コード例 #1
0
ファイル: controller.py プロジェクト: pat-bert/6RUSRobot
def get_movement_from_cont(controls, pose):
    """Calculates new pose from controller-input ans returns it as a list
    `controls`:dict  inputs from controller
    `currentPose`:list  poselist of current pose"""
    # 0Z---> y
    # |
    # V x 

    dof = len(pose)
    if dof < 6:
        pose += [0] * (6 - dof)

    # Create a copy so we do not save state here
    pose = list(pose)

    # speedfactors
    rot_fac = 0.25
    trans_fac = 1

    # add controller inputs to values
    pose[0] += controls['LS_UD'] * trans_fac
    pose[1] += controls['LS_LR'] * trans_fac
    pose[2] += controls['RS_UD'] * trans_fac * -1

    pose[3] = deg(pose[3]) + (controls['LEFT'] - controls['RIGHT']) * rot_fac
    pose[4] = deg(pose[4]) + (controls['DOWN'] - controls['UP']) * rot_fac
    pose[5] = deg(pose[5]) + (controls['L1'] - controls['R1']) * rot_fac

    pose[3] = rad(pose[3])
    pose[4] = rad(pose[4])
    pose[5] = rad(pose[5])

    return pose
コード例 #2
0
    def get_subpoint(self, t):
        pos = self.get_pos(t)

        # Converts from mjd
        jd = t + 2400000.5
        tu = jd - 2451545.0

        # Calculates era and decides current rotation of earth
        era = (0.7790572732640 + 1.00273781191135448 * tu)

        rot = 2 * pi * (era % 1)

        # Calculates latitude and reference longitude
        lat = atan2(pos.z, sqrt(pos.x**2 + pos.y**2))
        reflon = atan2(pos.y, pos.x)

        # Adjusts for negative reference longitude
        if reflon < 0:
            reflon = (2 * pi) + reflon

        # Adjusts for longitude above 180 degrees
        lon = (reflon - rot) % (2 * pi)
        if lon > pi:
            lon = lon - (2 * pi)

        return deg(lat), deg(lon)
コード例 #3
0
ファイル: originalmoonros.py プロジェクト: ljh6993/CubeSat
def talker():
    rospy.init_node('moonros', anonymous=True)  # node name talker
    pub = rospy.Publisher('motor_1', UInt8, queue_size=10)
    pub1 = rospy.Publisher('motor_2', UInt8, queue_size=10)

    rate = rospy.Rate(10)  # 10hz send
    while not rospy.is_shutdown():  # test if shutdown

        now = datetime.datetime.utcnow()
        home = ephem.Observer()
        home.date = now
        home.lat, home.lon = '42.593948', '-81.174415'
        moon = ephem.Moon()
        moon.compute(home)
        moon_azimuth = round(deg(float(moon.az)), 1)
        moon_altitude = round(deg(float(moon.alt)), 1)
        print("%s" % (now))
        print("%s %s" % (moon_altitude, moon_azimuth))

        motor_1 = moon_altitude * 160  # for gearbox
        motor_2 = moon_azimuth
        pub.publish(motor_1)
        pub1.publish(motor_2)

    rate.sleep()
コード例 #4
0
ファイル: sunros.py プロジェクト: cubesat-project/CubeSat
def mainloop():
    rospy.init_node('moonros', anonymous=True)  # node name talker
    pub = rospy.Publisher('motor_1', Int16, queue_size=10)
    pub1 = rospy.Publisher('motor_2', Int16, queue_size=10)

    rate = rospy.Rate(0.5)  # hz send

    while not rospy.is_shutdown():  # test if shutdown

        now = datetime.datetime.utcnow()
        home = ephem.Observer()
        home.date = now
        if z1 == 0:
            home.lat, home.lon = '42.593948', '-81.174415'
        else:
            home.lat = lat
            home.lon = lon

        sun = ephem.Sun()
        sun.compute(home)
        sun_azimuth = round(deg(float(sun.az)), 0)
        sun_altitude = round(deg(float(sun.alt)), 0)

        motor_1 = sun_altitude  # for gearbox
        if sun_azimuth > 180:
            motor_2 = sun_azimuth - 360
        else:
            motor_2 = sun_azimuth
        pub.publish(motor_1)
        pub1.publish(motor_2)
        hello_str = "azal%s  %s" % (motor_1, motor_2)
        rospy.loginfo(hello_str)

        rospy.Subscriber('GPSlocation', Vector3, callback0)
        rate.sleep()
コード例 #5
0
def calcSunTimes(onDate):
    """
      Perform the actual calculations for sunrise, sunset and
      a number of related quantities.
      
      onDate is a datetime object

      The results are returned as a dict
      {sunrise, sunset, solarnoon}
      """
    timezone = 1  # in hours, east is positive
    longitude = 4.257188  # in decimal degrees, east is positive  #default coordinates for Scheveningen, NL
    latitude = 52.10155  # in decimal degrees, north is positive

    time = 0.5  # percentage past midnight, i.e. noon  is 0.5
    daysDelta = onDate - datetime.datetime(1900, 1, 1, 0, 0)
    day = daysDelta.days  # daynumber 1=1/1/1900

    Jday = day + 2415018.5 + time - timezone / 24  # Julian day
    Jcent = (Jday - 2451545) / 36525  # Julian century

    Manom = 357.52911 + Jcent * (35999.05029 - 0.0001537 * Jcent)
    Mlong = 280.46646 + Jcent * (36000.76983 + Jcent * 0.0003032) % 360
    Eccent = 0.016708634 - Jcent * (0.000042037 + 0.0001537 * Jcent)
    Mobliq = 23 + (26 + ((21.448 - Jcent *
                          (46.815 + Jcent *
                           (0.00059 - Jcent * 0.001813)))) / 60) / 60
    obliq = Mobliq + 0.00256 * cos(rad(125.04 - 1934.136 * Jcent))
    vary = tan(rad(obliq / 2)) * tan(rad(obliq / 2))
    Seqcent = sin(rad(Manom)) * (
        1.914602 - Jcent *
        (0.004817 + 0.000014 * Jcent)) + sin(rad(2 * Manom)) * (
            0.019993 - 0.000101 * Jcent) + sin(rad(3 * Manom)) * 0.000289
    Struelong = Mlong + Seqcent
    Sapplong = Struelong - 0.00569 - 0.00478 * sin(
        rad(125.04 - 1934.136 * Jcent))
    declination = deg(asin(sin(rad(obliq)) * sin(rad(Sapplong))))

    eqtime = 4 * deg(vary * sin(2 * rad(Mlong)) -
                     2 * Eccent * sin(rad(Manom)) + 4 * Eccent * vary *
                     sin(rad(Manom)) * cos(2 * rad(Mlong)) -
                     0.5 * vary * vary * sin(4 * rad(Mlong)) -
                     1.25 * Eccent * Eccent * sin(2 * rad(Manom)))

    hourangle = deg(
        acos(
            cos(rad(90.833)) / (cos(rad(latitude)) * cos(rad(declination))) -
            tan(rad(latitude)) * tan(rad(declination))))

    solarnoon = (720 - 4 * longitude - eqtime + timezone * 60) / 1440
    sunrise = solarnoon - hourangle * 4 / 1440
    sunset = solarnoon + hourangle * 4 / 1440

    return {
        'solarnoon': timefromdecimalday(solarnoon),
        'sunrise': timefromdecimalday(sunrise),
        'sunset': timefromdecimalday(sunset)
    }
コード例 #6
0
    def add_euler_angle_updaters(self, euler_angles):
        theta, phi, gamma = euler_angles
        frame = self.camera.frame

        # why doesn't this work in a loop? Add this method to source?
        theta.add_updater(lambda t: t.set_value(deg(frame.euler_angles[0])))
        phi.add_updater(lambda p: p.set_value(deg(frame.euler_angles[1])))
        gamma.add_updater(lambda g: g.set_value(deg(frame.euler_angles[2])))
        self.add(theta, phi, gamma)
コード例 #7
0
    def __calc(self):
        """
        Perform the actual calculations for sunrise, sunset and
        a number of related quantities.

