コード例 #1
0
def analyze_image():
    # Get image data from body
    file = request.files['file']

    # Post header
    headers = {
        'Content-Type': 'application/octet-stream',
        'Ocp-Apim-Subscription-Key': subscription_key
    }

    # Post params
    params = {'visualFeatures': 'Description', 'language': 'ja'}

    # Call API and get tags
    try:
        res = req.post(endpoint, headers=headers, params=params, data=file)
    except Exception(e):
        print(e)
    print(res.json())
    tags = res.json()['description']['tags']

    splited_text = open('./resources/splited.txt').read()
    text_model = NewlineText(splited_text)

    for tag in tags:
        try:
            sentence = text_model.make_sentence_with_start(
                tag, tries=300, max_overlap_ratio=0.7).replace(' ', '')
            return sentence
        except:
            pass
    return 'Could not create sentence'
コード例 #2
0
def train_models(users):
    users = dict(filter(lambda u: u[1][MESSAGES], users.items()))
    for user_id, user in users.items():
        model = NewlineText('\n'.join(user[MESSAGES]),
                            retain_original=False)
        users[user_id][MODEL] = model
    return users
コード例 #3
0
def get_model(bucket, team_id, user_id):
    key = f"models/{team_id}/{user_id}.json"
    print(f'downloading model {key}')

    model_json = BytesIO()
    bucket.download_fileobj(key, model_json)
    model = str(model_json.getbuffer(), 'utf-8')
    return NewlineText.from_chain(model)
コード例 #4
0
def get_compressed_model(bucket, team_id, user_id):
    key = f"models/{team_id}/{user_id}.gz"
    print(f'downloading model {key}')

    model_gz = BytesIO()
    bucket.download_fileobj(key, model_gz)
    model = str(zlib.decompress(model_gz.getbuffer()), 'utf-8')
    return NewlineText.from_chain(model)
コード例 #5
0
    async def create_model_for_user(self, user_id: int):
        results = self.history.find({'author': user_id}, {'msg': 1})

        f = StringIO()
        async for doc in results:
            f.write(doc['msg'])
            f.write('\n')

        model = NewlineText(f.getvalue(), well_formed=False)
        if model:
            await self.save_user_model(user_id, model)
            return model
コード例 #6
0
    def handle_one(body):
        if 'subtype' in body['event']:
            subtype = body['event']['subtype']
            print(f"ignoring event with subtype {subtype}")
            return

        print(body)

        team_id = body['team_id']
        user_id = body['event']['user']
        channel_id = body['event']['channel']
        text = body['event']['text']

        print(f'message from {user_id} in {channel_id}: {text}')

        old_model = get_model(bucket, team_id, user_id)
        new_model = NewlineText(text, retain_original=False)
        combined = markovify.combine([old_model, new_model])
        put_model(bucket, team_id, user_id, combined)
コード例 #7
0
 async def fetch_user_model(self, user_id: int):
     result = await self.models.find_one({'_id': user_id}, {'msg': 1})
     if result:
         return NewlineText.from_json(zlib.decompress(result['msg']))
コード例 #8
0
ファイル: lyric_cog.py プロジェクト: micaiahparker/bfbot
from discord.ext.commands import command
from .cog import Cog
from tswift import Song
from markovify import NewlineText

try:
    with open('all.txt', 'rt') as tmg:
        text = NewlineText(tmg.read(), state_size=2)
except FileNotFoundError:
    text = None


class Lyrics(Cog):
    @command(aliases=['lyrics', 'lyric'])
    async def get_lyrics(self, song_name):
        """only mountain goats songs, duh"""
        song = Song.find_song(song_name + " The mountain goats")
        if song:
            lyrics = f'```\n{song.title} - {song.artist}\n{song.lyrics}\n```'
            await self.bot.say(lyrics)
        else:
            await self.bot.reply("Sorry, couldn't find that song")

    @command(aliases=['sing'])
    async def make_lyric(self):
        """Generates Mountain Goats lyrics."""
        if text:
            await self.bot.say(text.make_sentence())
        else:
            await self.bot.say("No text file found for generation.")