コード例 #1
0
ファイル: marriage.py プロジェクト: ymroueh/deep-align
def ontology_alignment(model, ontoTerms_a, ontoTerms_b, words, ceil = 0.5):

    with open(ontoTerms_a) as f:
        ontoText_a = f.readlines()
    with open(ontoTerms_b) as f:
        ontoText_b = f.readlines()
    # Remove whitespace characters like `\n` at the end of each line.
    ontoText_a = [x.strip() for x in ontoText_a] 
    ontoText_b = [x.strip() for x in ontoText_b]

    whole = []
    for text_a in ontoText_a:
        for text_b in ontoText_b:
            txt_a = re.sub(' +',' ',text_a)
            txt_b = re.sub(' +',' ',text_b)
            if txt_a == txt_b:
                whole.append([text_a, text_b, 0.0])
                try:
                    ontoText_a.remove(text_a)
                except ValueError:
                    pass
                    #print(text_a)
                try:
                    ontoText_b.remove(text_b)
                except ValueError:
                    pass
                    #print(text_b)
    # Transform to Word & Mask vectors to apply "feedforward_function"
    ontoData_a, ontoData_b = [], []
    for sentence in ontoText_a:
        ontoData_a.append(getSeq(sentence, words))
    for sentence in ontoText_b:
        ontoData_b.append(getSeq(sentence, words))
    x1,m1 = utils.prepare_data(ontoData_a)
    x2,m2 = utils.prepare_data(ontoData_b)
    OntoEmbg_a = model.feedforward_function(x1,m1)
    OntoEmbg_b = model.feedforward_function(x2,m2)
    # Compute the Cosine Distances:
    dist = cosine_distances(OntoEmbg_a,OntoEmbg_b)
    disT = np.transpose(dist)

    
    males    = preferances(dist)
    females  = preferances(disT)
    del(disT)
    match = Matcher(males, females)
    marriage = match()
    del(males); del(females)

    for key, value in marriage.items():
        man         = ontoText_a[value]
        woman       = ontoText_b[key]
        value       = dist[value][key]
        if value < ceil:
            whole.append([man, woman, value])
    return whole
コード例 #2
0
ファイル: two-sided.py プロジェクト: oytuntez/mimmentor
def do_match():
    print("Mentors:")
    print(MR)
    print("Mentee:")
    print(ME)

    # initialize Matcher with preference lists for both men and women
    match = Matcher(MR, ME)

    return match()
コード例 #3
0
 def get(self, user_id, max_return):
     try:
         oe = os.environ
         conn = psycopg2.connect(database=oe['DB_NAME'],
                                 user=oe['DB_USER'],
                                 password=oe['DB_PASSWORD'],
                                 host=oe['DB_HOST'])
     except Exception as e:
         return str(e)
     mc = Matcher(conn)
     return json.dumps(mc.query(user_id, max_return))
コード例 #4
0
    def __init__(self, cfg):
        self.cfg_ = self.build_cfg(cfg)
        self.detector_ = cv2.FastFeatureDetector_create(threshold=19,
                                                        nonmaxSuppression=True)
        self.extractor_ = cv2.ORB_create(2048, edgeThreshold=19)
        #self.extractor_ = cv2.xfeatures2d.SURF_create()
        self.matcher_ = Matcher(ex=self.extractor_)
        self.tracker_ = Tracker(pLK=cfg['pLK'])
        self.kf_ = build_ekf()
        self.db_ = self.build_db()
        self.state_ = PipelineState.INIT

        # higher-level handles?
        self.initializer_ = MapInitializer(db=self.build_db(),
                                           matcher=self.matcher_,
                                           tracker=self.tracker_,
                                           cfg=self.cfg_)
コード例 #5
0
    def __init__(self,
                 gpu_id=0,
                 track_model=None,
                 pose_model=None,
                 embedding_model=None):
        if self.tracker_flag:
            self.tracker = SiamFCTracker(gpu_id, track_model)
        self.posenet = PoseNet(gpu_id, pose_model)