        The results are stored in the instance variables
        sunrise_t, sunset_t and solarnoon_t
        """
        timezone = self.timezone  # in hours, east is positive
        longitude = self.long  # in decimal degrees, east is positive
        latitude = self.lat  # in decimal degrees, north is positive

        time = self.time  # percentage past midnight, i.e. noon  is 0.5
        day = self.day  # daynumber 1=1/1/1900

        jday = day + 2415018.5 + time - timezone / 24  # Julian day
        jcent = (jday - 2451545) / 36525  # Julian century

        # wizardry
        manom = 357.52911 + jcent * (35999.05029 - 0.0001537 * jcent)
        mlong = 280.46646 + jcent * (36000.76983 + jcent * 0.0003032) % 360
        eccent = 0.016708634 - jcent * (0.000042037 + 0.0001537 * jcent)
        mobliq = 23 + (26 + ((21.448 - jcent *
                              (46.815 + jcent *
                               (0.00059 - jcent * 0.001813)))) / 60) / 60
        obliq = mobliq + 0.00256 * cos(rad(125.04 - 1934.136 * jcent))
        vary = tan(rad(obliq / 2)) * tan(rad(obliq / 2))
        seqcent = sin(rad(manom)) * (
                1.914602 - jcent * (0.004817 + 0.000014 * jcent)) + \
            sin(rad(2 * manom)) * (
                0.019993 - 0.000101 * jcent) + sin(rad(3 * manom)) * 0.000289
        struelong = mlong + seqcent
        sapplong = struelong - 0.00569 - 0.00478 * \
            sin(rad(125.04 - 1934.136 * jcent))
        declination = deg(asin(sin(rad(obliq)) * sin(rad(sapplong))))

        eqtime = 4 * deg(vary * sin(2 * rad(mlong)) -
                         2 * eccent * sin(rad(manom)) + 4 * eccent * vary *
                         sin(rad(manom)) * cos(2 * rad(mlong)) -
                         0.5 * vary * vary * sin(4 * rad(mlong)) -
                         1.25 * eccent * eccent * sin(2 * rad(manom)))
        angle = (cos(rad(90.833)) /
                 (cos(rad(latitude)) * cos(rad(declination))) -
                 tan(rad(latitude)) * tan(rad(declination)))
        self.solarnoon_t = (720 - 4 * longitude - eqtime +
                            timezone * 60) / 1440
        if angle > 1.0:
            self.up_all_day = True
            return
        elif angle < -1.0:
            self.down_all_day = True
            return
        else:
            hourangle = deg(acos(angle))

        self.sunrise_t = self.solarnoon_t - hourangle * 4 / 1440
        self.sunset_t = self.solarnoon_t + hourangle * 4 / 1440
コード例 #8
0
ファイル: sunrise.py プロジェクト: zeta1999/prob_meteogram
    def __calc(self):
        """ 
        Perform the actual calculations for sunrise, sunset and 
        a number of related quantities. 
        
        The results are stored in the instance variables 
        sunrise_t, sunset_t and solarnoon_t 
        """
        timezone = self.timezone  # in hours, east is positive
        longitude = self.long  # in decimal degrees, east is positive
        latitude = self.lat  # in decimal degrees, north is positive

        time = self.time  # percentage past midnight, i.e. noon  is 0.5
        day = self.day  # daynumber 1=1/1/1900

        Jday = day + 2415018.5 + time - timezone / 24  # Julian day
        Jcent = (Jday - 2451545) / 36525  # Julian century

        Manom = 357.52911 + Jcent * (35999.05029 - 0.0001537 * Jcent)
        Mlong = 280.46646 + Jcent * (36000.76983 + Jcent * 0.0003032) % 360
        Eccent = 0.016708634 - Jcent * (0.000042037 + 0.0001537 * Jcent)
        Mobliq = (
            23
            + (26 + ((21.448 - Jcent * (46.815 + Jcent * (0.00059 - Jcent * 0.001813)))) / 60) / 60
        )
        obliq = Mobliq + 0.00256 * cos(rad(125.04 - 1934.136 * Jcent))
        vary = tan(rad(obliq / 2)) * tan(rad(obliq / 2))
        Seqcent = (
            sin(rad(Manom)) * (1.914602 - Jcent * (0.004817 + 0.000014 * Jcent))
            + sin(rad(2 * Manom)) * (0.019993 - 0.000101 * Jcent)
            + sin(rad(3 * Manom)) * 0.000289
        )
        Struelong = Mlong + Seqcent
        Sapplong = Struelong - 0.00569 - 0.00478 * sin(rad(125.04 - 1934.136 * Jcent))
        declination = deg(asin(sin(rad(obliq)) * sin(rad(Sapplong))))

        eqtime = 4 * deg(
            vary * sin(2 * rad(Mlong))
            - 2 * Eccent * sin(rad(Manom))
            + 4 * Eccent * vary * sin(rad(Manom)) * cos(2 * rad(Mlong))
            - 0.5 * vary * vary * sin(4 * rad(Mlong))
            - 1.25 * Eccent * Eccent * sin(2 * rad(Manom))
        )

        hourangle = deg(
            acos(
                cos(rad(90.833)) / (cos(rad(latitude)) * cos(rad(declination)))
                - tan(rad(latitude)) * tan(rad(declination))
            )
        )

        self.solarnoon_t = (720 - 4 * longitude - eqtime + timezone * 60) / 1440
        self.sunrise_t = self.solarnoon_t - hourangle * 4 / 1440
        self.sunset_t = self.solarnoon_t + hourangle * 4 / 1440
コード例 #9
0
ファイル: homework5.py プロジェクト: miriam1506/PEP21G02
def modify_angle(self, angle: str, degrees: int):
        if angle == 'AB':
            init_AB = self.AB
            self.AB += degrees
            if self.AB != init_AB:
                self.C = math.sqrt(self.A ** 2 + self.B ** 2 - 2 * self.A * self.B * cos(self.AB))
                self.BC = acos((self.B ** 2 + self.C ** 2 - self.A ** 2) / (2 * self.B * self.C))
                self.BC = deg(self.BC)
                self.CA = acos((self.C ** 2 + self.A ** 2 - self.B ** 2) / (2 * self.C * self.A))
                self.CA = deg(self.CA)
                print('Angle AB is:', triangle.AB)
コード例 #10
0
ファイル: sun.py プロジェクト: tgvoskuilen/pyHome
    def __calc(self):
        """
        Perform the actual calculations for sunrise, sunset and
        a number of related quantities.

