コード例 #1
0
 def _softMax(self,Y):
     """ softmax function used on outputs"""
     y = []
     sumExpY = 0.0
     for i in Y:
         sumExpY = sumExpY + _exp(i)
     for i in Y:
         t = _exp(i)/sumExpY
         y.append(t)
     return y
コード例 #2
0
ファイル: random.py プロジェクト: webiumsk/WOT-0.9.12
    def gammavariate(self, alpha, beta):
        """Gamma distribution.  Not the gamma function!
        
        Conditions on the parameters are alpha > 0 and beta > 0.
        
        The probability distribution function is:
        
                    x ** (alpha - 1) * math.exp(-x / beta)
          pdf(x) =  --------------------------------------
                      math.gamma(alpha) * beta ** alpha
        
        """
        if alpha <= 0.0 or beta <= 0.0:
            raise ValueError, "gammavariate: alpha and beta must be > 0.0"
        random = self.random
        if alpha > 1.0:
            ainv = _sqrt(2.0 * alpha - 1.0)
            bbb = alpha - LOG4
            ccc = alpha + ainv
            while 1:
                u1 = random()
                if not 1e-07 < u1 < 0.9999999:
                    continue
                u2 = 1.0 - random()
                v = _log(u1 / (1.0 - u1)) / ainv
                x = alpha * _exp(v)
                z = u1 * u1 * u2
                r = bbb + ccc * v - x
                if r + SG_MAGICCONST - 4.5 * z >= 0.0 or r >= _log(z):
                    return x * beta

        else:
            if alpha == 1.0:
                u = random()
                while u <= 1e-07:
                    u = random()

                return -_log(u) * beta
            while 1:
                u = random()
                b = (_e + alpha) / _e
                p = b * u
                if p <= 1.0:
                    x = p ** (1.0 / alpha)
                else:
                    x = -_log((b - p) / alpha)
                u1 = random()
                if p > 1.0:
                    if u1 <= x ** (alpha - 1.0):
                        break
                elif u1 <= _exp(-x):
                    break

            return x * beta
コード例 #3
0
ファイル: random.py プロジェクト: AngusGeek/org.aspectj
    def stdgamma(self, alpha, ainv, bbb, ccc):
        # ainv = sqrt(2 * alpha - 1)
        # bbb = alpha - log(4)
        # ccc = alpha + ainv

        random = self.random
        if alpha <= 0.0:
            raise ValueError, 'stdgamma: alpha must be > 0.0'

        if alpha > 1.0:

            # Uses R.C.H. Cheng, "The generation of Gamma
            # variables with non-integral shape parameters",
            # Applied Statistics, (1977), 26, No. 1, p71-74

            while 1:
                u1 = random()
                u2 = random()
                v = _log(u1/(1.0-u1))/ainv
                x = alpha*_exp(v)
                z = u1*u1*u2
                r = bbb+ccc*v-x
                if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
                    return x

        elif alpha == 1.0:
            # expovariate(1)
            u = random()
            while u <= 1e-7:
                u = random()
            return -_log(u)

        else:   # alpha is between 0 and 1 (exclusive)

            # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle

            while 1:
                u = random()
                b = (_e + alpha)/_e
                p = b*u
                if p <= 1.0:
                    x = pow(p, 1.0/alpha)
                else:
                    # p > 1
                    x = -_log((b-p)/alpha)
                u1 = random()
                if not (((p <= 1.0) and (u1 > _exp(-x))) or
                          ((p > 1)  and  (u1 > pow(x, alpha - 1.0)))):
                    break
            return x
コード例 #4
0
ファイル: importance_sampling.py プロジェクト: fredRos/pypmc
    def _calculate_weights(self, this_samples, N):
        """Calculate and save the weights of a run."""

        this_weights = self.weights.append(N)[:,0]

        if self.target_values is None:
            for i in range(N):
                tmp = self.target(this_samples[i]) - self.proposal.evaluate(this_samples[i])
                this_weights[i] = _exp(tmp)
        else:
            this_target_values = self.target_values.append(N)
            for i in range(N):
                this_target_values[i] = self.target(this_samples[i])
                tmp = this_target_values[i] - self.proposal.evaluate(this_samples[i])
                this_weights[i] = _exp(tmp)
コード例 #5
0
ファイル: random.py プロジェクト: webiumsk/WOT-0.9.12
    def vonmisesvariate(self, mu, kappa):
        """Circular data distribution.
        
        mu is the mean angle, expressed in radians between 0 and 2*pi, and
        kappa is the concentration parameter, which must be greater than or
        equal to zero.  If kappa is equal to zero, this distribution reduces
        to a uniform random angle over the range 0 to 2*pi.
        