        self.matcher = Matcher()
        print('----------------------------------------')
        print('Flag parameters are set as follow:')
        print('Tracker flag: {}'.format(self.tracker_flag))
        print('Tracker update flag: {}'.format(self.tracker_update_flag))
        print('Decrease tracker flag: {}'.format(self.descrease_tracker_flag))
        print('New embedding(with pose) flag: {}'.format(
            self.new_embedding_flag))
        print('----------------------------------------')
コード例 #6
0
 def __init__(
         self,
         gpu_id=[0, 0, 0, 0],
         flag=[True, False, True, False],
         #track_model='/export/home/zby/SiamFC/models/output/siamfc_35.pth',
         track_model='/export/home/zby/SiamFC/models/output/siamfc_20.pth',
         detection_model='/export/home/zby/SiamFC/models/res101_old/pascal_voc/faster_rcnn_1_25_4379.pth',
         pose_model='/export/home/zby/SiamFC/data/models/final_new.pth.tar',
         embedding_model='/export/home/zby/SiamFC/models/embedding_model.pth'
 ):
     if flag[0]:
         self.tracker = SiamFCTracker(gpu_id[0], track_model)  #input RGB
     if flag[1]:
         self.detector = Detector(gpu_id[1], detection_model)  #input BGR
     if flag[2]:
         self.posenet = PoseNet(gpu_id[2], pose_model)  #input BGR
     if flag[3]:
         self.embedder = EmbeddingNet(gpu_id[3], embedding_model)
     #self.tracker = SiamFCTracker(gpu_id[0], track_model)
     self.matcher = Matcher()
     print('----------------------------------------')
コード例 #7
0
 def __init__(
         self,
         gpu_id=0,
         track_model='/export/home/zby/SiamFC/models/output/siamfc_35_old.pth',
         #track_model = '/export/home/zby/SiamFC/data/models/siamfc_cpm_368_5.pth',
         pose_model='/export/home/zby/SiamFC/data/models/final_new.pth.tar',
         embedding_model='/export/home/zby/SiamFC/models/embedding_model.pth'
 ):
     if self.tracker_flag:
         self.tracker = SiamFCTracker(gpu_id, track_model)
     self.posenet = PoseNet(gpu_id, pose_model)
     if not self.new_embedding_flag:
         self.embedder = EmbeddingNet(gpu_id, embedding_model)
     self.matcher = Matcher()
     print('----------------------------------------')
     print('Flag parameters are set as follow:')
     print('Tracker flag: {}'.format(self.tracker_flag))
     print('Tracker update flag: {}'.format(self.tracker_update_flag))
     print('Decrease tracker flag: {}'.format(self.descrease_tracker_flag))
     print('New embedding(with pose) flag: {}'.format(
         self.new_embedding_flag))
     print('----------------------------------------')
コード例 #8
0
from match import Matcher

# the men and their list of ordered spousal preferences
M = dict(
    (m, prefs.split(', '))
    for [m, prefs] in (line.rstrip().split(': ') for line in open('men.txt')))

# the women and their list of ordered spousal preferences
W = dict(
    (m, prefs.split(', ')) for [m, prefs] in (line.rstrip().split(': ')
                                              for line in open('women.txt')))

# initialize Matcher with preference lists for both men and women
match = Matcher(M, W)


# check if the mapping of wives to husbands is stable
def is_stable(wives, verbose=False):
    for w, m in wives.items():
        i = M[m].index(w)
        preferred = M[m][:i]
        for p in preferred:
            h = wives[p]
            if W[p].index(m) < W[p].index(h):
                msg = "{}'s marriage to {} is unstable: " + \
                      "{} prefers {} over {} and {} prefers " + \
                      "{} over her current husband {}"
                if verbose:
                    print msg.format(m, w, m, p, w, p, m, h)
                return False
    return True
コード例 #9
0
import cv2
import imutils
import numpy as np
import rospy
from geometry_msgs.msg import Point
from std_msgs.msg import String
from background_subtraction import BackgroundSubtractor

from match import Matcher

MIN_AREA = 10000
MAX_DIST = 10
k_dilate = cv2.getStructuringElement(cv2.MORPH_DILATE, (5, 5), (2, 2))

matcher = Matcher()


def within(low, x, high):
    return low < x and x < high


def x2t(x, dim, fov):
    theta = fov / 2
    # angle difference
    a = float(x) / dim  # assuming 640 is frame width
    return np.arctan2(2 * a * np.sin(theta) - np.sin(theta), np.cos(theta))


def cnt_avg_col(cnt, img):
    mask = np.zeros(img.shape[:-1], np.uint8)
コード例 #10
0
def main():
    m = Matcher()
    m.fit(TRAIN_FILE0, TRAIN_FILE1, TRAIN_MATCH_FILE)
    m.transform(TEST_FILE0, TEST_FILE1)
    m.write(OUTPUT_FILE)
コード例 #11
0
ファイル: two-sided.py プロジェクト: oytuntez/mimmentor
MR = dict(
    (m, prefs.split(', ')) for [m, prefs] in (line.rstrip().split(': ')
                                              for line in open('mentors.txt')))