        The results are stored in the instance variables
        sunrise_t, sunset_t and solarnoon_t
        """
        timezone = self.timezone  # in hours, east is positive
        longitude = self.long  # in decimal degrees, east is positive
        latitude = self.lat  # in decimal degrees, north is positive

        time = self.time  # percentage past midnight, i.e. noon  is 0.5
        day = self.day  # daynumber 1=1/1/1900

        # NOAA Spreadsheet
        Jday = day + 2415018.5 + time - timezone / 24.0  # Julian day
        Jcent = (Jday - 2451545) / 36525  # Julian century

        Manom = 357.52911 + Jcent * (35999.05029 - 0.0001537 * Jcent)
        Mlong = 280.46646 + Jcent * (36000.76983 + Jcent * 0.0003032) % 360
        Eccent = 0.016708634 - Jcent * (0.000042037 + 0.0001537 * Jcent)
        Mobliq = 23 + (26 + ((21.448 - Jcent * (46.815 + Jcent * (0.00059 - Jcent * 0.001813)))) / 60) / 60
        obliq = Mobliq + 0.00256 * cos(rad(125.04 - 1934.136 * Jcent))
        vary = tan(rad(obliq / 2)) * tan(rad(obliq / 2))
        Seqcent = (
            sin(rad(Manom)) * (1.914602 - Jcent * (0.004817 + 0.000014 * Jcent))
            + sin(rad(2 * Manom)) * (0.019993 - 0.000101 * Jcent)
            + sin(rad(3 * Manom)) * 0.000289
        )
        Struelong = Mlong + Seqcent
        Sapplong = Struelong - 0.00569 - 0.00478 * sin(rad(125.04 - 1934.136 * Jcent))
        declination = deg(asin(sin(rad(obliq)) * sin(rad(Sapplong))))

        eqtime = 4 * deg(
            vary * sin(2 * rad(Mlong))
            - 2 * Eccent * sin(rad(Manom))
            + 4 * Eccent * vary * sin(rad(Manom)) * cos(2 * rad(Mlong))
            - 0.5 * vary * vary * sin(4 * rad(Mlong))
            - 1.25 * Eccent * Eccent * sin(2 * rad(Manom))
        )

        hourangle = deg(
            acos(
                cos(rad(90.833)) / (cos(rad(latitude)) * cos(rad(declination)))
                - tan(rad(latitude)) * tan(rad(declination))
            )
        )

        self.solarnoon_t = (720 - 4 * longitude - eqtime + timezone * 60) / 1440.0
        self.sunrise_t = self.solarnoon_t - hourangle * 4 / 1440.0
        self.sunset_t = self.solarnoon_t + hourangle * 4 / 1440.0
コード例 #11
0
    def __calc(self):
        """
        Perform the actual calculations for sunrise, sunset and
        a number of related quantities.
        The results are stored in the instance variables
        sunrise_t, sunset_t and solarnoon_t
        """
        # in hours, east is positive
        latitude = self.coord[0]
        longitude = self.coord[1]

        # daynumber 1=1/1/1900
        some_day = self.day

        # Julian day
        jday = some_day + 2415020.5
        # Julian century
        jcent = (jday - 2451545) / 36525

        Manom = 357.52911 + jcent * (35999.05029 - 0.0001537 * jcent)
        Mlong = 280.46646 + jcent * (36000.76983 + jcent * 0.0003032) % 360
        Eccent = 0.016708634 - jcent * (0.000042037 + 0.0001537 * jcent)
        Mobliq = 23 + (26 + ((21.448 - jcent *
                              (46.815 + jcent *
                               (0.00059 - jcent * 0.001813)))) / 60) / 60
        obliq = Mobliq + 0.00256 * cos(rad(125.04 - 1934.136 * jcent))
        vary = tan(rad(obliq / 2)) * tan(rad(obliq / 2))
        Seqcent = sin(rad(Manom)) * (
            1.914602 - jcent *
            (0.004817 + 0.000014 * jcent)) + sin(rad(2 * Manom)) * (
                0.019993 - 0.000101 * jcent) + sin(rad(3 * Manom)) * 0.000289
        Struelong = Mlong + Seqcent
        Sapplong = Struelong - 0.00569 - 0.00478 * sin(
            rad(125.04 - (1934.136 * jcent)))
        declination = deg(asin(sin(rad(obliq)) * sin(rad(Sapplong))))

        eqtime = 4 * deg(vary * sin(2 * rad(Mlong)) -
                         2 * Eccent * sin(rad(Manom)) + 4 * Eccent * vary *
                         sin(rad(Manom)) * cos(2 * rad(Mlong)) -
                         0.5 * vary * vary * sin(4 * rad(Mlong)) -
                         1.25 * Eccent * Eccent * sin(2 * rad(Manom)))

        hourangle = deg(
            acos(
                cos(rad(90.833)) /
                (cos(rad(latitude)) * cos(rad(declination))) -
                tan(rad(latitude)) * tan(rad(declination))))

        self.solarnoon_t = (720 - 4 * longitude -
                            eqtime) / 1440 + some_day - 25567
        self.sunrise_t = self.solarnoon_t - hourangle * 4 / 1440
        self.sunset_t = self.solarnoon_t + hourangle * 4 / 1440
コード例 #12
0
    def send_cmd_to_arduino(self, x, angular):
        now = datetime.datetime.utcnow()
        home = ephem.Observer()
        home.date = now
        home.lat, home.lon = '42.593948', '-81.174415'
        moon = ephem.Moon()
        moon.compute(home)
        moon_azimuth = round(deg(float(moon.az)), 0)
        moon_altitude = round(deg(float(moon.alt)), 0)

        motor_1 = moon_altitude  # for gearbox
        motor_2 = moon_azimuth
        hello_str = "azal%s  %s" % (moon_azimuth, moon_altitude)
        rospy.loginfo(hello_str)
コード例 #13
0
def calcSunTimes(onDate):  
      """
      Perform the actual calculations for sunrise, sunset and
      a number of related quantities.
      
      onDate is a datetime object

      The results are returned as a dict
      {sunrise, sunset, solarnoon}
      """  
      timezone = 1 # in hours, east is positive  #+1for european summertime. TODO: find a more elegant solution for this.
      longitude= 4.257188     # in decimal degrees, east is positive  #default coordinates for Scheveningen, NL
      latitude = 52.10155      # in decimal degrees, north is positive  
      
      time  = 0.5 # percentage past midnight, i.e. noon  is 0.5  
      daysDelta = onDate-datetime.datetime(1900,1,1,0,0)
      day   = daysDelta.days     # daynumber 1=1/1/1900  
       
      Jday     =day+2415018.5+time-timezone/24 # Julian day  
      Jcent    =(Jday-2451545)/36525    # Julian century  
      
