_metadata_s3_key',
                        help='(string) Model Metadata File S3 Key',
                        type=str,
                        default=rospy.get_param("MODEL_METADATA_FILE_S3_KEY",
                                                None))
    # For training job, reset is not allowed. penalty_seconds, off_track_penalty, and
    # collision_penalty will all be 0 be default
    parser.add_argument('--number_of_resets',
                        help='(integer) Number of resets',
                        type=int,
                        default=int(rospy.get_param("NUMBER_OF_RESETS", 0)))
    parser.add_argument('--penalty_seconds',
                        help='(float) penalty second',
                        type=float,
                        default=float(rospy.get_param("PENALTY_SECONDS", 0.0)))
    parser.add_argument('--job_type',
                        help='(string) job type',
                        type=str,
                        default=rospy.get_param("JOB_TYPE", "TRAINING"))
    parser.add_argument('--is_continuous',
                        help='(boolean) is continous after lap completion',
                        type=bool,
                        default=utils.str2bool(
                            rospy.get_param("IS_CONTINUOUS", False)))
    parser.add_argument('--race_type',
                        help='(string) Race type',
                        type=str,
                        default=rospy.get_param("RACE_TYPE", "TIME_TRIAL"))
    parser.add_argument('--off_track_penalty',
                        help='(float) off track penalty second',
                        type=float,
                        default=float(rospy.get_param("OFF_TRACK_PENALTY",
                                                      0.0)))
    parser.add_argument('--collision_penalty',
                        help='(float) collision penalty second',
                        type=float,
                        default=float(rospy.get_param("COLLISION_PENALTY",
                                                      0.0)))

    args = parser.parse_args()

    logger.info("S3 bucket: %s", args.s3_bucket)
    logger.info("S3 prefix: %s", args.s3_prefix)

    # Download and import reward function
    # TODO: replace 'agent' with name of each agent for multi-agent training
    reward_function_file = RewardFunction(
        bucket=args.s3_bucket,
        s3_key=args.reward_file_s3_key,
        region_name=args.aws_region,
        local_path=REWARD_FUCTION_LOCAL_PATH_FORMAT.format('agent'))
    reward_function = reward_function_file.get_reward_function()

    # Instantiate Cameras
    configure_camera(namespaces=['racecar'])

    preset_file_success, _ = download_custom_files_if_present(
        s3_bucket=args.s3_bucket,
        s3_prefix=args.s3_prefix,
        aws_region=args.aws_region)

    # download model metadata
    # TODO: replace 'agent' with name of each agent
    model_metadata = ModelMetadata(
        bucket=args.s3_bucket,
        s3_key=args.model_metadata_s3_key,
        region_name=args.aws_region,
        local_path=MODEL_METADATA_LOCAL_PATH_FORMAT.format('agent'))
    model_metadata_info = model_metadata.get_model_metadata_info()
    version = model_metadata_info[ModelMetadataKeys.VERSION.value]

    agent_config = {
        'model_metadata': model_metadata,
        ConfigParams.CAR_CTRL_CONFIG.value: {
            ConfigParams.LINK_NAME_LIST.value:
            LINK_NAMES,
            ConfigParams.VELOCITY_LIST.value:
            VELOCITY_TOPICS,
            ConfigParams.STEERING_LIST.value:
            STEERING_TOPICS,
            ConfigParams.CHANGE_START.value:
            utils.str2bool(rospy.get_param('CHANGE_START_POSITION', True)),
            ConfigParams.ALT_DIR.value:
            utils.str2bool(
                rospy.get_param('ALTERNATE_DRIVING_DIRECTION', False)),
            ConfigParams.MODEL_METADATA.value:
            model_metadata,
            ConfigParams.REWARD.value:
            reward_function,
            ConfigParams.AGENT_NAME.value:
            'racecar',
            ConfigParams.VERSION.value:
            version,
            ConfigParams.NUMBER_OF_RESETS.value:
            args.number_of_resets,
            ConfigParams.PENALTY_SECONDS.value:
            args.penalty_seconds,
            ConfigParams.NUMBER_OF_TRIALS.value:
            None,
            ConfigParams.IS_CONTINUOUS.value:
            args.is_continuous,
            ConfigParams.RACE_TYPE.value:
            args.race_type,
            ConfigParams.COLLISION_PENALTY.value:
            args.collision_penalty,
            ConfigParams.OFF_TRACK_PENALTY.value:
            args.off_track_penalty
        }
    }

    #! TODO each agent should have own s3 bucket
    metrics_key = rospy.get_param('METRICS_S3_OBJECT_KEY')
    if args.num_workers > 1 and args.rollout_idx > 0:
        key_tuple = os.path.splitext(metrics_key)
        metrics_key = "{}_{}{}".format(key_tuple[0], str(args.rollout_idx),
                                       key_tuple[1])
    metrics_s3_config = {
        MetricsS3Keys.METRICS_BUCKET.value:
        rospy.get_param('METRICS_S3_BUCKET'),
        MetricsS3Keys.METRICS_KEY.value: metrics_key,
        MetricsS3Keys.REGION.value: rospy.get_param('AWS_REGION')
    }

    run_phase_subject = RunPhaseSubject()

    agent_list = list()

    #TODO: replace agent for multi agent training
    # checkpoint s3 instance
    # TODO replace agent with agent_0 and so on for multiagent case
    checkpoint = Checkpoint(bucket=args.s3_bucket,
                            s3_prefix=args.s3_prefix,
                            region_name=args.aws_region,
                            agent_name='agent',
                            checkpoint_dir=args.checkpoint_dir)

    agent_list.append(
        create_rollout_agent(
            agent_config,
            TrainingMetrics(
                agent_name='agent',
                s3_dict_metrics=metrics_s3_config,
                deepracer_checkpoint_json=checkpoint.deepracer_checkpoint_json,
                ckpnt_dir=os.path.join(args.checkpoint_dir, 'agent'),
                run_phase_sink=run_phase_subject,
                use_model_picker=(args.rollout_idx == 0)), run_phase_subject))
    agent_list.append(create_obstacles_agent())
    agent_list.append(create_bot_cars_agent())
    # ROS service to indicate all the robomaker markov packages are ready for consumption
    signal_robomaker_markov_package_ready()

    PhaseObserver('/agent/training_phase', run_phase_subject)

    aws_region = rospy.get_param('AWS_REGION', args.aws_region)
    simtrace_s3_bucket = rospy.get_param('SIMTRACE_S3_BUCKET', None)
    mp4_s3_bucket = rospy.get_param('MP4_S3_BUCKET',
                                    None) if args.rollout_idx == 0 else None
    if simtrace_s3_bucket:
        simtrace_s3_object_prefix = rospy.get_param('SIMTRACE_S3_PREFIX')
        if args.num_workers > 1:
            simtrace_s3_object_prefix = os.path.join(simtrace_s3_object_prefix,
                                                     str(args.rollout_idx))
    if mp4_s3_bucket:
        mp4_s3_object_prefix = rospy.get_param('MP4_S3_OBJECT_PREFIX')

    simtrace_video_s3_writers = []
    #TODO: replace 'agent' with 'agent_0' for multi agent training and
    # mp4_s3_object_prefix, mp4_s3_bucket will be a list, so need to access with index
    if simtrace_s3_bucket:
        simtrace_video_s3_writers.append(
            SimtraceVideo(
                upload_type=SimtraceVideoNames.SIMTRACE_TRAINING.value,
                bucket=simtrace_s3_bucket,
                s3_prefix=simtrace_s3_object_prefix,
                region_name=aws_region,
                local_path=SIMTRACE_TRAINING_LOCAL_PATH_FORMAT.format(
                    'agent')))
    if mp4_s3_bucket:
        simtrace_video_s3_writers.extend([
            SimtraceVideo(
                upload_type=SimtraceVideoNames.PIP.value,
                bucket=mp4_s3_bucket,
                s3_prefix=mp4_s3_object_prefix,
                region_name=aws_region,
                local_path=CAMERA_PIP_MP4_LOCAL_PATH_FORMAT.format('agent')),
            SimtraceVideo(
                upload_type=SimtraceVideoNames.DEGREE45.value,
                bucket=mp4_s3_bucket,
                s3_prefix=mp4_s3_object_prefix,
                region_name=aws_region,
                local_path=CAMERA_45DEGREE_LOCAL_PATH_FORMAT.format('agent')),
            SimtraceVideo(
                upload_type=SimtraceVideoNames.TOPVIEW.value,
                bucket=mp4_s3_bucket,
                s3_prefix=mp4_s3_object_prefix,
                region_name=aws_region,
                local_path=CAMERA_TOPVIEW_LOCAL_PATH_FORMAT.format('agent'))
        ])

