コード例 #1
0
ファイル: caesar.py プロジェクト: jrbp/caesar_py
    def from_files(cls, disp_dir):
        """
        Args:
            disp_dir:
                directory corresponding to this displacement (usually written by caesar as atomn.dispm)

        Returns:
            CaesarDisplacement object
        """
        amplitude = float(
            np.genfromtxt(os.path.join(disp_dir, 'amplitude.dat')))
        disp = np.genfromtxt(os.path.join(disp_dir, 'disp.dat')).tolist()
        #drone = VaspToComputedEntryDrone(inc_structure=True)
        #TODO: Possibly either find another drone or combine Vasprun and Outcar here
        #       because this drone will return a dict, not an object. Don't forget to modify from_dict and the docstring if you make this change.
        drone = VaspToDbTaskDrone(simulate_mode=True)
        print 'assimilating vaspruns in ', disp_dir
        positive = drone.assimilate(os.path.join(disp_dir, 'positive'))
        #returned dict has last_updated as datetime.datetime object which jsanitize complains about
        if 'last_updated' in positive:
            positive['last_updated'] = str(positive['last_updated'])
        negative = drone.assimilate(os.path.join(disp_dir, 'negative'))
        if 'last_updated' in negative:
            negative['last_updated'] = str(negative['last_updated'])
        return cls(amplitude, disp, positive, negative)
コード例 #2
0
    def run_task(self, fw_spec):
        prev_dir = fw_spec['prev_vasp_dir']

        # get the db credentials
        db_dir = os.environ['DB_LOC']
        db_path = os.path.join(db_dir, 'tasks_db.json')

        # use MPDrone to put it in the database
        with open(db_path) as f:
            db_creds = json.load(f)
            drone = VaspToDbTaskDrone(host=db_creds['host'],
                                      port=db_creds['port'],
                                      database=db_creds['database'],
                                      user=db_creds['admin_user'],
                                      password=db_creds['admin_password'],
                                      collection=db_creds['collection'])
            t_id = drone.assimilate(prev_dir)

        if t_id:
            print 'ENTERED task id:', t_id
            stored_data = {'task_id': t_id}
            update_spec = {
                'prev_vasp_dir': prev_dir,
                'prev_task_type': fw_spec['prev_task_type']
            }
            return FWAction(stored_data=stored_data, update_spec=update_spec)
        else:
            raise ValueError("Could not parse entry for database insertion!")
コード例 #3
0
ファイル: firetasks_ex.py プロジェクト: aykol/MPWorks
    def run_task(self, fw_spec):
        prev_dir = fw_spec['prev_vasp_dir']

        # get the db credentials
        db_dir = os.environ['DB_LOC']
        db_path = os.path.join(db_dir, 'tasks_db.json')

        # use MPDrone to put it in the database
        with open(db_path) as f:
            db_creds = json.load(f)
            drone = VaspToDbTaskDrone(
                host=db_creds['host'], port=db_creds['port'],
                database=db_creds['database'], user=db_creds['admin_user'],
                password=db_creds['admin_password'],
                collection=db_creds['collection'])
            t_id = drone.assimilate(prev_dir)

        if t_id:
            print 'ENTERED task id:', t_id
            stored_data = {'task_id': t_id}
            update_spec = {'prev_vasp_dir': prev_dir, 'prev_task_type': fw_spec['prev_task_type']}
            return FWAction(stored_data=stored_data, update_spec=update_spec)
        else:
            raise ValueError("Could not parse entry for database insertion!")
コード例 #4
0
import json
from pynter.data.datasets import Dataset
from pymatgen.io.vasp.inputs import VaspInput, Incar, Kpoints, Poscar, Potcar
from pymatgen.core.structure import Structure

ds = Dataset.from_directory(
    '/home/lorenzo/tests/project-test/tutorials/Si-BS-dataset')

#%%

from matgendb.creator import VaspToDbTaskDrone

drone = VaspToDbTaskDrone(collection='test')

for j in ds:
    drone.assimilate(j.path)

#%%

from matgendb.query_engine import QueryEngine

qe = QueryEngine(collection='test')

# entries = qe.get_entries({'dir_name':'localhost:/home/lorenzo/tests/project-test/tutorials/Si-BS-dataset/3-PBE-BS'})

entries = qe.get_entries({'chemsys': 'Si'},
                         optional_data=['calculations'],
                         inc_structure=True)

#%%
コード例 #5
0
    def run_task(self, fw_spec):

        """
            Required Parameters:
                host (str): See SurfaceWorkflowManager in surface_wf.py
                port (int): See SurfaceWorkflowManager in surface_wf.py
                user (str): See SurfaceWorkflowManager in surface_wf.py
                password (str): See SurfaceWorkflowManager in surface_wf.py
                database (str): See SurfaceWorkflowManager in surface_wf.py
                collection (str): See SurfaceWorkflowManager in surface_wf.py
                struct_type (str): either oriented_unit_cell or slab_cell
                miller_index (list): Miller Index of the oriented
                    unit cell or slab
                loc (str path): Location of the outputs of
                    the vasp calculations
            Optional Parameters:
                surface_area (float): surface area of the slab, obtained
                    from slab object before relaxation
                shift (float): A shift value in Angstrom that determines how
                    much a slab should be shifted. For determining number of
                    terminations, obtained from slab object before relaxation
                vsize (float): Size of vacuum layer of slab in Angstroms,
                    obtained from slab object before relaxation
                ssize (float): Size of slab layer of slab in Angstroms,
                    obtained from slab object before relaxation
        """

        dec = MontyDecoder()
        struct_type = dec.process_decoded(self.get("struct_type"))
        loc = dec.process_decoded(self.get("loc"))
        cwd = dec.process_decoded(self.get("cwd"))
        surface_area = dec.process_decoded(self.get("surface_area", None))
        shift = dec.process_decoded(self.get("shift", None))
        vsize = dec.process_decoded(self.get("vsize", None))
        ssize = dec.process_decoded(self.get("ssize", None))
        miller_index = dec.process_decoded(self.get("miller_index"))

        # Sets default for DB parameters
        if not self["host"]:
            self["host"] = "127.0.0.1"

        if not self["port"]:
            self["port"] = 27017

        if not self["database"]:
            self["database"] = "vasp"

        if not self["collection"]:
            self["collection"] = "tasks"

        # Addtional info relating to slabs
        additional_fields={"author": os.environ.get("USER"),
                           "structure_type": struct_type,
                           "miller_index": miller_index,
                           "surface_area": surface_area, "shift": shift,
                           "vac_size": vsize, "slab_size": ssize}

        drone = VaspToDbTaskDrone(host=self["host"], port=self["port"],
                                  user=self["user"],
                                  password=self["password"],
                                  database=self["database"],
                                  use_full_uri=False,
                                  additional_fields=additional_fields,
                                  collection=self["collection"])
        drone.assimilate(cwd+loc)