      Manom    = 357.52911+Jcent*(35999.05029-0.0001537*Jcent)  
      Mlong    = 280.46646+Jcent*(36000.76983+Jcent*0.0003032)%360  
      Eccent   = 0.016708634-Jcent*(0.000042037+0.0001537*Jcent)  
      Mobliq   = 23+(26+((21.448-Jcent*(46.815+Jcent*(0.00059-Jcent*0.001813))))/60)/60  
      obliq    = Mobliq+0.00256*cos(rad(125.04-1934.136*Jcent))  
      vary     = tan(rad(obliq/2))*tan(rad(obliq/2))  
      Seqcent  = sin(rad(Manom))*(1.914602-Jcent*(0.004817+0.000014*Jcent))+sin(rad(2*Manom))*(0.019993-0.000101*Jcent)+sin(rad(3*Manom))*0.000289  
      Struelong= Mlong+Seqcent  
      Sapplong = Struelong-0.00569-0.00478*sin(rad(125.04-1934.136*Jcent))  
      declination = deg(asin(sin(rad(obliq))*sin(rad(Sapplong))))  
        
      eqtime   = 4*deg(vary*sin(2*rad(Mlong))-2*Eccent*sin(rad(Manom))+4*Eccent*vary*sin(rad(Manom))*cos(2*rad(Mlong))-0.5*vary*vary*sin(4*rad(Mlong))-1.25*Eccent*Eccent*sin(2*rad(Manom)))  
      
      hourangle= deg(acos(cos(rad(90.833))/(cos(rad(latitude))*cos(rad(declination)))-tan(rad(latitude))*tan(rad(declination))))  
      
      solarnoon =(720-4*longitude-eqtime+timezone*60)/1440  
      sunrise = solarnoon-hourangle*4/1440  
      sunset = solarnoon+hourangle*4/1440  
      
      print timefromdecimalday(sunrise)
      print timefromdecimalday(sunset)


      return {
        'solarnoon': timefromdecimalday(solarnoon),
        'sunrise': timefromdecimalday(sunrise),
        'sunset': timefromdecimalday(sunset)
      }
コード例 #14
0
 def get_euler_angles_group(self):
     euler_angles = VGroup(*[
         DecimalNumber(deg(angle), num_decimal_places=1)
         for angle in self.camera.frame.euler_angles
     ]).arrange(DOWN).to_corner(UR, buff=0.5)
     euler_angles.fix_in_frame()
     return euler_angles
コード例 #15
0
    def _declination(self):
        """
        """
        appLong = self._appLong()
        oc = self._obliqCorr()

        return deg(asin(sin(rad(oc)) * sin(rad(appLong))))
コード例 #16
0
ファイル: emulation.py プロジェクト: wasmith/PyEmulate
	def calculate_int_waypoint(self, dec_lat, dec_lon, m_dist, dec_brng):
		lat = rad(dec_lat)
		lon = rad(dec_lon)
		brng = rad(dec_brng)
		dist = m_dist/1000
	
		new_lat = asin(sin(lat)*cos(dist/self.ER) + cos(lat)*sin(dist/self.ER)*cos(brng))
		new_lon = lon + atan2(sin(brng)*sin(dist/self.ER)*cos(lat),cos(dist/self.ER) - sin(lat)*sin(new_lat))
		norm_new_lon = (new_lon + (3*pi)) % (2*pi) - pi
	
		rnd_lat = deg(new_lat)
		rnd_lon = deg(norm_new_lon)
	
		new_latlon = (rnd_lat, rnd_lon);
	
		return new_latlon
コード例 #17
0
def table():

    g = ephem.Observer()
    g.name='Raleigh'  
    g.lat=rad(35.78)  # lat/long in decimal degrees  
    g.long=rad(-78.64)  
    
    moon = ephem.Moon(g)
    sun = ephem.Sun(g)
    results = []
    for h_year in range (1431,1442):
        print
        um = HijriDate(h_year,9,1)
        Hijri_str = "%02d-%02d-%d" % (um.day, um.month, um.year)
        print Hijri_str
        print "            Gregorian: %d/%d/%d" %(um.year_gr, um.month_gr, um.day_gr)

        g.date = ephem.Date("%d/%d/%d" %(um.year_gr, um.month_gr, um.day_gr, )) # midnight UTC
        g.date = g.next_transit(sun, start=g.next_rising(sun))
        print '        solar transit: %s' % datetime.strftime(ephem.localtime(g.date), '%c')
        sunset1 = g.next_setting(sun)
        print '               sunset: %s' % datetime.strftime(ephem.localtime(sunset1), '%c')
        
        #lunar circumstances at local sunset
        g.date = sunset1
        moon.compute(g)
        print '  lunar alt at sunset: %.1f' %  deg(moon.alt) 
        print 'lunar elong at sunset: %.1f' % deg(moon.elong)
        print 'lunar phase at sunset: %.1f%%' % moon.phase
        
        # https://moonsighting.com/ramadan-eid.html
        # http://www.fiqhcouncil.org/node/83
        if  deg(moon.alt) >= 5.0 and deg(moon.elong) >= 8.0:
            start = sunset1
        else:
            start = g.next_setting(sun)
        results.append(start)

        newmoon2 = ephem.next_new_moon(g.date ) 
        g.date = newmoon2
        end = g.next_setting(sun)
        print '        new moon     : %s UTC' % datetime.strftime(newmoon2.datetime(), '%c')

        print '        Ramadan_begin_end start: %s' % datetime.strftime(ephem.localtime(start), '%c')
        print '        Ramadan_begin_end end  : %s' % datetime.strftime(ephem.localtime(end), '%c')

    return results
コード例 #18
0
 def build(self, skip_collision_calc=False):
     '''
     build the PTG vector, by sampling phi at the specified resolution
     Warning: Takes a while to complete, around 1 hour on the default configurations
     To speed up testing of collision unrelated feature set skip_collision_calc to True
     '''
     phi_max = self.vehicle.phi_max
     for phi in np.arange(-phi_max, phi_max + self.phi_resolution,
                          self.phi_resolution):
         self.config['init_phi'] = min(deg(phi), 30.)
         self.config['name'] = '{0}_init_phi = {1:0.1f}'.format(
             self.name, deg(phi))
         ptg = self.ptg_class(self.vehicle, self.config)
         if skip_collision_calc:
             ptg.build_cpoints()
         else:
             ptg.build()
         self.ptgs.append(ptg)
コード例 #19
0
 def plot_trajectories(self, axes):
     for cpoints_at_k in self.cpoints:
         x = [cpoint.pose.x for cpoint in cpoints_at_k]
         y = [cpoint.pose.y for cpoint in cpoints_at_k]
         axes.plot(x,
                   y,
                   label=r'$\alpha = {0:.1f}^\circ$'.format(
                       deg(cpoints_at_k[0].alpha)))
         axes.legend(loc='upper left', shadow=True)
コード例 #20
0
    def _HaSunrise(self):
        """
        """
        declin = self._declination()

        rtn = cos(rad(90.833)) / (cos(rad(self._lat)) * cos(rad(declin)))
        rtn -= tan(rad(self._lat)) * tan(rad(declin))