        """
        random = self.random
        if kappa <= 1e-06:
            return TWOPI * random()
        s = 0.5 / kappa
        r = s + _sqrt(1.0 + s * s)
        while 1:
            u1 = random()
            z = _cos(_pi * u1)
            d = z / (r + z)
            u2 = random()
            if u2 < 1.0 - d * d or u2 <= (1.0 - d) * _exp(d):
                break

        q = 1.0 / r
        f = (q + z) / (1.0 + q * z)
        u3 = random()
        if u3 > 0.5:
            theta = (mu + _acos(f)) % TWOPI
        else:
            theta = (mu - _acos(f)) % TWOPI
        return theta
コード例 #6
0
    def vonmisesvariate(self, mu, kappa):
        """Circular data distribution.
        
        mu is the mean angle, expressed in radians between 0 and 2*pi, and
        kappa is the concentration parameter, which must be greater than or
        equal to zero.  If kappa is equal to zero, this distribution reduces
        to a uniform random angle over the range 0 to 2*pi.
        
        """
        random = self.random
        if kappa <= 1e-06:
            return TWOPI * random()
        a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa)
        b = (a - _sqrt(2.0 * a)) / (2.0 * kappa)
        r = (1.0 + b * b) / (2.0 * b)
        while 1:
            u1 = random()
            z = _cos(_pi * u1)
            f = (1.0 + r * z) / (r + z)
            c = kappa * (r - f)
            u2 = random()
            if u2 < c * (2.0 - c) or u2 <= c * _exp(1.0 - c):
                break

        u3 = random()
        if u3 > 0.5:
            theta = mu % TWOPI + _acos(f)
        else:
            theta = mu % TWOPI - _acos(f)
        return theta
コード例 #7
0
ファイル: random.py プロジェクト: Afey/pyjs
 def lognormvariate(self, mu, sigma):
     # """Log normal distribution.
     # If you take the natural logarithm of this distribution, you'll get a
     # normal distribution with mean mu and standard deviation sigma.
     # mu can have any value, and sigma must be greater than zero.
     # """
     return _exp(self.normalvariate(mu, sigma))
コード例 #8
0
ファイル: NeuralNetwork.py プロジェクト: DerekParks/ML1050
def _myExp(x):
	if x < 0.00000001:
		return 0
	elif x > 500:
		return 1e200
	else:
		return _exp(x)		
コード例 #9
0
ファイル: NeuralNetwork.py プロジェクト: DerekParks/ML1050
def _sigmoid(x):
	if x < -50:
		return 0.
	elif x > 20:
		return 1.
	else:
		return 1./(1.+_exp(-1*x))
コード例 #10
0
ファイル: random.py プロジェクト: Toonerz/Toontown-2003
 def vonmisesvariate(self, mu, kappa):
     random = self.random
     if kappa <= 9.9999999999999995e-007:
         return TWOPI * random()
     
     a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa)
     b = (a - _sqrt(2.0 * a)) / 2.0 * kappa
     r = (1.0 + b * b) / 2.0 * b
     while 1:
         u1 = random()
         z = _cos(_pi * u1)
         f = (1.0 + r * z) / (r + z)
         c = kappa * (r - f)
         u2 = random()
         if u2 >= c * (2.0 - c):
             pass
         if not (u2 > c * _exp(1.0 - c)):
             break
         
     u3 = random()
     if u3 > 0.5:
         theta = mu % TWOPI + _acos(f)
     else:
         theta = mu % TWOPI - _acos(f)
     return theta
コード例 #11
0
ファイル: random.py プロジェクト: johndpope/sims4-ai-engine
    def gammavariate(self, alpha, beta):
        if alpha <= 0.0 or beta <= 0.0:
            raise ValueError('gammavariate: alpha and beta must be > 0.0')
        random = self.random
        if alpha > 1.0:
            ainv = _sqrt(2.0*alpha - 1.0)
            bbb = alpha - LOG4
            ccc = alpha + ainv
            u1 = random()
            if not 1e-07 < u1 < 0.9999999:
                continue
            u2 = 1.0 - random()
            v = _log(u1/(1.0 - u1))/ainv
            x = alpha*_exp(v)
            z = u1*u1*u2
            r = bbb + ccc*v - x
            #ERROR: Unexpected statement:   517 BINARY_MULTIPLY  |   518 RETURN_VALUE 

            if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
                return x*beta
                continue
        else:
            if alpha == 1.0:
                u = random()
                while u <= 1e-07:
                    u = random()
                return -_log(u)*beta
            while True:
                u = random()
                b = (_e + alpha)/_e
                p = b*u
                if p <= 1.0:
                    x = p**(1.0/alpha)
                else:
                    x = -_log((b - p)/alpha)
                u1 = random()
                if p > 1.0:
                    if u1 <= x**(alpha - 1.0):
                        break
                        continue
                        if u1 <= _exp(-x):
                            break
                elif u1 <= _exp(-x):
                    break
            return x*beta
コード例 #12
0
ファイル: random.py プロジェクト: connoryang/dec-eve-serenity
    def gammavariate(self, alpha, beta):
        if alpha <= 0.0 or beta <= 0.0:
            raise ValueError, 'gammavariate: alpha and beta must be > 0.0'
        random = self.random
        if alpha > 1.0:
            ainv = _sqrt(2.0 * alpha - 1.0)
            bbb = alpha - LOG4
            ccc = alpha + ainv
            while 1:
                u1 = random()
                if not 1e-07 < u1 < 0.9999999:
                    continue
                u2 = 1.0 - random()
                v = _log(u1 / (1.0 - u1)) / ainv
                x = alpha * _exp(v)
                z = u1 * u1 * u2
                r = bbb + ccc * v - x
                if r + SG_MAGICCONST - 4.5 * z >= 0.0 or r >= _log(z):
                    return x * beta

