コード例 #1
0
    def test_pca_score2(self):
        # Test that probabilistic PCA correctly separated different datasets
        n, p = 100, 3
        rng = np.random.RandomState(0)
        X = mt.tensor(rng.randn(n, p) * .1) + mt.array([3, 4, 5])
        for solver in self.solver_list:
            pca = PCA(n_components=2, svd_solver=solver)
            pca.fit(X)
            ll1 = pca.score(X)
            ll2 = pca.score(mt.tensor(rng.randn(n, p) * .2) + mt.array([3, 4, 5]))
            self.assertGreater(ll1.fetch(), ll2.fetch())

            # Test that it gives different scores if whiten=True
            pca = PCA(n_components=2, whiten=True, svd_solver=solver)
            pca.fit(X)
            ll2 = pca.score(X)
            assert ll1.fetch() > ll2.fetch()
コード例 #2
0
ファイル: test_pca.py プロジェクト: Haxine/mars-1
 def test_pca_score(self):
     # Test that probabilistic PCA scoring yields a reasonable score
     n, p = 1000, 3
     rng = np.random.RandomState(0)
     X = mt.tensor(rng.randn(n, p) * .1) + mt.array([3, 4, 5])
     for solver in self.solver_list:
         pca = PCA(n_components=2, svd_solver=solver)
         pca.fit(X)
         ll1 = pca.score(X)
         h = -0.5 * mt.log(2 * mt.pi * mt.exp(1) * 0.1**2) * p
         np.testing.assert_almost_equal((ll1 / h).execute(), 1, 0)
コード例 #3
0
    def test_pca_score3(self):
        # Check that probabilistic PCA selects the right model
        n, p = 200, 3
        rng = np.random.RandomState(0)
        Xl = mt.tensor(rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) +
                       np.array([1, 0, 7]))
        Xt = mt.tensor(rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) +
                       np.array([1, 0, 7]))
        ll = mt.zeros(p)
        for k in range(p):
            pca = PCA(n_components=k, svd_solver='full')
            pca.fit(Xl)
            ll[k] = pca.score(Xt)

        assert ll.argmax().execute() == 1