    # TODO: replace 'agent' with specific agent name for multi agent training
    ip_config = IpConfig(bucket=args.s3_bucket,
                         s3_prefix=args.s3_prefix,
                         region_name=args.aws_region,
                         local_path=IP_ADDRESS_LOCAL_PATH.format('agent'))
    redis_ip = ip_config.get_ip_config()

    # Download hyperparameters from SageMaker shared s3 bucket
    # TODO: replace 'agent' with name of each agent
    hyperparameters = Hyperparameters(
        bucket=args.s3_bucket,
        s3_key=get_s3_key(args.s3_prefix, HYPERPARAMETER_S3_POSTFIX),
        region_name=args.aws_region,
        local_path=HYPERPARAMETER_LOCAL_PATH_FORMAT.format('agent'))
    sm_hyperparams_dict = hyperparameters.get_hyperparameters_dict()

    enable_domain_randomization = utils.str2bool(
        rospy.get_param('ENABLE_DOMAIN_RANDOMIZATION', False))
    # Make the clients that will allow us to pause and unpause the physics
    rospy.wait_for_service('/gazebo/pause_physics_dr')
    rospy.wait_for_service('/gazebo/unpause_physics_dr')
    pause_physics = ServiceProxyWrapper('/gazebo/pause_physics_dr', Empty)
    unpause_physics = ServiceProxyWrapper('/gazebo/unpause_physics_dr', Empty)

    if preset_file_success:
        preset_location = os.path.join(CUSTOM_FILES_PATH, "preset.py")
        preset_location += ":graph_manager"
        graph_manager = short_dynamic_import(preset_location,
                                             ignore_module_case=True)
        logger.info("Using custom preset file!")
    else:
        graph_manager, _ = get_graph_manager(
            hp_dict=sm_hyperparams_dict,
            agent_list=agent_list,
            run_phase_subject=run_phase_subject,
            enable_domain_randomization=enable_domain_randomization,
            pause_physics=pause_physics,
            unpause_physics=unpause_physics)

    # If num_episodes_between_training is smaller than num_workers then cancel worker early.
    episode_steps_per_rollout = graph_manager.agent_params.algorithm.num_consecutive_playing_steps.num_steps
    # Reduce number of workers if allocated more than num_episodes_between_training
    if args.num_workers > episode_steps_per_rollout:
        logger.info(
            "Excess worker allocated. Reducing from {} to {}...".format(
                args.num_workers, episode_steps_per_rollout))
        args.num_workers = episode_steps_per_rollout
    if args.rollout_idx >= episode_steps_per_rollout or args.rollout_idx >= args.num_workers:
        err_msg_format = "Exiting excess worker..."
        err_msg_format += "(rollout_idx[{}] >= num_workers[{}] or num_episodes_between_training[{}])"
        logger.info(
            err_msg_format.format(args.rollout_idx, args.num_workers,
                                  episode_steps_per_rollout))
        # Close the down the job
        utils.cancel_simulation_job()

    memory_backend_params = DeepRacerRedisPubSubMemoryBackendParameters(
        redis_address=redis_ip,
        redis_port=6379,
        run_type=str(RunType.ROLLOUT_WORKER),
        channel=args.s3_prefix,
        num_workers=args.num_workers,
        rollout_idx=args.rollout_idx)

    graph_manager.memory_backend_params = memory_backend_params

    checkpoint_dict = {'agent': checkpoint}
    ds_params_instance = S3BotoDataStoreParameters(
        checkpoint_dict=checkpoint_dict)

    graph_manager.data_store = S3BotoDataStore(ds_params_instance,
                                               graph_manager)

    task_parameters = TaskParameters()
    task_parameters.checkpoint_restore_path = args.checkpoint_dir

    rollout_worker(graph_manager=graph_manager,
                   num_workers=args.num_workers,
                   rollout_idx=args.rollout_idx,
                   task_parameters=task_parameters,
                   simtrace_video_s3_writers=simtrace_video_s3_writers,
                   pause_physics=pause_physics,
                   unpause_physics=unpause_physics)
コード例 #10
0
def main():
    """ Main function for evaluation worker """
    parser = argparse.ArgumentParser()
    parser.add_argument('-p',
                        '--preset',
                        help="(string) Name of a preset to run \
                             (class name from the 'presets' directory.)",
                        type=str,
                        required=False)
    parser.add_argument('--s3_bucket',
                        help='list(string) S3 bucket',
                        type=str,
                        nargs='+',
                        default=rospy.get_param("MODEL_S3_BUCKET",
                                                ["gsaur-test"]))
    parser.add_argument('--s3_prefix',
                        help='list(string) S3 prefix',
                        type=str,
                        nargs='+',
                        default=rospy.get_param("MODEL_S3_PREFIX",
                                                ["sagemaker"]))
    parser.add_argument('--aws_region',
                        help='(string) AWS region',
                        type=str,
                        default=rospy.get_param("AWS_REGION", "us-east-1"))
    parser.add_argument('--number_of_trials',
                        help='(integer) Number of trials',
                        type=int,
                        default=int(rospy.get_param("NUMBER_OF_TRIALS", 10)))
    parser.add_argument(
        '-c',
        '--local_model_directory',
        help='(string) Path to a folder containing a checkpoint \
                             to restore the model from.',
        type=str,
        default='./checkpoint')
    parser.add_argument('--number_of_resets',
                        help='(integer) Number of resets',
                        type=int,
                        default=int(rospy.get_param("NUMBER_OF_RESETS", 0)))
    parser.add_argument('--penalty_seconds',
                        help='(float) penalty second',
                        type=float,
                        default=float(rospy.get_param("PENALTY_SECONDS", 2.0)))
    parser.add_argument('--job_type',
                        help='(string) job type',
                        type=str,
                        default=rospy.get_param("JOB_TYPE", "EVALUATION"))
    parser.add_argument('--is_continuous',
                        help='(boolean) is continous after lap completion',
                        type=bool,
                        default=utils.str2bool(
                            rospy.get_param("IS_CONTINUOUS", False)))
    parser.add_argument('--race_type',
                        help='(string) Race type',
                        type=str,
                        default=rospy.get_param("RACE_TYPE", "TIME_TRIAL"))
    parser.add_argument('--off_track_penalty',
                        help='(float) off track penalty second',
                        type=float,
                        default=float(rospy.get_param("OFF_TRACK_PENALTY",
                                                      2.0)))
    parser.add_argument('--collision_penalty',
                        help='(float) collision penalty second',
                        type=float,
                        default=float(rospy.get_param("COLLISION_PENALTY",
                                                      5.0)))