        else:
            if alpha == 1.0:
                u = random()
                while u <= 1e-07:
                    u = random()

                return -_log(u) * beta
            while 1:
                u = random()
                b = (_e + alpha) / _e
                p = b * u
                if p <= 1.0:
                    x = p ** (1.0 / alpha)
                else:
                    x = -_log((b - p) / alpha)
                u1 = random()
                if p > 1.0:
                    if u1 <= x ** (alpha - 1.0):
                        break
                elif u1 <= _exp(-x):
                    break

            return x * beta
コード例 #13
0
ファイル: powerseries.py プロジェクト: pdonis/powerseries
def exp(S):
    """Convenience function for exponentiating PowerSeries.
    
    This can also replace the ``math.exp`` function, extending it to
    take a PowerSeries as an argument.
    """
    from math import exp as _exp
    if isinstance(S, PowerSeries):
        return S.exponential()
    return _exp(S)
コード例 #14
0
ファイル: random.py プロジェクト: Toonerz/Toontown-2003
 def gammavariate(self, alpha, beta):
     if alpha <= 0.0 or beta <= 0.0:
         raise ValueError, 'gammavariate: alpha and beta must be > 0.0'
     
     random = self.random
     if alpha > 1.0:
         ainv = _sqrt(2.0 * alpha - 1.0)
         bbb = alpha - LOG4
         ccc = alpha + ainv
         while 1:
             u1 = random()
             u2 = random()
             v = _log(u1 / (1.0 - u1)) / ainv
             x = alpha * _exp(v)
             z = u1 * u1 * u2
             r = bbb + ccc * v - x
             if r + SG_MAGICCONST - 4.5 * z >= 0.0 or r >= _log(z):
                 return x * beta
             
     elif alpha == 1.0:
         u = random()
         while u <= 9.9999999999999995e-008:
             u = random()
         return -_log(u) * beta
     else:
         while 1:
             u = random()
             b = (_e + alpha) / _e
             p = b * u
             if p <= 1.0:
                 x = pow(p, 1.0 / alpha)
             else:
                 x = -_log((b - p) / alpha)
             u1 = random()
             if p <= 1.0 and u1 > _exp(-x) and p > 1:
                 pass
             if not (u1 > pow(x, alpha - 1.0)):
                 break
             
         return x * beta
コード例 #15
0
ファイル: NeuralNetwork.py プロジェクト: DerekParks/ML1050
def _sigmoid(x):
    """Sigmoid function
    
    >>> _sigmoid(0)
    0.5
    >>> _sigmoid(1)
    0.7310585786300049
    >>> _sigmoid(-1)
    0.2689414213699951
    """
    e=0
    try:
        e = _exp(-1*x)
    except OverflowError:
        return 0
    return 1./(1.+e)
コード例 #16
0
    def vonmisesvariate(self, mu, kappa):
        """Circular data distribution.

        mu is the mean angle, expressed in radians between 0 and 2*pi, and
        kappa is the concentration parameter, which must be greater than or
        equal to zero.  If kappa is equal to zero, this distribution reduces
        to a uniform random angle over the range 0 to 2*pi.

        """
        # mu:    mean angle (in radians between 0 and 2*pi)
        # kappa: concentration parameter kappa (>= 0)
        # if kappa = 0 generate uniform random angle

        # Based upon an algorithm published in: Fisher, N.I.,
        # "Statistical Analysis of Circular Data", Cambridge
        # University Press, 1993.

        # Thanks to Magnus Kessler for a correction to the
        # implementation of step 4.

        random = self.random
        if kappa <= 1e-6:
            return TWOPI * random()

        a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa)
        b = (a - _sqrt(2.0 * a)) / (2.0 * kappa)
        r = (1.0 + b * b) / (2.0 * b)

        while 1:
            u1 = random()

            z = _cos(_pi * u1)
            f = (1.0 + r * z) / (r + z)
            c = kappa * (r - f)

            u2 = random()

            if not (u2 >= c * (2.0 - c) and u2 > c * _exp(1.0 - c)):
                break

        u3 = random()
        if u3 > 0.5:
            theta = (mu % TWOPI) + _acos(f)
        else:
            theta = (mu % TWOPI) - _acos(f)

        return theta
コード例 #17
0
ファイル: random.py プロジェクト: zegab/diane
    def vonmisesvariate(self, mu, kappa):
        """Circular data distribution.

        mu is the mean angle, expressed in radians between 0 and 2*pi, and
        kappa is the concentration parameter, which must be greater than or
        equal to zero.  If kappa is equal to zero, this distribution reduces
        to a uniform random angle over the range 0 to 2*pi.