# the women and their list of ordered spousal preferences
ME = dict(
    (m, prefs.split(', ')) for [m, prefs] in (line.rstrip().split(': ')
                                              for line in open('mentees.txt')))

previous_mentee_size = None
final_mentee_mentors = dict()
i = 0
while len(ME) > 0:
    i += 1
    previous_mentee_size = len(ME)
    match = Matcher(MR, ME)
    matches = match()

    final_mentee_mentors.update(matches)

    for mentee, mentor in matches.items():
        # This mentee already found a mentor for themselves. Delete from matching.
        ME.pop(mentee, True)

        # Delete this mentee from all mentor selections, so that mentors can fall back to their other
        # selections.
        # todo what to do with mentees that were not selected by any mentor?
        new_MR = MR.copy()
        for mrk, mrv in MR.items():
            if mentee in mrv:
                new_MR.get(mrk).remove(mentee)
def setup(v_, j_, flipped):
    # the volunteers and their list of ordered job preferences
    # v_ = dict((m, prefs.split(', ')) for [m, prefs] in (
    #     line.rstrip().split(': ') for line in open('volunteers.short.txt')))
    # j_ = dict((m, prefs.split(', ')) for [m, prefs] in (
    #     line.rstrip().split(': ') for line in open('jobs.txt')))
    volunteers = list(v_.keys())
    jobs = list(j_.keys())

    # print('type v_["abe"]', type(v_['abe']), volunteers)
    # remove any missing job names from volunteers

    for v in volunteers:
        NA = v_[v][-1]
        v_[v] = list(filter(lambda j: j in jobs, v_[v][:-1]))
        v_[v].append(NA)

    # remove any missing volunteer names from jobs

    for j in jobs:
        NA = j_[j][-1]
        j_[j] = list(filter(lambda v: v in volunteers, j_[j][:-1]))
        j_[j].append(NA)

    J = {}
    prefs = v_[list(v_.keys())[0]]
    print('type(prefs)', type(prefs))

    # prefs = prefs_.split(', ')
    # NA = prefs[-1]
    for p in jobs:
        w__ = j_[p]
        J[Person(p, int(w__[-1]))] = w__[:-1]
    print(f'initial J keys {J.keys()}')

    V = {}
    prefs = j_[list(j_.keys())[0]]
    # prefs = prefs_.split(', ')
    for p in volunteers:
        m__ = v_.get(p, ['0'])
        person = Person(p, int(m__[-1]))
        V[person] = []
        for n in m__[:-1]:
            #            print('n', n)
            job = list(filter(lambda j: j.n == n, J.keys()))[0]
            V[person].append(job)

    for j, prefs in J.items():
        J[j] = []
        for n in prefs:
            volunteer = list(filter(lambda m: m.n == n, V.keys()))[0]
            J[j].append(volunteer)

    # for each volunteer construct a list of forbidden jobs
    forbidden = {}  # { 'dan': ['gay', 'eve', 'abi'], 'hal': ['eve'] }
    for v, prefs in V.items():
        NA = v.NA
        # all jobs at or over the NA index are forbidden
        forbidden[v] = prefs[NA:]
        # n = random.randint(0, len(prefs) - 1)
        # forbidden[m] = random.sample(prefs, n)  # random sample of n wives

    forbidden_v = {}  # { 'dan': ['gay', 'eve', 'abi'], 'hal': ['eve'] }
    for j, prefs in J.items():
        NA = j.NA
        # all volunteers at or over the NA index are forbidden
        forbidden_v[j] = prefs[NA:]

    C = defaultdict(list)
    jKeys = set()
    loop = 0
    while len(J) > 0:
        print("V & J")
        print(V)
        print(J)
        match = Matcher(V, J, forbidden)  # , forbidden_v)