    args = parser.parse_args()
    arg_s3_bucket = args.s3_bucket
    arg_s3_prefix = args.s3_prefix
    logger.info("S3 bucket: %s \n S3 prefix: %s", arg_s3_bucket, arg_s3_prefix)

    metrics_s3_buckets = rospy.get_param('METRICS_S3_BUCKET')
    metrics_s3_object_keys = rospy.get_param('METRICS_S3_OBJECT_KEY')

    arg_s3_bucket, arg_s3_prefix = utils.force_list(
        arg_s3_bucket), utils.force_list(arg_s3_prefix)
    metrics_s3_buckets = utils.force_list(metrics_s3_buckets)
    metrics_s3_object_keys = utils.force_list(metrics_s3_object_keys)

    validate_list = [
        arg_s3_bucket, arg_s3_prefix, metrics_s3_buckets,
        metrics_s3_object_keys
    ]

    simtrace_s3_bucket = rospy.get_param('SIMTRACE_S3_BUCKET', None)
    mp4_s3_bucket = rospy.get_param('MP4_S3_BUCKET', None)
    if simtrace_s3_bucket:
        simtrace_s3_object_prefix = rospy.get_param('SIMTRACE_S3_PREFIX')
        simtrace_s3_bucket = utils.force_list(simtrace_s3_bucket)
        simtrace_s3_object_prefix = utils.force_list(simtrace_s3_object_prefix)
        validate_list.extend([simtrace_s3_bucket, simtrace_s3_object_prefix])
    if mp4_s3_bucket:
        mp4_s3_object_prefix = rospy.get_param('MP4_S3_OBJECT_PREFIX')
        mp4_s3_bucket = utils.force_list(mp4_s3_bucket)
        mp4_s3_object_prefix = utils.force_list(mp4_s3_object_prefix)
        validate_list.extend([mp4_s3_bucket, mp4_s3_object_prefix])

    if not all([lambda x: len(x) == len(validate_list[0]), validate_list]):
        log_and_exit(
            "Eval worker error: Incorrect arguments passed: {}".format(
                validate_list), SIMAPP_SIMULATION_WORKER_EXCEPTION,
            SIMAPP_EVENT_ERROR_CODE_500)
    if args.number_of_resets != 0 and args.number_of_resets < MIN_RESET_COUNT:
        raise GenericRolloutException(
            "number of resets is less than {}".format(MIN_RESET_COUNT))

    # Instantiate Cameras
    if len(arg_s3_bucket) == 1:
        configure_camera(namespaces=['racecar'])
    else:
        configure_camera(namespaces=[
            'racecar_{}'.format(str(agent_index))
            for agent_index in range(len(arg_s3_bucket))
        ])

    agent_list = list()
    s3_bucket_dict = dict()
    s3_prefix_dict = dict()
    checkpoint_dict = dict()
    simtrace_video_s3_writers = []
    start_positions = get_start_positions(len(arg_s3_bucket))
    done_condition = utils.str_to_done_condition(
        rospy.get_param("DONE_CONDITION", any))
    park_positions = utils.pos_2d_str_to_list(
        rospy.get_param("PARK_POSITIONS", []))
    # if not pass in park positions for all done condition case, use default
    if not park_positions:
        park_positions = [DEFAULT_PARK_POSITION for _ in arg_s3_bucket]
    for agent_index, _ in enumerate(arg_s3_bucket):
        agent_name = 'agent' if len(arg_s3_bucket) == 1 else 'agent_{}'.format(
            str(agent_index))
        racecar_name = 'racecar' if len(
            arg_s3_bucket) == 1 else 'racecar_{}'.format(str(agent_index))
        s3_bucket_dict[agent_name] = arg_s3_bucket[agent_index]
        s3_prefix_dict[agent_name] = arg_s3_prefix[agent_index]

        # download model metadata
        model_metadata = ModelMetadata(
            bucket=arg_s3_bucket[agent_index],
            s3_key=get_s3_key(arg_s3_prefix[agent_index],
                              MODEL_METADATA_S3_POSTFIX),
            region_name=args.aws_region,
            local_path=MODEL_METADATA_LOCAL_PATH_FORMAT.format(agent_name))
        model_metadata_info = model_metadata.get_model_metadata_info()
        version = model_metadata_info[ModelMetadataKeys.VERSION.value]

        # checkpoint s3 instance
        checkpoint = Checkpoint(bucket=arg_s3_bucket[agent_index],
                                s3_prefix=arg_s3_prefix[agent_index],
                                region_name=args.aws_region,
                                agent_name=agent_name,
                                checkpoint_dir=args.local_model_directory)
        # make coach checkpoint compatible
        if version < SIMAPP_VERSION_2 and not checkpoint.rl_coach_checkpoint.is_compatible(
        ):
            checkpoint.rl_coach_checkpoint.make_compatible(
                checkpoint.syncfile_ready)
        # get best model checkpoint string
        model_checkpoint_name = checkpoint.deepracer_checkpoint_json.get_deepracer_best_checkpoint(
        )
        # Select the best checkpoint model by uploading rl coach .coach_checkpoint file
        checkpoint.rl_coach_checkpoint.update(
            model_checkpoint_name=model_checkpoint_name,
            s3_kms_extra_args=utils.get_s3_kms_extra_args())

        checkpoint_dict[agent_name] = checkpoint

        agent_config = {
            'model_metadata': model_metadata,
            ConfigParams.CAR_CTRL_CONFIG.value: {
                ConfigParams.LINK_NAME_LIST.value: [
                    link_name.replace('racecar', racecar_name)
                    for link_name in LINK_NAMES
                ],
                ConfigParams.VELOCITY_LIST.value: [
                    velocity_topic.replace('racecar', racecar_name)
                    for velocity_topic in VELOCITY_TOPICS
                ],
                ConfigParams.STEERING_LIST.value: [
                    steering_topic.replace('racecar', racecar_name)
                    for steering_topic in STEERING_TOPICS
                ],
                ConfigParams.CHANGE_START.value:
                utils.str2bool(rospy.get_param('CHANGE_START_POSITION',
                                               False)),
                ConfigParams.ALT_DIR.value:
                utils.str2bool(
                    rospy.get_param('ALTERNATE_DRIVING_DIRECTION', False)),
                ConfigParams.MODEL_METADATA.value:
                model_metadata,
                ConfigParams.REWARD.value:
                reward_function,
                ConfigParams.AGENT_NAME.value:
                racecar_name,
                ConfigParams.VERSION.value:
                version,
                ConfigParams.NUMBER_OF_RESETS.value:
                args.number_of_resets,
                ConfigParams.PENALTY_SECONDS.value:
                args.penalty_seconds,
                ConfigParams.NUMBER_OF_TRIALS.value:
                args.number_of_trials,
                ConfigParams.IS_CONTINUOUS.value:
                args.is_continuous,
                ConfigParams.RACE_TYPE.value:
                args.race_type,
                ConfigParams.COLLISION_PENALTY.value:
                args.collision_penalty,
                ConfigParams.OFF_TRACK_PENALTY.value:
                args.off_track_penalty,
                ConfigParams.START_POSITION.value:
                start_positions[agent_index],
                ConfigParams.DONE_CONDITION.value:
                done_condition
            }
        }

        metrics_s3_config = {
            MetricsS3Keys.METRICS_BUCKET.value:
            metrics_s3_buckets[agent_index],
            MetricsS3Keys.METRICS_KEY.value:
            metrics_s3_object_keys[agent_index],
            # Replaced rospy.get_param('AWS_REGION') to be equal to the argument being passed
            # or default argument set
            MetricsS3Keys.REGION.value:
            args.aws_region
        }
        aws_region = rospy.get_param('AWS_REGION', args.aws_region)