        """
        # mu:    mean angle (in radians between 0 and 2*pi)
        # kappa: concentration parameter kappa (>= 0)
        # if kappa = 0 generate uniform random angle

        # Based upon an algorithm published in: Fisher, N.I.,
        # "Statistical Analysis of Circular Data", Cambridge
        # University Press, 1993.

        # Thanks to Magnus Kessler for a correction to the
        # implementation of step 4.

        random = self.random
        if kappa <= 1e-6:
            return TWOPI * random()

        s = 0.5 / kappa
        r = s + _sqrt(1.0 + s * s)

        while 1:
            u1 = random()
            z = _cos(_pi * u1)

            d = z / (r + z)
            u2 = random()
            if u2 < 1.0 - d * d or u2 <= (1.0 - d) * _exp(d):
                break

        q = 1.0 / r
        f = (q + z) / (1.0 + q * z)
        u3 = random()
        if u3 > 0.5:
            theta = (mu + _acos(f)) % TWOPI
        else:
            theta = (mu - _acos(f)) % TWOPI

        return theta
コード例 #18
0
ファイル: NeuralNetwork.py プロジェクト: DerekParks/ML1050
    def _propagateInputClassification(self,input):
        """Same as _propagateInput; but applies softMax
        """
        Y,Z = self._propagateInputRegression(input)
            
        #apply softmax function
        try:
        
            expY = [_exp(y) for y in Y]
          
        #if the exp of the outputs starts getting too big just normalize the outputs
        except OverflowError: 
            expY = Y
        sumExpY = sum(expY)
 
        Y = [y/sumExpY for y in Y]
        
        return Y,Z
コード例 #19
0
ファイル: power.py プロジェクト: rkern/sympy-rkern
def integer_nthroot(y, n):
    """
    Return a tuple containing x = floor(y**(1/n))
    and a boolean indicating whether the result is exact (that is,
    whether x**n == y).

    >>> integer_nthroot(16,2)
    (4, True)
    >>> integer_nthroot(26,2)
    (5, False)
    """
    if y < 0:
        raise ValueError("y must not be negative")
    if n < 1:
        raise ValueError("n must be positive")
    if y in (0, 1):
        return y, True
    if n == 1:
        return y, True
    if n > y:
        return 1, False
    # Get initial estimate for Newton's method. Care must be taken to
    # avoid overflow
    try:
        guess = int(y ** (1.0 / n) + 0.5)
    except OverflowError:
        try:
            guess = int(_exp(_log(y) / n) + 0.5)
        except OverflowError:
            guess = 1 << int(_log(y, 2) / n)
    # Newton iteration
    xprev, x = -1, guess
    while abs(x - xprev) > 1:
        t = x ** (n - 1)
        xprev, x = x, x - (t * x - y) // (n * t)
    # Compensate
    t = x ** n
    while t > y:
        x -= 1
        t = x ** n
    return x, t == y
コード例 #20
0
ファイル: random.py プロジェクト: johndpope/sims4-ai-engine
 def vonmisesvariate(self, mu, kappa):
     random = self.random
     if kappa <= 1e-06:
         return TWOPI*random()
     s = 0.5/kappa
     r = s + _sqrt(1.0 + s*s)
     while True:
         u1 = random()
         z = _cos(_pi*u1)
         d = z/(r + z)
         u2 = random()
         if u2 < 1.0 - d*d or u2 <= (1.0 - d)*_exp(d):
             break
     q = 1.0/r
     f = (q + z)/(1.0 + q*z)
     u3 = random()
     if u3 > 0.5:
         theta = (mu + _acos(f)) % TWOPI
     else:
         theta = (mu - _acos(f)) % TWOPI
     return theta
コード例 #21
0
ファイル: random.py プロジェクト: connoryang/dec-eve-serenity
    def vonmisesvariate(self, mu, kappa):
        random = self.random
        if kappa <= 1e-06:
            return TWOPI * random()
        a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa)
        b = (a - _sqrt(2.0 * a)) / (2.0 * kappa)
        r = (1.0 + b * b) / (2.0 * b)
        while 1:
            u1 = random()
            z = _cos(_pi * u1)
            f = (1.0 + r * z) / (r + z)
            c = kappa * (r - f)
            u2 = random()
            if u2 < c * (2.0 - c) or u2 <= c * _exp(1.0 - c):
                break

        u3 = random()
        if u3 > 0.5:
            theta = mu % TWOPI + _acos(f)
        else:
            theta = mu % TWOPI - _acos(f)
        return theta
コード例 #22
0
ファイル: random.py プロジェクト: mcyril/ravel-ftn
"""Random variable generators.
コード例 #23
0
    def gammavariate(self, alpha, beta):
        """Gamma distribution.  Not the gamma function!

        Conditions on the parameters are alpha > 0 and beta > 0.