        # match volunteers and jobs; returns a mapping of jobs to volunteers
        matches = match()
        assert match.is_stable(matches)  # should be a stable matching
        print('stable match')

        print(f'loop {loop} list(matches keys) {list(matches.keys())}')
        loop += 1
        # if loop > 2:
        #     break
        # if len(C) == 0:
        #     C = dict((value, [key]) for key, value in enumerate(matches))
        #     print('Initial C.keys()', C.keys())
        # else:
        for _, key in enumerate(matches.items()):
            C[key[1]].append(key[0])
        print('Initial C.keys()', C.keys())
        print('Initial C.values()', C.values())
        jKeys |= set(matches.keys())

        print(f"len jKeys {len(jKeys)}  len(J) {len(J)} jKeys {jKeys}  ")
        J_ = copy.copy(J)
        J = {}
        for key, value in enumerate(J_.items()):
            print(
                f'J.items() key {key}  value[0] {value[0]}  type(value[0])  {type(value[0])} value[1] {value[1]}'
            )
            if value[0] in jKeys:
                print(f'value {value[0]} in jKeys)')
            else:
                print(f'value {value[0]} NOT in jKeys)')
                J[value[0]] = value[1]
        print(f'len filtered J {len(J)}  J {J}')
        if len(J) == 0:
            break
        V_ = copy.copy(V)
        for v, prefs in V_.items():
            # print(f'k,v in V k {k}  v {v}')
            prefs = [p for p in prefs if p in list(J.keys())]
            print(f'new prefs {prefs}')
            V[v] = prefs
        # V = {k: v for k, v in mydict.items() if k.startswith('foo')}

        # J = dict((key, value) in enumerate(J.items()))

        # J = dict((key, value) in enumerate(J.items()) if key not in jKeys)
        # J = dict(filter(lamba j, v: j not in jKeys, enumerate(J))
    # if len(J) > 0:
    #     print("len(J) > 0")
    #     V_ = sorted(C.items(), key=lambda kv: len(kv[1]))[:len(J)]
    #     match = Matcher(V_, J, forbidden, forbidden_v)

    #     # match volunteers and jobs; returns a mapping of jobs to volunteers
    #     matches = match()
    #     for key, value in enumerate(matches):
    #         C[value].append(key)

    # print('jobs', jobs)
    print('C.keys()', C.keys())
    print([(key, value) for key, value in enumerate(C)])
    if flipped:
        a = [([j.n for j in value[1]], value[0].n)
             for key, value in enumerate(C.items())]
    else:
        a = [(value[0].n, [j.n for j in value[1]])
             for key, value in enumerate(C.items())]
    # a = [(key.n, [j.n for j in C[key]]) for key in list(C.keys())]

    # a=[(matches[key].n, key.n) for key in list(matches.keys())]
    return jsonify(a)
コード例 #13
0
ファイル: api.py プロジェクト: jingcwang/peoplehunt
 def get(self, user_id, max_return, needs):
     mc = Matcher()
     # return json.dumps(mc.query(user_id, max_return, needs))
     return json.dumps(mc.query(user_id, max_return, 'all'))
コード例 #14
0
from match import Matcher


# the men and their list of ordered spousal preferences
M = dict((m, prefs.split(', ')) for [m, prefs] in (line.rstrip().split(': ')
                                for line in open('men.txt')))

# the women and their list of ordered spousal preferences
W = dict((m, prefs.split(', ')) for [m, prefs] in (line.rstrip().split(': ')
                                for line in open('women.txt')))

# for each man construct a random list of forbidden wives
forbidden = {}      # { 'dan': ['gay', 'eve', 'abi'], 'hal': ['eve'] }
for m, prefs in M.items():
    n = random.randint(0, len(prefs) - 1)
    forbidden[m] = random.sample(prefs, n)  # random sample of n wives

match = Matcher(M, W, forbidden)

# match men and women; returns a mapping of wives to husbands
wives = match()

assert match.is_stable(wives)           # should be a stable matching

# swap the husbands of two wives, which should make the matching unstable
a, b = random.sample(wives.keys(), 2)
wives[b], wives[a] = wives[a], wives[b]

match.is_stable(wives, verbose=True)