        if simtrace_s3_bucket:
            simtrace_video_s3_writers.append(
                SimtraceVideo(
                    upload_type=SimtraceVideoNames.SIMTRACE_EVAL.value,
                    bucket=simtrace_s3_bucket[agent_index],
                    s3_prefix=simtrace_s3_object_prefix[agent_index],
                    region_name=aws_region,
                    local_path=SIMTRACE_EVAL_LOCAL_PATH_FORMAT.format(
                        agent_name)))
        if mp4_s3_bucket:
            simtrace_video_s3_writers.extend([
                SimtraceVideo(
                    upload_type=SimtraceVideoNames.PIP.value,
                    bucket=mp4_s3_bucket[agent_index],
                    s3_prefix=mp4_s3_object_prefix[agent_index],
                    region_name=aws_region,
                    local_path=CAMERA_PIP_MP4_LOCAL_PATH_FORMAT.format(
                        agent_name)),
                SimtraceVideo(
                    upload_type=SimtraceVideoNames.DEGREE45.value,
                    bucket=mp4_s3_bucket[agent_index],
                    s3_prefix=mp4_s3_object_prefix[agent_index],
                    region_name=aws_region,
                    local_path=CAMERA_45DEGREE_LOCAL_PATH_FORMAT.format(
                        agent_name)),
                SimtraceVideo(
                    upload_type=SimtraceVideoNames.TOPVIEW.value,
                    bucket=mp4_s3_bucket[agent_index],
                    s3_prefix=mp4_s3_object_prefix[agent_index],
                    region_name=aws_region,
                    local_path=CAMERA_TOPVIEW_LOCAL_PATH_FORMAT.format(
                        agent_name))
            ])

        run_phase_subject = RunPhaseSubject()
        agent_list.append(
            create_rollout_agent(
                agent_config,
                EvalMetrics(agent_name, metrics_s3_config, args.is_continuous),
                run_phase_subject))
    agent_list.append(create_obstacles_agent())
    agent_list.append(create_bot_cars_agent())

    # ROS service to indicate all the robomaker markov packages are ready for consumption
    signal_robomaker_markov_package_ready()

    PhaseObserver('/agent/training_phase', run_phase_subject)
    enable_domain_randomization = utils.str2bool(
        rospy.get_param('ENABLE_DOMAIN_RANDOMIZATION', False))

    sm_hyperparams_dict = {}

    # Make the clients that will allow us to pause and unpause the physics
    rospy.wait_for_service('/gazebo/pause_physics_dr')
    rospy.wait_for_service('/gazebo/unpause_physics_dr')
    pause_physics = ServiceProxyWrapper('/gazebo/pause_physics_dr', Empty)
    unpause_physics = ServiceProxyWrapper('/gazebo/unpause_physics_dr', Empty)

    graph_manager, _ = get_graph_manager(
        hp_dict=sm_hyperparams_dict,
        agent_list=agent_list,
        run_phase_subject=run_phase_subject,
        enable_domain_randomization=enable_domain_randomization,
        done_condition=done_condition,
        pause_physics=pause_physics,
        unpause_physics=unpause_physics)

    ds_params_instance = S3BotoDataStoreParameters(
        checkpoint_dict=checkpoint_dict)

    graph_manager.data_store = S3BotoDataStore(params=ds_params_instance,
                                               graph_manager=graph_manager,
                                               ignore_lock=True)
    graph_manager.env_params.seed = 0

    task_parameters = TaskParameters()
    task_parameters.checkpoint_restore_path = args.local_model_directory

    evaluation_worker(graph_manager=graph_manager,
                      number_of_trials=args.number_of_trials,
                      task_parameters=task_parameters,
                      simtrace_video_s3_writers=simtrace_video_s3_writers,
                      is_continuous=args.is_continuous,
                      park_positions=park_positions,
                      race_type=args.race_type,
                      pause_physics=pause_physics,
                      unpause_physics=unpause_physics)
コード例 #11
0
def main():
    """ Main function for virutal event manager """
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--queue_url',
        help='the sqs queue url to receive next racer information',
        type=str,
        default=str(rospy.get_param("SQS_QUEUE_URL", "sqs_queue_url")))
    parser.add_argument('--race_duration',
                        help='the length of the race in seconds.',
                        type=int,
                        default=int(
                            rospy.get_param("RACE_DURATION",
                                            DEFAULT_RACE_DURATION)))
    parser.add_argument('--aws_region',
                        help='(string) AWS region',
                        type=str,
                        default=rospy.get_param("AWS_REGION", "us-east-1"))
    parser.add_argument('--number_of_trials',
                        help='(integer) Number of trials',
                        type=int,
                        default=int(rospy.get_param("NUMBER_OF_TRIALS", 3)))
    parser.add_argument('--number_of_resets',
                        help='(integer) Number of resets',
                        type=int,
                        default=int(rospy.get_param("NUMBER_OF_RESETS", 0)))
    parser.add_argument('--penalty_seconds',
                        help='(float) penalty second',
                        type=float,
                        default=float(rospy.get_param("PENALTY_SECONDS", 2.0)))
    parser.add_argument('--off_track_penalty',
                        help='(float) off track penalty second',
                        type=float,
                        default=float(rospy.get_param("OFF_TRACK_PENALTY",
                                                      2.0)))
    parser.add_argument('--collision_penalty',
                        help='(float) collision penalty second',
                        type=float,
                        default=float(rospy.get_param("COLLISION_PENALTY",
                                                      5.0)))
    parser.add_argument('--is_continuous',
                        help='(boolean) is continous after lap completion',
                        type=bool,
                        default=utils.str2bool(
                            rospy.get_param("IS_CONTINUOUS", False)))
    parser.add_argument('--race_type',
                        help='(string) Race type',
                        type=str,
                        default=rospy.get_param("RACE_TYPE", "TIME_TRIAL"))
    parser.add_argument('--body_shell_type',
                        help='(string) body shell type',
                        type=str,
                        default=rospy.get_param("BODY_SHELL_TYPE",
                                                "deepracer"))

    args = parser.parse_args()
    manager = VirtualEventManager(queue_url=args.queue_url,
                                  aws_region=args.aws_region,
                                  race_duration=args.race_duration,
                                  number_of_trials=args.number_of_trials,
                                  number_of_resets=args.number_of_resets,
                                  penalty_seconds=args.penalty_seconds,
                                  off_track_penalty=args.off_track_penalty,
                                  collision_penalty=args.collision_penalty,
                                  is_continuous=args.is_continuous,
                                  race_type=args.race_type,
                                  body_shell_type=args.body_shell_type)
    while True:
        # poll for next racer
        if not manager.is_event_end and manager.current_racer is None:
            LOG.info("[virtual event worker] polling for next racer.")
            manager.poll_next_racer()

