def test_update_P_A_indP_indA(self): import mat_emosqp # Update matrices P and A Pnew_triu = sparse.triu(self.P_new).tocsc() Px = Pnew_triu.data Px_idx = np.arange(Pnew_triu.nnz) Ax = self.A_new.data Ax_idx = np.arange(self.A_new.nnz) mat_emosqp.update_P_A(Px, Px_idx, len(Px), Ax, Ax_idx, len(Ax)) # Solve problem x, y, _, _, _ = mat_emosqp.solve() # Assert close nptest.assert_array_almost_equal(x, np.array([4.25, 3.25]), decimal=5) nptest.assert_array_almost_equal(y, np.array([0., 0., 3.625, 0., 0.]), decimal=5) # Update matrices P and A to the original values P_triu = sparse.triu(self.P).tocsc() Px = P_triu.data Ax = self.A.data mat_emosqp.update_P_A(Px, None, 0, Ax, None, 0)
def test_update_P_A_allind(self): import mat_emosqp # Update matrices P and A Px = self.P_new.data Ax = self.A_new.data mat_emosqp.update_P_A(Px, None, 0, Ax, None, 0) x, y, _, _, _ = mat_emosqp.solve() # Assert close nptest.assert_array_almost_equal(x, np.array([4.25, 3.25]), decimal=5) nptest.assert_array_almost_equal( y, np.array([0., 0., 3.625, 0., 0.]), decimal=5) # Update matrices P and A to the original values Px = self.P.data Ax = self.A.data mat_emosqp.update_P_A(Px, None, 0, Ax, None, 0)
def test_update_P_A_indA(self): import mat_emosqp # Update matrices P and A Px = self.P_new.data Ax = self.A_new.data Ax_idx = np.arange(self.A_new.nnz) mat_emosqp.update_P_A(Px, None, 0, Ax, Ax_idx, len(Ax)) x, y, _, _, _ = mat_emosqp.solve() # Assert close nptest.assert_array_almost_equal(x, np.array([4.25, 3.25]), decimal=5) nptest.assert_array_almost_equal( y, np.array([0., 0., 3.625, 0., 0.]), decimal=5) # Update matrix P to the original value Px = self.P.data Px_idx = np.arange(self.P.nnz) Ax = self.A.data Ax_idx = np.arange(self.A.nnz) mat_emosqp.update_P_A(Px, Px_idx, len(Px), Ax, Ax_idx, len(Ax))