        The probability distribution function is:

                    x ** (alpha - 1) * math.exp(-x / beta)
          pdf(x) =  --------------------------------------
                      math.gamma(alpha) * beta ** alpha

        """

        # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2

        # Warning: a few older sources define the gamma distribution in terms
        # of alpha > -1.0
        if alpha <= 0.0 or beta <= 0.0:
            raise ValueError('gammavariate: alpha and beta must be > 0.0')

        random = self.random
        if alpha > 1.0:

            # Uses R.C.H. Cheng, "The generation of Gamma
            # variables with non-integral shape parameters",
            # Applied Statistics, (1977), 26, No. 1, p71-74

            ainv = _sqrt(2.0 * alpha - 1.0)
            bbb = alpha - LOG4
            ccc = alpha + ainv

            while 1:
                u1 = random()
                if not 1e-7 < u1 < 0.9999999:
                    continue
                u2 = 1.0 - random()
                v = _log(u1 / (1.0 - u1)) / ainv
                x = alpha * _exp(v)
                z = u1 * u1 * u2
                r = bbb + ccc * v - x
                if r + SG_MAGICCONST - 4.5 * z >= 0.0 or r >= _log(z):
                    return x * beta

        elif alpha == 1.0:
            # expovariate(1)
            u = random()
            while u <= 1e-7:
                u = random()
            return -_log(u) * beta

        else:  # alpha is between 0 and 1 (exclusive)

            # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle

            while 1:
                u = random()
                b = (_e + alpha) / _e
                p = b * u
                if p <= 1.0:
                    x = p**(1.0 / alpha)
                else:
                    x = -_log((b - p) / alpha)
                u1 = random()
                if p > 1.0:
                    if u1 <= x**(alpha - 1.0):
                        break
                elif u1 <= _exp(-x):
                    break
            return x * beta
コード例 #24
0
ファイル: random.py プロジェクト: AnayNatalia/Practica1-ANM
def vonmisesvariate(self, mu, kappa):
    """Circular data distribution.
        
        mu is the mean angle, expressed in radians between 0 and 2*pi, and
        kappa is the concentration parameter, which must be greater than or
        equal to zero.  If kappa is equal to zero, this distribution reduces
        to a uniform random angle over the range 0 to 2*pi.
        
        """
            # mu:    mean angle (in radians between 0 and 2*pi)
            # kappa: concentration parameter kappa (>= 0)
            # if kappa = 0 generate uniform random angle
            
            # Based upon an algorithm published in: Fisher, N.I.,
            # "Statistical Analysis of Circular Data", Cambridge
            # University Press, 1993.
            
            # Thanks to Magnus Kessler for a correction to the
            # implementation of step 4.
            
            random = self.random
                if kappa <= 1e-6:
                    return TWOPI * random()
                        
                        s = 0.5 / kappa
                            r = s + _sqrt(1.0 + s * s)
                                
                                while 1:
                                    u1 = random()
                                        z = _cos(_pi * u1)
                                            
                                            d = z / (r + z)
                                                u2 = random()
                                                    if u2 < 1.0 - d * d or u2 <= (1.0 - d) * _exp(d):
                                                        break
                                                            
                                                            q = 1.0 / r
                                                                f = (q + z) / (1.0 + q * z)
                                                                    u3 = random()
                                                                        if u3 > 0.5:
                                                                            theta = (mu + _acos(f)) % TWOPI
                                                                                else:
                                                                                    theta = (mu - _acos(f)) % TWOPI
                                                                                        
                                                                                        return theta
コード例 #25
0
 def _f_Gauss(self, k_y, W_y):
     """Gaussian spectrum amplitude."""
     return _exp(-(k_y * W_y / 2)**2)
コード例 #26
0
ファイル: rowops.py プロジェクト: HazelTheWitch/PyGlitch
 def sigmoidProb(y):
     return _random.random() < 1 / (1 + _exp(-y * invMaxY))
コード例 #27
0
 def profile(self, r):
     """..."""
     if self.x == 0 and self._m == 0:
         return self._norm * _exp(-((r.y**2 + r.z**2) / self._W_y**2))
     else:
         return super().profile(r)
コード例 #28
0
    def _f_Gauss_cartesian(self, k_y, k_z, W_y):
        """2d-Gaussian spectrum amplitude.

        Impementation for Cartesian coordinates.
        """
        return _exp(-W_y**2 * (k_y**2 + k_z**2)/4)
コード例 #29
0
ファイル: random.py プロジェクト: Atrion/Offline-Ki
    'shuffle', 'normalvariate', 'lognormvariate', 'cunifvariate',
    'expovariate', 'vonmisesvariate', 'gammavariate', 'stdgamma', 'gauss',
    'betavariate', 'paretovariate', 'weibullvariate', 'getstate', 'setstate',
    'jumpahead', 'whseed'
]


def _verify(name, computed, expected):
    # for some reason, this failed on some machines, breaking some ages. Original precision: 9.9999999999999995e-008
    if (abs((computed - expected)) > 1e-4):
        raise ValueError((
            'computed value for %s deviates too much (computed %g, expected %g)'
            % (name, computed, expected)))


NV_MAGICCONST = ((4 * _exp(-0.5)) / _sqrt(2.0))
_verify('NV_MAGICCONST', NV_MAGICCONST, 1.71552776992141)
TWOPI = (2.0 * _pi)
_verify('TWOPI', TWOPI, 6.2831853071800001)
LOG4 = _log(4.0)
_verify('LOG4', LOG4, 1.3862943611198899)
SG_MAGICCONST = (1.0 + _log(4.5))
_verify('SG_MAGICCONST', SG_MAGICCONST, 2.5040773967762702)
del _verify


class Random:

    VERSION = 1

    def __init__(self, x=None):
コード例 #30
0
def exp(x):
    return _exp(x)
コード例 #31
0
ファイル: compilef.py プロジェクト: vprusso/sympy
def benchmark():
    """
    Run some benchmarks for clambdify and frange.