        # if event end signal received, break out loop and finish the job
        if manager.is_event_end:
            LOG.info("[virtual event worker] received event end.")
            break
        # Setting up the race environment
        if manager.setup_race():
            # proceed with start and finish race only if setup is successful.
            # Start race
            manager.start_race()
            # Finish race
            manager.finish_race()

    utils.cancel_simulation_job(
        os.environ.get('AWS_ROBOMAKER_SIMULATION_JOB_ARN'),
        rospy.get_param('AWS_REGION'))
コード例 #12
0
    def __init__(self):
        '''Instantiates the class and creates clients for the relevant ROS services'''
        self._reverse_dir_ = utils.str2bool(
            rospy.get_param("REVERSE_DIR", False))
        if TrackData._instance_ is not None:
            raise GenericRolloutException(
                "Attempting to construct multiple TrackData objects")
        rospy.wait_for_service(GET_LINK_STATE)
        rospy.wait_for_service(GET_MODEL_STATE)

        self._get_link_state_ = ServiceProxyWrapper(GET_LINK_STATE,
                                                    GetLinkState)
        self._get_model_state_ = ServiceProxyWrapper(GET_MODEL_STATE,
                                                     GetModelState)
        try:
            rospack = rospkg.RosPack()
            deepracer_path = rospack.get_path(
                "deepracer_simulation_environment")
            waypoints_path = os.path.join(
                deepracer_path, "routes",
                "{}.npy".format(rospy.get_param("WORLD_NAME")))
            self._is_bot_car_ = int(rospy.get_param("NUMBER_OF_BOT_CARS",
                                                    0)) > 0
            self._bot_car_speed_ = float(rospy.get_param("BOT_CAR_SPEED", 0.0))
            waypoints = np.load(waypoints_path)

            self.is_loop = np.all(waypoints[0, :] == waypoints[-1, :])
            poly_func = LinearRing if self.is_loop else LineString
            # forward direction
            self._center_line_forward_ = TrackLine(poly_func(waypoints[:,
                                                                       0:2]))
            self._inner_border_forward_ = TrackLine(
                poly_func(waypoints[:, 2:4]))
            self._outer_border_forward_ = TrackLine(
                poly_func(waypoints[:, 4:6]))
            self._inner_lane_forward_ = TrackLine(poly_func((waypoints[:, 2:4] + \
                                                             waypoints[:, 0:2])/2))
            self._outer_lane_forward_ = TrackLine(poly_func((waypoints[:, 4:6] + \
                                                             waypoints[:, 0:2])/2))
            # reversed direction
            self._center_line_reverse_ = TrackLine(
                poly_func(waypoints[:, 0:2][::-1]))
            self._inner_border_reverse_ = TrackLine(
                poly_func(waypoints[:, 2:4][::-1]))
            self._outer_border_reverse_ = TrackLine(
                poly_func(waypoints[:, 4:6][::-1]))
            self._inner_lane_reverse_ = TrackLine(poly_func((waypoints[:, 2:4][::-1] + \
                                                             waypoints[:, 0:2][::-1]) / 2))
            self._outer_lane_reverse_ = TrackLine(poly_func((waypoints[:, 4:6][::-1] + \
                                                             waypoints[:, 0:2][::-1]) / 2))
            if self.is_loop:
                self._left_poly_ = Polygon(self.center_line,
                                           [self.inner_border])
                self._road_poly_ = Polygon(self.outer_border,
                                           [self.inner_border])
            else:
                self._left_poly_ = Polygon(
                    np.vstack(
                        (self.center_line.line, np.flipud(self.inner_border))))
                self._road_poly_ = Polygon(
                    np.vstack(
                        (self.outer_border, np.flipud(self.inner_border))))

            self.car_ndist = 0.0  # TEMPORARY -- REMOVE THIS
            self.object_poses = OrderedDict()
            self.object_dims = OrderedDict()
            rospy.Subscriber('/gazebo/model_states', ModelStates,
                             self._update_objects)

            # There should only be one track data object
            TrackData._instance_ = self
            # declare a lock to prevent read and write at the same time
            self._lock_ = threading.Lock()

        except Exception as ex:
            raise GenericRolloutException(
                'Failed to create track data: {}'.format(ex))
コード例 #13
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('-p',
                        '--preset',
                        help="(string) Name of a preset to run \
                             (class name from the 'presets' directory.)",
                        type=str,
                        required=False)
    parser.add_argument('--s3_bucket',
                        help='(string) S3 bucket',
                        type=str,
                        default=rospy.get_param("MODEL_S3_BUCKET",
                                                "gsaur-test"))
    parser.add_argument('--s3_prefix',
                        help='(string) S3 prefix',
                        type=str,
                        default=rospy.get_param("MODEL_S3_PREFIX",
                                                "sagemaker"))
    parser.add_argument('--aws_region',
                        help='(string) AWS region',
                        type=str,
                        default=rospy.get_param("AWS_REGION", "us-east-1"))
    parser.add_argument('--number_of_trials',
                        help='(integer) Number of trials',
                        type=int,
                        default=int(rospy.get_param("NUMBER_OF_TRIALS", 10)))
    parser.add_argument(
        '-c',
        '--local_model_directory',
        help='(string) Path to a folder containing a checkpoint \
                             to restore the model from.',
        type=str,
        default='./checkpoint')

    args = parser.parse_args()
    logger.info("S3 bucket: %s \n S3 prefix: %s", args.s3_bucket,
                args.s3_prefix)

    s3_client = SageS3Client(bucket=args.s3_bucket,
                             s3_prefix=args.s3_prefix,
                             aws_region=args.aws_region)

    # Load the model metadata
    model_metadata_local_path = os.path.join(CUSTOM_FILES_PATH,
                                             'model_metadata.json')
    utils.load_model_metadata(
        s3_client,
        os.path.normpath("%s/model/model_metadata.json" % args.s3_prefix),
        model_metadata_local_path)
    # Handle backward compatibility
    _, _, version = parse_model_metadata(model_metadata_local_path)
    if float(version) < float(utils.SIMAPP_VERSION) and \
    not utils.has_current_ckpnt_name(args.s3_bucket, args.s3_prefix, args.aws_region):
        utils.make_compatible(args.s3_bucket, args.s3_prefix, args.aws_region,
                              SyncFiles.TRAINER_READY.value)
    # Download hyperparameters from SageMaker
    hyperparameters_file_success = False
    hyperparams_s3_key = os.path.normpath(args.s3_prefix +
                                          "/ip/hyperparameters.json")
    hyperparameters_file_success = s3_client.download_file(
        s3_key=hyperparams_s3_key, local_path="hyperparameters.json")
    sm_hyperparams_dict = {}
    if hyperparameters_file_success:
        logger.info("Received Sagemaker hyperparameters successfully!")
        with open("hyperparameters.json") as file:
            sm_hyperparams_dict = json.load(file)
    else:
        logger.info("SageMaker hyperparameters not found.")

    #! TODO each agent should have own config
    _, _, version = utils_parse_model_metadata.parse_model_metadata(
        model_metadata_local_path)
    agent_config = {
        'model_metadata': model_metadata_local_path,
        'car_ctrl_cnfig': {
            ConfigParams.LINK_NAME_LIST.value:
            LINK_NAMES,
            ConfigParams.VELOCITY_LIST.value:
            VELOCITY_TOPICS,
            ConfigParams.STEERING_LIST.value:
            STEERING_TOPICS,
            ConfigParams.CHANGE_START.value:
            utils.str2bool(rospy.get_param('CHANGE_START_POSITION', False)),
            ConfigParams.ALT_DIR.value:
            utils.str2bool(
                rospy.get_param('ALTERNATE_DRIVING_DIRECTION', False)),
            ConfigParams.ACTION_SPACE_PATH.value:
            'custom_files/model_metadata.json',
            ConfigParams.REWARD.value:
            reward_function,
            ConfigParams.AGENT_NAME.value:
            'racecar',
            ConfigParams.VERSION.value:
            version
        }
    }