        return deg(acos(rtn))
コード例 #21
0
ファイル: aptg_runner.py プロジェクト: Forrest-Z/prrt
def plot_ptg_cpoints(aptg: APTG, init_phi: float):
    import matplotlib.pyplot as plt
    fig, ax = plt.subplots()
    aptg.build(skip_collision_calc=True)
    ptg = aptg.ptg_at_phi(init_phi)
    ax.title.set_text('Trajectories at $\phi_i = {0}^\circ$ '.format(
        deg(init_phi)))
    ptg.plot_trajectories(ax)
    plt.show()
コード例 #22
0
def get_orbital_elements(r,rdot,t_2,t_0):
    rnorm = np.linalg.norm(r)
    rdotnorm = np.linalg.norm(rdot)
    a = get_a(rnorm,rdot)
    n = sqrt(k**2 / a**3)
    e = get_e(r,rdot,a)
    h = k * np.cross(r,rdot)
    hnorm = np.linalg.norm(h)
    I = acos(h[2] / hnorm)
    Omega = get_Omega(h,I)
    omegaf = get_omegaf(r,rnorm,I,Omega)
    f = get_f(a,e,r,rdot,rnorm)
    omega = get_omega(omegaf,f)
    M = get_M(a,e,rnorm,f,t_2,t_0)
    I = deg(I) % 360
    Omega = deg(Omega) % 360
    omega = deg(omega) % 360
    M = deg(M) % 360
    return a,e,I,Omega,omega,M
コード例 #23
0
ファイル: tanks3.py プロジェクト: electrohedric/tankdev
 def update(self):
     while Game.event_queue:
         nxt = Game.event_queue.pop()
         if nxt.type == MOUSEBUTTONDOWN:
             if nxt.button == 1:
                 self.shoot()
                 # TODO play sound
     allkeys = key.get_pressed()
     vdir = hdir = 0
     if allkeys[K_w]:
         vdir = 1
     elif allkeys[K_s]:
         vdir = -1
     if allkeys[K_a]:
         hdir = -1
     elif allkeys[K_d]:
         hdir = 1
     if vdir != 0 or hdir != 0:  # if you're applying gas
         hdir, vdir = norm((hdir, vdir))
         dirneeded = deg(atan2(vdir, hdir)) % 180
         self.rot %= 180
         if self.rot == dirneeded:
             self.vx += hdir * self.acceleration_rate
             self.vy -= vdir * self.acceleration_rate
             finalspeed = sqrt(self.vx * self.vx + self.vy * self.vy)
             if finalspeed > self.max_speed:
                 self.vx *= self.max_speed / finalspeed
                 self.vy *= self.max_speed / finalspeed
         else:
             if self.vx == 0 and self.vy == 0:
                 self.turn_toward(dirneeded)
             else:
                 self.apply_brakes()
     else:
         self.apply_brakes()
     if self.vx != 0 or self.vy != 0:
         self.x += self.vx * Game.delta
         self.y += self.vy * Game.delta
         self.calculate_vertices()
     mpos = mouse.get_pos()
     self.set_gunangle(deg(atan2(mpos[1] - self.y, mpos[0] - self.x)))
コード例 #24
0
ファイル: suncalc.py プロジェクト: r1tch/uhc
    def __calc(self):
        """
        Perform the actual calculations for sunrise, sunset and
        a number of related quantities.
        The results are stored in the instance variables
        sunrise_t, sunset_t and solarnoon_t
        """
        # in hours, east is positive
        latitude = self.coord[0]
        longitude = self.coord[1]

        # daynumber 1=1/1/1900
        some_day = self.day

        # Julian day
        jday = some_day + 2415020.5
        # Julian century
        jcent = (jday - 2451545) / 36525

        Manom = 357.52911 + jcent * (35999.05029 - 0.0001537 * jcent)
        Mlong = 280.46646 + jcent * (36000.76983 + jcent * 0.0003032) % 360
        Eccent = 0.016708634 - jcent * (0.000042037 + 0.0001537 * jcent)
        Mobliq = 23 + (26 + ((21.448 - jcent * (46.815 + jcent * (0.00059 - jcent * 0.001813)))) / 60) / 60
        obliq = Mobliq + 0.00256 * cos(rad(125.04 - 1934.136 * jcent))
        vary = tan(rad(obliq / 2)) * tan(rad(obliq / 2))
        Seqcent = sin(rad(Manom)) * (1.914602 - jcent * (0.004817 + 0.000014 * jcent)) + sin(rad(2 * Manom)) * (0.019993 - 0.000101 * jcent) + sin(rad(3 * Manom)) * 0.000289
        Struelong = Mlong + Seqcent
        Sapplong = Struelong - 0.00569 - 0.00478 * sin(rad(125.04 - (1934.136 * jcent)))
        declination = deg(asin(sin(rad(obliq)) * sin(rad(Sapplong))))

        eqtime = 4 * deg(
            vary * sin(2 * rad(Mlong)) - 2 * Eccent * sin(rad(Manom)) + 4 * Eccent * vary * sin(rad(Manom)) * cos(
                2 * rad(Mlong)) - 0.5 * vary * vary * sin(4 * rad(Mlong)) - 1.25 * Eccent * Eccent * sin(
                2 * rad(Manom)))

        hourangle = deg(acos(cos(rad(90.833)) / (cos(rad(latitude)) * cos(rad(declination))) - tan(rad(latitude)) * tan(
            rad(declination))))

        self.solarnoon_t = (720 - 4 * longitude - eqtime) / 1440 + some_day - 25567
        self.sunrise_t = self.solarnoon_t - hourangle * 4 / 1440
        self.sunset_t = self.solarnoon_t + hourangle * 4 / 1440
コード例 #25
0
    def modify_angle(self, angle: str, degrees: int):
        if angle == 'AB':
            init_AB = self.AB
            self.AB += degrees
            if self.AB != init_AB:
                self.C = math.sqrt(self.A * 2 + self.B * 2 - 2 * self.A * self.B * cos(self.AB))
                self.BC = acos((self.B * 2 + self.C * 2 - self.A ** 2) / (2 * self.B * self.C))
                self.BC = deg(self.BC)
                self.CA = acos((self.C * 2 + self.A * 2 - self.B ** 2) / (2 * self.C * self.A))
                self.CA = deg(self.CA)
                print('Angle AB is:', triangle.AB)
        elif angle == 'BC':
            init_BC = self.BC
            self.BC += degrees
            if self.BC != init_BC:
                self.A = math.sqrt(self.B * 2 + self.C * 2 - 2 * self.B * self.C * cos(self.BC))
                self.AB = acos((self.A * 2 + self.B * 2 - self.C ** 2) / (2 * self.A * self.B))
                self.AB = deg(self.AB)
                self.CA = acos((self.C * 2 + self.A * 2 - self.B ** 2) / (2 * self.C * self.A))
                self.CA = deg(self.CA)
                print('Angle BC is:', triangle.BC)
        elif angle == 'CA':
            init_CA = self.CA
            self.CA += degrees
            if self.CA != init_CA:
                self.B = math.sqrt(self.C * 2 + self.A * 2 - 2 * self.C * self.A * cos(self.CA))
                self.AB = acos((self.A * 2 + self.B * 2 - self.C ** 2) / (2 * self.A * self.B))
                self.AB = deg(self.AB)
                self.BC = acos((self.B * 2 + self.C * 2 - self.A ** 2) / (2 * self.B * self.C))
                self.BC = deg(self.BC)
                print('Angle CA is:', triangle.CA)

        if self.AB + self.BC + self.CA < 0 or self.AB + self.BC + self.CA > 180:
             raise Exception('Angle outside interval (0, 180)')
コード例 #26
0
    def from_csv(r, rdot, epoch):
        # Calculates orbital momentum and eccentricity vector
        h = Vector.cross(r, rdot)
        ev = Vector.subtract(Vector.divide(Vector.cross(rdot, h), cbody_GM),
                             Vector.divide(r, Vector.norm(r)))