    NumPy and Psyco are used as reference if available.
    """
    from time import time
    from timeit import Timer

    def fbenchmark(f, var=[Symbol('x')]):
        """
        Do some benchmarks with f using clambdify, lambdify and psyco.
        """
        global cf, pf, psyf
        start = time()
        cf = clambdify(var, f)
        print('compile time (including sympy overhead): %f s' % (
            time() - start))
        pf = lambdify(var, f, 'math')
        psyf = None
        psyco = import_module('psyco')
        if psyco:
            psyf = lambdify(var, f, 'math')
            psyco.bind(psyf)
        code = '''for x in (i/1000. for i in range(1000)):
        f(%s)''' % ('x,'*len(var)).rstrip(',')
        t1 = Timer(code, 'from __main__ import cf as f')
        t2 = Timer(code, 'from __main__ import pf as f')
        if psyf:
            t3 = Timer(code, 'from __main__ import psyf as f')
        else:
            t3 = None
        print('for x = (0, 1, 2, ..., 999)/1000')
        print('20 times in 3 runs')
        print('compiled:      %.4f %.4f %.4f' % tuple(t1.repeat(3, 20)))
        print('Python lambda: %.4f %.4f %.4f' % tuple(t2.repeat(3, 20)))
        if t3:
            print('Psyco lambda:  %.4f %.4f %.4f' % tuple(t3.repeat(3, 20)))

    print('big function:')
    from sympy import _exp, _sin, _cos, pi
    x = Symbol('x')
##    f1 = diff(_exp(x)**2 - _sin(x)**pi, x) \
##        * x**12-2*x**3+2*_exp(x**2)-3*x**7+4*_exp(123+x-x**5+2*x**4) \
##        * ((x + pi)**5).expand()
    f1 = 2*_exp(x**2) + x**12*(-pi*_sin(x)**((-1) + pi)*_cos(x) + 2*_exp(2*x)) \
        + 4*(10*pi**3*x**2 + 10*pi**2*x**3 + 5*pi*x**4 + 5*x*pi**4 + pi**5
        + x**5)*_exp(123 + x + 2*x**4 - x**5) - 2*x**3 - 3*x**7
    fbenchmark(f1)
    print()
    print('simple function:')
    y = Symbol('y')
    f2 = sqrt(x*y) + x*5
    fbenchmark(f2, [x, y])
    times = 100000
    fstr = '_exp(_sin(_exp(-x**2)) + sqrt(pi)*_cos(x**5/(x**3-x**2+pi*x)))'
    print
    print('frange with f(x) =')
    print(fstr)
    print('for x=1, ..., %i' % times)
    print('in 3 runs including full compile time')
    t4 = Timer("frange('lambda x: %s', 0, %i)" % (fstr, times),
               'from __main__ import frange')

    numpy = import_module('numpy')

    print('frange:        %.4f %.4f %.4f' % tuple(t4.repeat(3, 1)))
    if numpy:
        t5 = Timer('x = arange(%i); result = %s' % (times, fstr),
                   'from numpy import arange, sqrt, exp, sin, cos, exp, pi')
        print('numpy:         %.4f %.4f %.4f' % tuple(t5.repeat(3, 1)))
コード例 #32
0
ファイル: random.py プロジェクト: AngusGeek/org.aspectj
 def lognormvariate(self, mu, sigma):
     return _exp(self.normalvariate(mu, sigma))
コード例 #33
0
    def _f_Gauss_spherical(self, sin_theta, W_y, k):
        """2d-Gaussian spectrum amplitude.

        Implementation for spherical coordinates.
        """
        return _exp(-(k*W_y*sin_theta/2)**2)
コード例 #34
0
ファイル: rdfutils.py プロジェクト: elor/rdfutils
def _gauss(x, mu, sigma):
    sigma2 = sigma**2
    return _exp(-(x-mu)**2/sigma2) / _sqrt(2*_pi*sigma2)
コード例 #35
0
    "vonmisesvariate",
    "gammavariate",
    "triangular",
    "gauss",
    "betavariate",
    "paretovariate",
    "weibullvariate",
    "getstate",
    "setstate",
    "jumpahead",
    "WichmannHill",
    "getrandbits",
    "SystemRandom",
]

NV_MAGICCONST = 4 * _exp(-0.5) / _sqrt(2.0)
TWOPI = 2.0 * _pi
LOG4 = _log(4.0)
SG_MAGICCONST = 1.0 + _log(4.5)
BPF = 53  # Number of bits in a float
RECIP_BPF = 2**-BPF

# Translated by Guido van Rossum from C source provided by
# Adrian Baddeley.  Adapted by Raymond Hettinger for use with
# the Mersenne Twister  and os.urandom() core generators.

import _random


class Random(_random.Random):
    """Random number generator base class used by bound module functions.
コード例 #36
0
ファイル: mathfuncs.py プロジェクト: qandak/sumcalc
def exp(x):
    return _exp(x)
コード例 #37
0
def benchmark():
    """
    Run some benchmarks for clambdify and frange.