    #! TODO each agent should have own s3 bucket
    metrics_s3_config = {
        MetricsS3Keys.METRICS_BUCKET.value:
        rospy.get_param('METRICS_S3_BUCKET'),
        MetricsS3Keys.METRICS_KEY.value:
        rospy.get_param('METRICS_S3_OBJECT_KEY'),
        MetricsS3Keys.REGION.value:
        rospy.get_param('AWS_REGION'),
        MetricsS3Keys.STEP_BUCKET.value:
        rospy.get_param('MODEL_S3_BUCKET'),
        MetricsS3Keys.STEP_KEY.value:
        os.path.join(rospy.get_param('MODEL_S3_PREFIX'),
                     EVALUATION_SIMTRACE_DATA_S3_OBJECT_KEY)
    }

    agent_list = list()
    agent_list.append(
        create_rollout_agent(agent_config, EvalMetrics(metrics_s3_config)))
    agent_list.append(create_obstacles_agent())
    agent_list.append(create_bot_cars_agent())

    graph_manager, _ = get_graph_manager(sm_hyperparams_dict, agent_list)

    ds_params_instance = S3BotoDataStoreParameters(
        aws_region=args.aws_region,
        bucket_name=args.s3_bucket,
        checkpoint_dir=args.local_model_directory,
        s3_folder=args.s3_prefix)

    data_store = S3BotoDataStore(ds_params_instance)
    data_store.graph_manager = graph_manager
    graph_manager.data_store = data_store
    graph_manager.env_params.seed = 0

    task_parameters = TaskParameters()
    task_parameters.checkpoint_restore_path = args.local_model_directory

    evaluation_worker(
        graph_manager=graph_manager,
        data_store=data_store,
        number_of_trials=args.number_of_trials,
        task_parameters=task_parameters,
    )
コード例 #14
0
def main():
    """ Main function for evaluation worker """
    parser = argparse.ArgumentParser()
    parser.add_argument('-p',
                        '--preset',
                        help="(string) Name of a preset to run \
                             (class name from the 'presets' directory.)",
                        type=str,
                        required=False)
    parser.add_argument('--s3_bucket',
                        help='list(string) S3 bucket',
                        type=str,
                        nargs='+',
                        default=rospy.get_param("MODEL_S3_BUCKET",
                                                ["gsaur-test"]))
    parser.add_argument('--s3_prefix',
                        help='list(string) S3 prefix',
                        type=str,
                        nargs='+',
                        default=rospy.get_param("MODEL_S3_PREFIX",
                                                ["sagemaker"]))
    parser.add_argument('--s3_endpoint_url',
                        help='(string) S3 endpoint URL',
                        type=str,
                        default=rospy.get_param("S3_ENDPOINT_URL", None))
    parser.add_argument('--aws_region',
                        help='(string) AWS region',
                        type=str,
                        default=rospy.get_param("AWS_REGION", "us-east-1"))
    parser.add_argument('--number_of_trials',
                        help='(integer) Number of trials',
                        type=int,
                        default=int(rospy.get_param("NUMBER_OF_TRIALS", 10)))
    parser.add_argument(
        '-c',
        '--local_model_directory',
        help='(string) Path to a folder containing a checkpoint \
                             to restore the model from.',
        type=str,
        default='./checkpoint')
    parser.add_argument('--number_of_resets',
                        help='(integer) Number of resets',
                        type=int,
                        default=int(rospy.get_param("NUMBER_OF_RESETS", 0)))
    parser.add_argument('--penalty_seconds',
                        help='(float) penalty second',
                        type=float,
                        default=float(rospy.get_param("PENALTY_SECONDS", 2.0)))
    parser.add_argument('--job_type',
                        help='(string) job type',
                        type=str,
                        default=rospy.get_param("JOB_TYPE", "EVALUATION"))
    parser.add_argument('--is_continuous',
                        help='(boolean) is continous after lap completion',
                        type=bool,
                        default=utils.str2bool(
                            rospy.get_param("IS_CONTINUOUS", False)))
    parser.add_argument('--race_type',
                        help='(string) Race type',
                        type=str,
                        default=rospy.get_param("RACE_TYPE", "TIME_TRIAL"))
    parser.add_argument('--off_track_penalty',
                        help='(float) off track penalty second',
                        type=float,
                        default=float(rospy.get_param("OFF_TRACK_PENALTY",
                                                      2.0)))
    parser.add_argument('--collision_penalty',
                        help='(float) collision penalty second',
                        type=float,
                        default=float(rospy.get_param("COLLISION_PENALTY",
                                                      5.0)))
    parser.add_argument('--round_robin_advance_dist',
                        help='(float) round robin distance 0-1',
                        type=float,
                        default=float(
                            rospy.get_param("ROUND_ROBIN_ADVANCE_DIST", 0.05)))
    parser.add_argument('--start_position_offset',
                        help='(float) offset start 0-1',
                        type=float,
                        default=float(
                            rospy.get_param("START_POSITION_OFFSET", 0.0)))

    args = parser.parse_args()
    arg_s3_bucket = args.s3_bucket
    arg_s3_prefix = args.s3_prefix
    logger.info("S3 bucket: %s \n S3 prefix: %s \n S3 endpoint URL: %s",
                args.s3_bucket, args.s3_prefix, args.s3_endpoint_url)

    metrics_s3_buckets = rospy.get_param('METRICS_S3_BUCKET')
    metrics_s3_object_keys = rospy.get_param('METRICS_S3_OBJECT_KEY')

    arg_s3_bucket, arg_s3_prefix = utils.force_list(
        arg_s3_bucket), utils.force_list(arg_s3_prefix)
    metrics_s3_buckets = utils.force_list(metrics_s3_buckets)
    metrics_s3_object_keys = utils.force_list(metrics_s3_object_keys)

    validate_list = [
        arg_s3_bucket, arg_s3_prefix, metrics_s3_buckets,
        metrics_s3_object_keys
    ]

    simtrace_s3_bucket = rospy.get_param('SIMTRACE_S3_BUCKET', None)
    mp4_s3_bucket = rospy.get_param('MP4_S3_BUCKET', None)
    if simtrace_s3_bucket:
        simtrace_s3_object_prefix = rospy.get_param('SIMTRACE_S3_PREFIX')
        simtrace_s3_bucket = utils.force_list(simtrace_s3_bucket)
        simtrace_s3_object_prefix = utils.force_list(simtrace_s3_object_prefix)
        validate_list.extend([simtrace_s3_bucket, simtrace_s3_object_prefix])
    if mp4_s3_bucket:
        mp4_s3_object_prefix = rospy.get_param('MP4_S3_OBJECT_PREFIX')
        mp4_s3_bucket = utils.force_list(mp4_s3_bucket)
        mp4_s3_object_prefix = utils.force_list(mp4_s3_object_prefix)
        validate_list.extend([mp4_s3_bucket, mp4_s3_object_prefix])

    if not all([lambda x: len(x) == len(validate_list[0]), validate_list]):
        log_and_exit(
            "Eval worker error: Incorrect arguments passed: {}".format(
                validate_list), SIMAPP_SIMULATION_WORKER_EXCEPTION,
            SIMAPP_EVENT_ERROR_CODE_500)
    if args.number_of_resets != 0 and args.number_of_resets < MIN_RESET_COUNT:
        raise GenericRolloutException(
            "number of resets is less than {}".format(MIN_RESET_COUNT))