        # Calculates true anomaly and arbitrary vector n
        if Vector.dot(r, rdot) >= 0:
            v = acos(Vector.dot(ev, r) / (Vector.norm(ev) * Vector.norm(r)))
        else:
            v = (2 * pi) - acos(
                Vector.dot(ev, r) / (Vector.norm(ev) * Vector.norm(r)))
        n = Vector(-h.y, h.x, 0)

        # Calculates inclination eccentricity and Eccentric anomaly
        i = acos(h.z / h.norm())
        e = ev.norm()
        E = 2 * atan((tan(v / 2)) / sqrt((1 + e) / (1 - e)))

        # Calculates longitude of ascending node
        if n.y >= 0:
            lan = acos(n.x / n.norm())
        else:
            lan = (2 * pi) - acos(n.x / n.norm())

        # Calculates argument of periapsis
        if ev.z >= 0:
            aop = acos(Vector.dot(n, ev) / (Vector.norm(n) * Vector.norm(ev)))
        else:
            aop = (2 * pi) - acos(
                Vector.dot(n, ev) / (Vector.norm(n) * Vector.norm(ev)))

        # Calculates semi-major axis and mean anomaly
        a = 1 / ((2 / r.norm()) - ((rdot.norm()**2) / cbody_GM))
        if E >= (e * sin(E)):
            M = E - (e * sin(E))
        else:
            M = (2 * pi) + (E - (e * sin(E)))
        return Orbit(a, e, deg(i), deg(aop), deg(lan), deg(M), epoch)
コード例 #27
0
ファイル: aptg_runner.py プロジェクト: Forrest-Z/prrt
def trace_trajectory_at_phi(aptg: APTG, init_phi: float):
    # same as trace_trajectory_at_phi_alpha, however all possible alpha values are considered
    import matplotlib.pyplot as plt
    name = 'trajectories_at_phi_{0:.0f}'.format(deg(init_phi))
    grid_size = aptg.vehicle.trailer_l * 4.
    aptg.build(skip_collision_calc=True)
    ptg = aptg.ptg_at_phi(init_phi)
    fig, ax = plt.subplots()
    ax.set_xlim([-grid_size, grid_size])
    ax.set_ylim([-grid_size, grid_size])
    frame = -1
    print('plotting trajectories, this will take a while!')
    for cpoints_at_alpha in ptg.cpoints:
        alpha = cpoints_at_alpha[0].alpha
        for cpoint in cpoints_at_alpha:
            frame += 1
            aptg.vehicle.plot(ax, cpoint.pose, None)
            ax.title.set_text(
                r'Trajectory at $\phi_i = {0:.1f}^\circ, \alpha = {1:.1f}^\circ$ '
                .format(deg(init_phi), deg(alpha)))
            plt.savefig('./out/{0}_{1:04d}.png'.format(name, frame))
            ax.lines = []
コード例 #28
0
    def _eqOfTime(self):
        """
        """
        y = tan(rad(self._obliqCorr() / 2))**2
        gmls = self._gmls()
        gmas = self._gmas()
        eeo = self._eeo()

        rtn = y * sin(2 * rad(gmls)) - 2 * eeo * sin(rad(gmas))
        rtn += 4 * eeo * y * sin(rad(gmas)) * cos(2 * rad(gmls))
        rtn -= 0.5 * y**2 * sin(4 * rad(gmls)) - 1.25 * eeo**2 * sin(
            2 * rad(gmas))

        return 4 * deg(rtn)
コード例 #29
0
ファイル: aptg_runner.py プロジェクト: Forrest-Z/prrt
def trace_trajectory_at_phi_alpha(aptg: APTG, init_phi: float, alpha: float):
    # plot the vehicle at each cpoint of the trajectory selected by fixed init_phi and fixed alpha
    import matplotlib.pyplot as plt
    name = 'trajectories_at_phi_{0:.0f}_alpha_{1:.0f}'.format(
        deg(init_phi), deg(alpha))
    aptg.build(skip_collision_calc=True)
    grid_size = aptg.vehicle.trailer_l * 4.
    ptg = aptg.ptg_at_phi(init_phi)
    cpoints_at_alpha = ptg.cpoints[ptg.alpha2idx(alpha)]
    fig, ax = plt.subplots()
    ax.set_xlim([-grid_size, grid_size])
    ax.set_ylim([-grid_size, grid_size])
    frame = -1
    for cpoint in cpoints_at_alpha:
        frame += 1

        #aptg.vehicle.plot(ax, cpoint.pose, None)
        aptg.vehicle.plot(ax, cpoint.pose, 'b')
        ax.title.set_text(
            r'Trajectory at $\phi_i = {0:.1f}^\circ, \alpha = {1:.1f}^\circ$ '.
            format(deg(init_phi), deg(alpha)))
        plt.savefig('./out/{0}_{1:04d}.png'.format(name, frame))
        ax.lines = []
コード例 #30
0
def AngSolAz(Ang_dcl, Ang_hr, Ang_zth, lat):
	
	'''
	Approximate Solar Azimuth angle (0=N, 90=E, 180=S, 270=W) computed 
	from 180 + HA
	From Solar engineering of thermal processes, J.A. Duffie and 
	W.A. Beckman [8].
	Yield result in radians to be converted at the end into degrees.
	'''
	Ang_sol_az = (np.sign(Ang_hr) * abs(acos((cos(rad(Ang_zth)) 
			* sin(rad(lat)) - sin(rad(Ang_dcl))) / (sin(rad(Ang_zth)) 
										* cos(rad(lat))))))
		
	return deg(Ang_sol_az)
コード例 #31
0
 def moon_path(self):
     self.date = datetime.date.today()
     result = []
     for i in range(24 * 4):  # compute position for every 15 minutes
         self.moon.compute(self)
         next_new_moon = ephem.next_new_moon(self.date)
         previous_new_moon = ephem.previous_new_moon(self.date)
         lunation = (self.date - previous_new_moon) / (next_new_moon -
                                                       previous_new_moon)
         row = [
             ephem.localtime(self.date).time(),
             deg(self.moon.alt),
             deg(self.moon.az),
             self.date.datetime().replace(tzinfo=pytz.UTC).astimezone(
                 self.local_timezone).strftime("%H:%M"), self.moon.phase,
             lunation
         ]
         result.append(row)
         self.date += ephem.minute * 15
     return pd.DataFrame(result,
                         columns=[
                             'Time', 'Moon altitude', 'Azimuth',
                             'Local_time', 'Phase', 'Lunation'
                         ])
コード例 #32
0
def AngZth(Ang_dcl, lat, Ang_hr):
	