    NumPy and Psyco are used as reference if available.
    """
    from time import time
    from timeit import Timer

    def fbenchmark(f, var=[Symbol('x')]):
        """
        Do some benchmarks with f using clambdify, lambdify and psyco.
        """
        global cf, pf, psyf
        start = time()
        cf = clambdify(var, f)
        print('compile time (including sympy overhead): %f s' %
              (time() - start))
        pf = lambdify(var, f, 'math')
        psyf = None
        psyco = import_module('psyco')
        if psyco:
            psyf = lambdify(var, f, 'math')
            psyco.bind(psyf)
        code = '''for x in (i/1000. for i in range(1000)):
        f(%s)''' % ('x,' * len(var)).rstrip(',')
        t1 = Timer(code, 'from __main__ import cf as f')
        t2 = Timer(code, 'from __main__ import pf as f')
        if psyf:
            t3 = Timer(code, 'from __main__ import psyf as f')
        else:
            t3 = None
        print('for x = (0, 1, 2, ..., 999)/1000')
        print('20 times in 3 runs')
        print('compiled:      %.4f %.4f %.4f' % tuple(t1.repeat(3, 20)))
        print('Python lambda: %.4f %.4f %.4f' % tuple(t2.repeat(3, 20)))
        if t3:
            print('Psyco lambda:  %.4f %.4f %.4f' % tuple(t3.repeat(3, 20)))

    print('big function:')
    from sympy import _exp, _sin, _cos, pi, lambdify
    x = Symbol('x')
    ##    f1 = diff(_exp(x)**2 - _sin(x)**pi, x) \
    ##        * x**12-2*x**3+2*_exp(x**2)-3*x**7+4*_exp(123+x-x**5+2*x**4) \
    ##        * ((x + pi)**5).expand()
    f1 = 2*_exp(x**2) + x**12*(-pi*_sin(x)**((-1) + pi)*_cos(x) + 2*_exp(2*x)) \
        + 4*(10*pi**3*x**2 + 10*pi**2*x**3 + 5*pi*x**4 + 5*x*pi**4 + pi**5
        + x**5)*_exp(123 + x + 2*x**4 - x**5) - 2*x**3 - 3*x**7
    fbenchmark(f1)
    print()
    print('simple function:')
    y = Symbol('y')
    f2 = sqrt(x * y) + x * 5
    fbenchmark(f2, [x, y])
    times = 100000
    fstr = '_exp(_sin(_exp(-x**2)) + sqrt(pi)*_cos(x**5/(x**3-x**2+pi*x)))'
    print
    print('frange with f(x) =')
    print(fstr)
    print('for x=1, ..., %i' % times)
    print('in 3 runs including full compile time')
    t4 = Timer("frange('lambda x: %s', 0, %i)" % (fstr, times),
               'from __main__ import frange')

    numpy = import_module('numpy')

    print('frange:        %.4f %.4f %.4f' % tuple(t4.repeat(3, 1)))
    if numpy:
        t5 = Timer('x = arange(%i); result = %s' % (times, fstr),
                   'from numpy import arange, sqrt, exp, sin, cos, exp, pi')
        print('numpy:         %.4f %.4f %.4f' % tuple(t5.repeat(3, 1)))
コード例 #38
0
 def lognormvariate(self, mu, sigma):
     return _exp(self.normalvariate(mu, sigma))
コード例 #39
0
ファイル: semirings.py プロジェクト: kitsing/openfst-wrapper
 def sampling_weight(self):
     return _exp(-self.value)
コード例 #40
0
    "weibullvariate",
    "getstate",
    "setstate",
    "jumpahead",
    "whseed",
]


def _verify(name, computed, expected):
    if abs(computed - expected) > 1e-7:
        raise ValueError(
            "computed value for %s deviates too much " "(computed %g, expected %g)" % (name, computed, expected)
        )


NV_MAGICCONST = 4 * _exp(-0.5) / _sqrt(2.0)
_verify("NV_MAGICCONST", NV_MAGICCONST, 1.71552776992141)

TWOPI = 2.0 * _pi
_verify("TWOPI", TWOPI, 6.28318530718)

LOG4 = _log(4.0)
_verify("LOG4", LOG4, 1.38629436111989)

SG_MAGICCONST = 1.0 + _log(4.5)
_verify("SG_MAGICCONST", SG_MAGICCONST, 2.50407739677627)

del _verify

# Translated by Guido van Rossum from C source provided by
# Adrian Baddeley.
コード例 #41
0
ファイル: random.py プロジェクト: bogdan-kulynych/mypy
    def gammavariate(self, alpha: float, beta: float) -> float:
        """Gamma distribution.  Not the gamma function!

        Conditions on the parameters are alpha > 0 and beta > 0.