    # Instantiate Cameras
    if len(arg_s3_bucket) == 1:
        configure_camera(namespaces=['racecar'])
    else:
        configure_camera(namespaces=[
            'racecar_{}'.format(str(agent_index))
            for agent_index in range(len(arg_s3_bucket))
        ])

    agent_list = list()
    s3_bucket_dict = dict()
    s3_prefix_dict = dict()
    s3_writers = list()
    start_positions = get_start_positions(len(arg_s3_bucket))
    done_condition = utils.str_to_done_condition(
        rospy.get_param("DONE_CONDITION", any))
    park_positions = utils.pos_2d_str_to_list(
        rospy.get_param("PARK_POSITIONS", []))
    # if not pass in park positions for all done condition case, use default
    if not park_positions:
        park_positions = [DEFAULT_PARK_POSITION for _ in arg_s3_bucket]
    for agent_index, _ in enumerate(arg_s3_bucket):
        agent_name = 'agent' if len(arg_s3_bucket) == 1 else 'agent_{}'.format(
            str(agent_index))
        racecar_name = 'racecar' if len(
            arg_s3_bucket) == 1 else 'racecar_{}'.format(str(agent_index))
        s3_bucket_dict[agent_name] = arg_s3_bucket[agent_index]
        s3_prefix_dict[agent_name] = arg_s3_prefix[agent_index]

        # download model metadata
        model_metadata = ModelMetadata(
            bucket=arg_s3_bucket[agent_index],
            s3_key=get_s3_key(arg_s3_prefix[agent_index],
                              MODEL_METADATA_S3_POSTFIX),
            region_name=args.aws_region,
            s3_endpoint_url=args.s3_endpoint_url,
            local_path=MODEL_METADATA_LOCAL_PATH_FORMAT.format(agent_name))
        _, _, version = model_metadata.get_model_metadata_info()

        # Select the optimal model
        utils.do_model_selection(s3_bucket=arg_s3_bucket[agent_index],
                                 s3_prefix=arg_s3_prefix[agent_index],
                                 region=args.aws_region,
                                 s3_endpoint_url=args.s3_endpoint_url)

        agent_config = {
            'model_metadata': model_metadata,
            ConfigParams.CAR_CTRL_CONFIG.value: {
                ConfigParams.LINK_NAME_LIST.value: [
                    link_name.replace('racecar', racecar_name)
                    for link_name in LINK_NAMES
                ],
                ConfigParams.VELOCITY_LIST.value: [
                    velocity_topic.replace('racecar', racecar_name)
                    for velocity_topic in VELOCITY_TOPICS
                ],
                ConfigParams.STEERING_LIST.value: [
                    steering_topic.replace('racecar', racecar_name)
                    for steering_topic in STEERING_TOPICS
                ],
                ConfigParams.CHANGE_START.value:
                utils.str2bool(rospy.get_param('CHANGE_START_POSITION',
                                               False)),
                ConfigParams.ALT_DIR.value:
                utils.str2bool(
                    rospy.get_param('ALTERNATE_DRIVING_DIRECTION', False)),
                ConfigParams.ACTION_SPACE_PATH.value:
                model_metadata.local_path,
                ConfigParams.REWARD.value:
                reward_function,
                ConfigParams.AGENT_NAME.value:
                racecar_name,
                ConfigParams.VERSION.value:
                version,
                ConfigParams.NUMBER_OF_RESETS.value:
                args.number_of_resets,
                ConfigParams.PENALTY_SECONDS.value:
                args.penalty_seconds,
                ConfigParams.NUMBER_OF_TRIALS.value:
                args.number_of_trials,
                ConfigParams.IS_CONTINUOUS.value:
                args.is_continuous,
                ConfigParams.RACE_TYPE.value:
                args.race_type,
                ConfigParams.COLLISION_PENALTY.value:
                args.collision_penalty,
                ConfigParams.OFF_TRACK_PENALTY.value:
                args.off_track_penalty,
                ConfigParams.START_POSITION.value:
                start_positions[agent_index],
                ConfigParams.DONE_CONDITION.value:
                done_condition,
                ConfigParams.ROUND_ROBIN_ADVANCE_DIST.value:
                args.round_robin_advance_dist,
                ConfigParams.START_POSITION_OFFSET.value:
                args.start_position_offset
            }
        }

        metrics_s3_config = {
            MetricsS3Keys.METRICS_BUCKET.value:
            metrics_s3_buckets[agent_index],
            MetricsS3Keys.METRICS_KEY.value:
            metrics_s3_object_keys[agent_index],
            MetricsS3Keys.ENDPOINT_URL.value:
            rospy.get_param('S3_ENDPOINT_URL', None),
            # Replaced rospy.get_param('AWS_REGION') to be equal to the argument being passed
            # or default argument set
            MetricsS3Keys.REGION.value:
            args.aws_region
        }
        aws_region = rospy.get_param('AWS_REGION', args.aws_region)
        s3_writer_job_info = []
        if simtrace_s3_bucket:
            s3_writer_job_info.append(
                IterationData(
                    'simtrace', simtrace_s3_bucket[agent_index],
                    simtrace_s3_object_prefix[agent_index], aws_region,
                    os.path.join(
                        ITERATION_DATA_LOCAL_FILE_PATH, agent_name,
                        IterationDataLocalFileNames.
                        SIM_TRACE_EVALUATION_LOCAL_FILE.value)))
        if mp4_s3_bucket:
            s3_writer_job_info.extend([
                IterationData(
                    'pip', mp4_s3_bucket[agent_index],
                    mp4_s3_object_prefix[agent_index], aws_region,
                    os.path.join(
                        ITERATION_DATA_LOCAL_FILE_PATH, agent_name,
                        IterationDataLocalFileNames.
                        CAMERA_PIP_MP4_VALIDATION_LOCAL_PATH.value)),
                IterationData(
                    '45degree', mp4_s3_bucket[agent_index],
                    mp4_s3_object_prefix[agent_index], aws_region,
                    os.path.join(
                        ITERATION_DATA_LOCAL_FILE_PATH, agent_name,
                        IterationDataLocalFileNames.
                        CAMERA_45DEGREE_MP4_VALIDATION_LOCAL_PATH.value)),
                IterationData(
                    'topview', mp4_s3_bucket[agent_index],
                    mp4_s3_object_prefix[agent_index], aws_region,
                    os.path.join(
                        ITERATION_DATA_LOCAL_FILE_PATH, agent_name,
                        IterationDataLocalFileNames.
                        CAMERA_TOPVIEW_MP4_VALIDATION_LOCAL_PATH.value))
            ])

        s3_writers.append(
            S3Writer(job_info=s3_writer_job_info,
                     s3_endpoint_url=args.s3_endpoint_url))
        run_phase_subject = RunPhaseSubject()
        agent_list.append(
            create_rollout_agent(
                agent_config,
                EvalMetrics(agent_name, metrics_s3_config, args.is_continuous),
                run_phase_subject))
    agent_list.append(create_obstacles_agent())
    agent_list.append(create_bot_cars_agent())

    # ROS service to indicate all the robomaker markov packages are ready for consumption
    signal_robomaker_markov_package_ready()