	'''
	Angle of Solar Zenith, it is the complement of Solar elevation 
	(or altitude angle, e), From D L Hartman, 1994.
	Z= 90 - e, cos(Z)=cos(d)cos(L)cos(H)+sin(d)sin(L) 
	(*this last one should be L), 
	e= solar elevation, L= Latitude, d= Declination, H= hour angle
	For solar altitude the arcsin would be required in stead of arccosine. 
	Yields result in RADIANS converted to degrees.
	'''
	
	Ang_zth = (acos(cos(rad(Ang_dcl)) * cos(rad(lat)) * cos(rad(Ang_hr)) 
							+ sin(rad(Ang_dcl)) * sin(rad(lat))))
	
	return deg(Ang_zth)
コード例 #33
0
def AngDay(date_time):	
	
	'''
	Number of the day, some sources call it julian number day
	From J.A. Duffie and W.A. Beckman [8]. 
	Yield result in radians but converted to degrees at 
	the end of the function.
	'''
	d = pd.Series(date_time).dt.dayofyear[0] # to get the day of year
	year = date_time.year
	
	# Formula to identify leap years
	year_days = 366 if ((year % 4 == 0 and year % 100 != 0) or 
					(year % 400 == 0 and year % 100 != 0)) else 365
	
	Ang_dy  = 2 * pi * ((d - 1) / year_days)
	
	return deg(Ang_dy)
コード例 #34
0
ファイル: ws_plots.py プロジェクト: Forrest-Z/prrt
def plot_trajectories(ptg: PTG):
    fig, ax = plt.subplots()
    for cpoints_at_k in ptg.cpoints:
        x = [cpoint.pose.x for cpoint in cpoints_at_k]
        y = [cpoint.pose.y for cpoint in cpoints_at_k]
        ax.plot(x, y, 'k')

    ax.title.set_text('Trajectories at $\phi_i = {0}^\circ$ '.format(
        deg(ptg.cpoints[0][0].phi)))
    k = ptg.alpha2idx(rad(0.))
    x = ptg.cpoints[k][10].x
    y = ptg.cpoints[k][10].y
    ax.annotate(
        r'$\alpha = {0:.1f}^\circ$'.format(0.),
        xy=(x, y),  # theta, radius
        xytext=(x - 0.5, y - 0.5),  # fraction, fraction
        arrowprops=dict(facecolor='black', shrink=0.05),
        horizontalalignment='left',
        verticalalignment='bottom',
        fontsize=20)
    k = ptg.alpha2idx(rad(15.))
    x = ptg.cpoints[k][-10].x
    y = ptg.cpoints[k][-10].y
    ax.annotate(
        r'$\alpha = {0:.1f}^\circ$'.format(15),
        xy=(x, y),  # theta, radius
        xytext=(x - 0.5, y - 0.5),  # fraction, fraction
        arrowprops=dict(facecolor='black', shrink=0.05),
        horizontalalignment='left',
        verticalalignment='bottom',
        fontsize=20)
    k = ptg.alpha2idx(rad(30))
    x = ptg.cpoints[k][-5].x
    y = ptg.cpoints[k][-5].y
    ax.annotate(
        r'$\alpha = {0:.1f}^\circ$'.format(30),
        xy=(x, y),  # theta, radius
        xytext=(x - 0.5, y - 0.5),  # fraction, fraction
        arrowprops=dict(facecolor='black', shrink=0.05),
        horizontalalignment='left',
        verticalalignment='bottom',
        fontsize=20)

    plt.show()
コード例 #35
0
ファイル: sun.py プロジェクト: fredriklindberg/wordclock
    def __calc(self):
        """
        Perform the actual calculations for sunrise, sunset and
        a number of related quantities.

        The results are stored in the instance variables
        sunrise_t, sunset_t and solarnoon_t
        """

        when = self.when

        # datetime days are numbered in the Gregorian calendar
        # while the calculations from NOAA are distibuted as
        # OpenOffice spreadsheets with days numbered from
        # 1/1/1900. The difference are those numbers taken for
        # 18/12/2010
        day = when.toordinal() - (734124 - 40529)
        t = when.time()
        time = (t.hour + t.minute/60.0 + t.second/3600.0)/24.0

        longitude = self.long     # in decimal degrees, east is positive
        latitude = self.lat       # in decimal degrees, north is positive

        Jday = day + 2415018.5 + time/24 # Julian day
        Jcent = (Jday - 2451545) / 36525 # Julian century

        Manom = 357.52911 + Jcent * (35999.05029 - 0.0001537 * Jcent)
        Mlong = 280.46646 + Jcent * (36000.76983 + Jcent * 0.0003032) % 360
        Eccent = 0.016708634 - Jcent * (0.000042037 + 0.0001537 * Jcent)
        Mobliq = 23 + (26 + ((21.448 - Jcent * (46.815 + Jcent *\
            (0.00059 - Jcent * 0.001813)))) / 60) / 60
        obliq = Mobliq + 0.00256 * cos(rad(125.04 - 1934.136 * Jcent))
        vary = tan(rad(obliq / 2)) * tan(rad(obliq / 2))
        Seqcent = sin(rad(Manom)) * (1.914602 - Jcent *\
            (0.004817 + 0.000014 * Jcent)) + sin(rad(2 * Manom)) *\
            (0.019993 - 0.000101 * Jcent) + sin(rad(3 * Manom)) * 0.000289
        Struelong = Mlong + Seqcent
        Sapplong = Struelong - 0.00569-0.00478 * sin(rad(125.04 - 1934.136 * Jcent))
        declination = deg(asin(sin(rad(obliq)) * sin(rad(Sapplong))))

        eqtime = 4 * deg(vary * sin(2 * rad(Mlong)) - 2 * Eccent *\
            sin(rad(Manom)) + 4 * Eccent * vary * sin(rad(Manom)) *\
            cos(2*rad(Mlong)) - 0.5 * vary * vary * sin(4 * rad(Mlong)) -\
            1.25 * Eccent * Eccent * sin(2 * rad(Manom)))
        hourangle = deg(acos(cos(rad(90.833)) / (cos(rad(latitude)) *\
            cos(rad(declination))) - tan(rad(latitude)) * tan(rad(declination))))

        solarnoon_t = (720 - 4 * longitude-eqtime) / 1440
        sunrise_t  = solarnoon_t-hourangle * 4 / 1440
        sunset_t   = solarnoon_t+hourangle * 4 / 1440

        def decimaltotime(day):
            global time
            hours  = 24.0 * day
            h = int(hours)
            minutes = (hours-h) * 60
            m = int(minutes)
            seconds = (minutes-m) * 60
            s = int(seconds)
            return time(hour=h, minute=m, second=s)

        self.solarnoon_t = decimaltotime(solarnoon_t)
        self.sunrise_t = decimaltotime(sunrise_t)
        self.sunset_t = decimaltotime(sunset_t)
コード例 #36
0
def main():
    # Define image coordinate of conjugate points
    Lx = np.array([-4.87, 89.296, 0.256, 90.328, -4.673, 88.591])
    Ly = np.array([1.992, 2.706, 84.138, 83.854, -86.815, -85.269])
    Rx = np.array([-97.920, -1.485, -90.906, -1.568, -100.064, -0.973])
    Ry = np.array([-2.91, -1.836, 78.980, 79.482, -95.733, -94.312])