        The probability distribution function is:

                    x ** (alpha - 1) * math.exp(-x / beta)
          pdf(x) =  --------------------------------------
                      math.gamma(alpha) * beta ** alpha

        """

        # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2

        # Warning: a few older sources define the gamma distribution in terms
        # of alpha > -1.0
        if alpha <= 0.0 or beta <= 0.0:
            raise ValueError('gammavariate: alpha and beta must be > 0.0')

        random = self.random
        if alpha > 1.0:

            # Uses R.C.H. Cheng, "The generation of Gamma
            # variables with non-integral shape parameters",
            # Applied Statistics, (1977), 26, No. 1, p71-74

            ainv = _sqrt(2.0 * alpha - 1.0)
            bbb = alpha - LOG4
            ccc = alpha + ainv

            while 1:
                u1 = random()
                if not (1e-7 < u1 and u1 < .9999999):
                    continue
                u2 = 1.0 - random()
                v = _log(u1/(1.0-u1))/ainv
                x = alpha*_exp(v)
                z = u1*u1*u2
                r = bbb+ccc*v-x
                if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
                    return x * beta

        elif alpha == 1.0:
            # expovariate(1)
            u = random()
            while u <= 1e-7:
                u = random()
            return -_log(u) * beta

        else:   # alpha is between 0 and 1 (exclusive)

            # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle

            while 1:
                u = random()
                b = (_e + alpha)/_e
                p = b*u
                if p <= 1.0:
                    x = p ** (1.0/alpha)
                else:
                    x = -_log((b-p)/alpha)
                u1 = random()
                if p > 1.0:
                    if u1 <= x ** (alpha - 1.0):
                        break
                elif u1 <= _exp(-x):
                    break
            return x * beta
コード例 #42
0
    def gammavariate(self, alpha, beta):
        """Gamma distribution.  Not the gamma function!

        Conditions on the parameters are alpha > 0 and beta > 0.

        """

        # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2

        # Warning: a few older sources define the gamma distribution in terms
        # of alpha > -1.0
        if alpha <= 0.0 or beta <= 0.0:
            raise ValueError, "gammavariate: alpha and beta must be > 0.0"

        random = self.random
        if alpha > 1.0:

            # Uses R.C.H. Cheng, "The generation of Gamma
            # variables with non-integral shape parameters",
            # Applied Statistics, (1977), 26, No. 1, p71-74

            ainv = _sqrt(2.0 * alpha - 1.0)
            bbb = alpha - LOG4
            ccc = alpha + ainv

            while 1:
                u1 = random()
                if not 1e-7 < u1 < 0.9999999:
                    continue
                u2 = 1.0 - random()
                v = _log(u1 / (1.0 - u1)) / ainv
                x = alpha * _exp(v)
                z = u1 * u1 * u2
                r = bbb + ccc * v - x
                if r + SG_MAGICCONST - 4.5 * z >= 0.0 or r >= _log(z):
                    return x * beta

        elif alpha == 1.0:
            # expovariate(1)
            u = random()
            while u <= 1e-7:
                u = random()
            return -_log(u) * beta

        else:  # alpha is between 0 and 1 (exclusive)

            # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle

            while 1:
                u = random()
                b = (_e + alpha) / _e
                p = b * u
                if p <= 1.0:
                    x = pow(p, 1.0 / alpha)
                else:
                    # p > 1
                    x = -_log((b - p) / alpha)
                u1 = random()
                if not (((p <= 1.0) and (u1 > _exp(-x))) or ((p > 1) and (u1 > pow(x, alpha - 1.0)))):
                    break
            return x * beta
コード例 #43
0
ifile_name, dummy, dummy, draws, separator, klasse_index = hdw.handle_commands(
    sys.argv, 'd:', ['separator=', 'classid='])
del dummy
sample_count = 5  ### this can be changed, though the cross-validation
### tends to be too inaccurate with high values

universe = hdw.abstract_file(ifile_name, separator, klasse_index)
gtsigma = hdw.compute_maxvar(universe)  ### our limit
pieces = 20  ### how many intervals
graph = [None] * (pieces + 1)  ### statistics to plot

print 'file %s, iterating sigma from 0 to %.4f' % (ifile_name.split(
    os.sep)[-1], gtsigma)
for h in xrange(pieces + 1):
    #sigma=(_exp(h.__float__()/pieces)-1)*gtsigma/(_e-1)
    sigma = (_exp(h.__float__() / pieces)**4 - 1) * gtsigma / (_e**4 - 1)
    ### more little values than greater

    print 'step %2d: sigma = %.4f' % (h + 1, sigma)

    overall_success = [0] * draws  ### per sigma
    overall_compress = [0] * draws  ### per sigma

    for i in xrange(draws):
        nsc.welt = {}  ### every draw we clear the world
        universe = hdw.abstract_file(ifile_name, separator, klasse_index)
        ### i can't understand this!!! this way we read the file at every draw
        ### instead of once per run. however, if we don't do this, strange
        ### things happen and the test go f**k!!!
        ### probably the universe set() get messy somewhere in the code but i
        ### can't find where.