    PhaseObserver('/agent/training_phase', run_phase_subject)
    enable_domain_randomization = utils.str2bool(
        rospy.get_param('ENABLE_DOMAIN_RANDOMIZATION', False))

    sm_hyperparams_dict = {}
    graph_manager, _ = get_graph_manager(
        hp_dict=sm_hyperparams_dict,
        agent_list=agent_list,
        run_phase_subject=run_phase_subject,
        enable_domain_randomization=enable_domain_randomization,
        done_condition=done_condition)

    ds_params_instance = S3BotoDataStoreParameters(
        aws_region=args.aws_region,
        bucket_names=s3_bucket_dict,
        base_checkpoint_dir=args.local_model_directory,
        s3_folders=s3_prefix_dict,
        s3_endpoint_url=args.s3_endpoint_url)

    graph_manager.data_store = S3BotoDataStore(params=ds_params_instance,
                                               graph_manager=graph_manager,
                                               ignore_lock=True)
    graph_manager.env_params.seed = 0

    task_parameters = TaskParameters()
    task_parameters.checkpoint_restore_path = args.local_model_directory

    evaluation_worker(graph_manager=graph_manager,
                      number_of_trials=args.number_of_trials,
                      task_parameters=task_parameters,
                      s3_writers=s3_writers,
                      is_continuous=args.is_continuous,
                      park_positions=park_positions)
コード例 #15
0
def main():
    screen.set_use_colors(False)
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '-c',
        '--checkpoint_dir',
        help=
        '(string) Path to a folder containing a checkpoint to restore the model from.',
        type=str,
        default='./checkpoint')
    parser.add_argument('--s3_bucket',
                        help='(string) S3 bucket',
                        type=str,
                        default=rospy.get_param("SAGEMAKER_SHARED_S3_BUCKET",
                                                "gsaur-test"))
    parser.add_argument('--s3_prefix',
                        help='(string) S3 prefix',
                        type=str,
                        default=rospy.get_param("SAGEMAKER_SHARED_S3_PREFIX",
                                                "sagemaker"))
    parser.add_argument(
        '--num-workers',
        help="(int) The number of workers started in this pool",
        type=int,
        default=1)
    parser.add_argument('-r',
                        '--redis_ip',
                        help="(string) IP or host for the redis server",
                        default='localhost',
                        type=str)
    parser.add_argument('-rp',
                        '--redis_port',
                        help="(int) Port of the redis server",
                        default=6379,
                        type=int)
    parser.add_argument('--aws_region',
                        help='(string) AWS region',
                        type=str,
                        default=rospy.get_param("AWS_REGION", "us-east-1"))
    parser.add_argument('--reward_file_s3_key',
                        help='(string) Reward File S3 Key',
                        type=str,
                        default=rospy.get_param("REWARD_FILE_S3_KEY", None))
    parser.add_argument('--model_metadata_s3_key',
                        help='(string) Model Metadata File S3 Key',
                        type=str,
                        default=rospy.get_param("MODEL_METADATA_FILE_S3_KEY",
                                                None))

    args = parser.parse_args()

    s3_client = SageS3Client(bucket=args.s3_bucket,
                             s3_prefix=args.s3_prefix,
                             aws_region=args.aws_region)
    logger.info("S3 bucket: %s" % args.s3_bucket)
    logger.info("S3 prefix: %s" % args.s3_prefix)

    # Load the model metadata
    model_metadata_local_path = os.path.join(CUSTOM_FILES_PATH,
                                             'model_metadata.json')
    utils.load_model_metadata(s3_client, args.model_metadata_s3_key,
                              model_metadata_local_path)

    # Download and import reward function
    if not args.reward_file_s3_key:
        utils.log_and_exit(
            "Reward function code S3 key not available for S3 bucket {} and prefix {}"
            .format(args.s3_bucket,
                    args.s3_prefix), utils.SIMAPP_SIMULATION_WORKER_EXCEPTION,
            utils.SIMAPP_EVENT_ERROR_CODE_500)
    download_customer_reward_function(s3_client, args.reward_file_s3_key)

    try:
        from custom_files.customer_reward_function import reward_function
    except Exception as e:
        utils.log_and_exit(
            "Failed to import user's reward_function: {}".format(e),
            utils.SIMAPP_SIMULATION_WORKER_EXCEPTION,
            utils.SIMAPP_EVENT_ERROR_CODE_400)

    # Instantiate Cameras
    configure_camera()

    redis_ip = s3_client.get_ip()
    logger.info("Received IP from SageMaker successfully: %s" % redis_ip)

    # Download hyperparameters from SageMaker
    hyperparameters_file_success = False
    hyperparams_s3_key = os.path.normpath(args.s3_prefix +
                                          "/ip/hyperparameters.json")
    hyperparameters_file_success = s3_client.download_file(
        s3_key=hyperparams_s3_key, local_path="hyperparameters.json")
    sm_hyperparams_dict = {}
    if hyperparameters_file_success:
        logger.info("Received Sagemaker hyperparameters successfully!")
        with open("hyperparameters.json") as fp:
            sm_hyperparams_dict = json.load(fp)
    else:
        logger.info("SageMaker hyperparameters not found.")

    preset_file_success, _ = download_custom_files_if_present(
        s3_client, args.s3_prefix)

    #! TODO each agent should have own config
    _, _, version = utils_parse_model_metadata.parse_model_metadata(
        model_metadata_local_path)
    agent_config = {
        'model_metadata': model_metadata_local_path,
        'car_ctrl_cnfig': {
            ConfigParams.LINK_NAME_LIST.value:
            LINK_NAMES,
            ConfigParams.VELOCITY_LIST.value:
            VELOCITY_TOPICS,
            ConfigParams.STEERING_LIST.value:
            STEERING_TOPICS,
            ConfigParams.CHANGE_START.value:
            utils.str2bool(rospy.get_param('CHANGE_START_POSITION', True)),
            ConfigParams.ALT_DIR.value:
            utils.str2bool(
                rospy.get_param('ALTERNATE_DRIVING_DIRECTION', False)),
            ConfigParams.ACTION_SPACE_PATH.value:
            'custom_files/model_metadata.json',
            ConfigParams.REWARD.value:
            reward_function,
            ConfigParams.AGENT_NAME.value:
            'racecar',
            ConfigParams.VERSION.value:
            version
        }
    }

    #! TODO each agent should have own s3 bucket
    metrics_s3_config = {
        MetricsS3Keys.METRICS_BUCKET.value:
        rospy.get_param('METRICS_S3_BUCKET'),
        MetricsS3Keys.METRICS_KEY.value:
        rospy.get_param('METRICS_S3_OBJECT_KEY'),
        MetricsS3Keys.REGION.value:
        rospy.get_param('AWS_REGION'),
        MetricsS3Keys.STEP_BUCKET.value:
        rospy.get_param('SAGEMAKER_SHARED_S3_BUCKET'),
        MetricsS3Keys.STEP_KEY.value:
        os.path.join(rospy.get_param('SAGEMAKER_SHARED_S3_PREFIX'),
                     TRAINING_SIMTRACE_DATA_S3_OBJECT_KEY)
    }

    agent_list = list()
    agent_list.append(
        create_rollout_agent(agent_config, TrainingMetrics(metrics_s3_config)))
    agent_list.append(create_obstacles_agent())
    agent_list.append(create_bot_cars_agent())

    if preset_file_success:
        preset_location = os.path.join(CUSTOM_FILES_PATH, "preset.py")
        preset_location += ":graph_manager"
        graph_manager = short_dynamic_import(preset_location,
                                             ignore_module_case=True)
        logger.info("Using custom preset file!")
    else:
        graph_manager, _ = get_graph_manager(sm_hyperparams_dict, agent_list)

    memory_backend_params = RedisPubSubMemoryBackendParameters(
        redis_address=redis_ip,
        redis_port=6379,
        run_type=str(RunType.ROLLOUT_WORKER),
        channel=args.s3_prefix)

    graph_manager.memory_backend_params = memory_backend_params

    ds_params_instance = S3BotoDataStoreParameters(
        aws_region=args.aws_region,
        bucket_name=args.s3_bucket,
        checkpoint_dir=args.checkpoint_dir,
        s3_folder=args.s3_prefix)

    data_store = S3BotoDataStore(ds_params_instance)
    data_store.graph_manager = graph_manager
    graph_manager.data_store = data_store

    task_parameters = TaskParameters()
    task_parameters.checkpoint_restore_path = args.checkpoint_dir

    rollout_worker(graph_manager=graph_manager,
                   data_store=data_store,
                   num_workers=args.num_workers,
                   task_parameters=task_parameters)