    # Define interior orientation parameters
    f = 152.113

    # Define initial values
    XL0 = YL0 = OmegaL0 = PhiL0 = KappaL0 = 0
    ZL0 = ZR0 = f
    XR0 = abs(Lx - Rx).mean()
    YR0 = OmegaR0 = PhiR0 = KappaR0 = 0

    # Define initial coordinate for object points
    # X0 = np.array(Lx)
    # Y0 = np.array(Ly)
    # Z0 = np.zeros(len(Lx))
    X0 = XR0 * Lx / (Lx - Rx)
    Y0 = XR0 * Ly / (Lx - Rx)
    Z0 = f - (XR0 * f / (Lx - Rx))

    # Define symbols
    fs, x0s, y0s = symbols("f x0 y0")
    XLs, YLs, ZLs, OmegaLs, PhiLs, KappaLs = symbols(u"XL YL ZL ωL, φL, κL".encode(LANG))

    XRs, YRs, ZRs, OmegaRs, PhiRs, KappaRs = symbols(u"XR YR ZR ωR, φR, κR".encode(LANG))

    xls, yls, xrs, yrs = symbols("xl yl xr yr")
    XAs, YAs, ZAs = symbols("XA YA ZA")

    # List observation equations
    F1 = getEqns(x0s, y0s, fs, XLs, YLs, ZLs, OmegaLs, PhiLs, KappaLs, xls, yls, XAs, YAs, ZAs)

    F2 = getEqns(x0s, y0s, fs, XRs, YRs, ZRs, OmegaRs, PhiRs, KappaRs, xrs, yrs, XAs, YAs, ZAs)

    # Create lists for substitution of initial values and constants
    var1 = np.array([x0s, y0s, fs, XLs, YLs, ZLs, OmegaLs, PhiLs, KappaLs, xls, yls, XAs, YAs, ZAs])
    var2 = np.array([x0s, y0s, fs, XRs, YRs, ZRs, OmegaRs, PhiRs, KappaRs, xrs, yrs, XAs, YAs, ZAs])

    # Define a symbol array for unknown parameters
    l = np.array([OmegaRs, PhiRs, KappaRs, YRs, ZRs, XAs, YAs, ZAs])

    # Compute coefficient matrix
    JF1 = F1.jacobian(l)
    JF2 = F2.jacobian(l)

    # Create function objects for two parts of coefficient matrix and f matrix
    B1 = lambdify(tuple(var1), JF1, modules="sympy")
    B2 = lambdify(tuple(var2), JF2, modules="sympy")
    F01 = lambdify(tuple(var1), -F1, modules="sympy")
    F02 = lambdify(tuple(var2), -F2, modules="sympy")

    X = np.ones(1)  # Initial value for iteration
    lc = 1  # Loop counter
    while abs(X.sum()) > 10 ** -12:
        B = np.matrix(np.zeros((4 * len(Lx), 5 + 3 * len(Lx))))
        F0 = np.matrix(np.zeros((4 * len(Lx), 1)))
        # Column index which is used to update values of B and f matrix
        j = 0
        for i in range(len(Lx)):
            # Create lists of initial values and constants
            val1 = np.array([0, 0, f, XL0, YL0, ZL0, OmegaL0, PhiL0, KappaL0, Lx[i], Ly[i], X0[i], Y0[i], Z0[i]])
            val2 = np.array([0, 0, f, XR0, YR0, ZR0, OmegaR0, PhiR0, KappaR0, Rx[i], Ry[i], X0[i], Y0[i], Z0[i]])
            # For coefficient matrix B
            b1 = matrix2numpy(B1(*val1)).astype(np.double)
            b2 = matrix2numpy(B2(*val2)).astype(np.double)
            B[i * 4 : i * 4 + 2, :5] = b1[:, :5]
            B[i * 4 : i * 4 + 2, 5 + j * 3 : 5 + (j + 1) * 3] = b1[:, 5:]
            B[i * 4 + 2 : i * 4 + 4, :5] = b2[:, :5]
            B[i * 4 + 2 : i * 4 + 4, 5 + j * 3 : 5 + (j + 1) * 3] = b2[:, 5:]

            # For constant matrix f
            f01 = matrix2numpy(F01(*val1)).astype(np.double)
            f02 = matrix2numpy(F02(*val2)).astype(np.double)
            F0[i * 4 : i * 4 + 2, :5] = f01
            F0[i * 4 + 2 : i * 4 + 4, :5] = f02
            j += 1

        # Solve unknown parameters
        N = B.T * B  # Compute normal matrix
        t = B.T * F0  # Compute t matrix
        X = N.I * t  # Compute the unknown parameters

        # Update initial values
        OmegaR0 += X[0, 0]
        PhiR0 += X[1, 0]
        KappaR0 += X[2, 0]
        YR0 += X[3, 0]
        ZR0 += X[4, 0]
        X0 += np.array(X[5::3, 0]).flatten()
        Y0 += np.array(X[6::3, 0]).flatten()
        Z0 += np.array(X[7::3, 0]).flatten()

        # Output messages for iteration process
        print "Iteration count: %d" % lc, u"|ΔX| = %.6f".encode(LANG) % abs(X.sum())
        lc += 1  # Update Loop counter

    # Compute residual vector
    V = F0 - B * X

    # Compute error of unit weight
    s0 = ((V.T * V)[0, 0] / (B.shape[0] - B.shape[1])) ** 0.5

    # Compute other informations
    # Sigmall = np.eye(B.shape[0])
    SigmaXX = s0 ** 2 * N.I
    # SigmaVV = s0**2 * (Sigmall - B * N.I * B.T)
    # Sigmallhat = s0**2 * (Sigmall - SigmaVV)
    param_std = np.sqrt(np.diag(SigmaXX))
    pho_res = np.array(V).flatten()
    # pho_res = np.sqrt(np.diag(SigmaVV))

    # Output results
    print "\nExterior orientation parameters:"
    print ("%9s" + " %9s" * 3) % ("Parameter", "Left pho", "Right pho", "SD right")
    print "%-10s %8.4f %9.4f %9.4f" % ("Omega(deg)", deg(OmegaL0), deg(OmegaR0), deg(param_std[0]))
    print "%-10s %8.4f %9.4f %9.4f" % ("Phi(deg)", deg(PhiL0), deg(PhiR0), deg(param_std[1]))
    print "%-10s %8.4f %9.4f %9.4f" % ("Kappa(deg)", deg(KappaL0), deg(KappaR0), deg(param_std[2]))
    print "%-10s %8.4f %9.4f" % ("XL", XL0, XR0)
    print "%-10s %8.4f %9.4f %9.4f" % ("YL", YL0, YR0, param_std[3])
    print "%-10s %8.4f %9.4f %9.4f\n" % ("ZL", ZL0, ZR0, param_std[4])

    print "Object space coordinates:"
    print ("%5s" + " %9s" * 6) % ("Point", "X", "Y", "Z", "SD-X", "SD-Y", "SD-Z")

    for i in range(len(X0)):
        print ("%5s" + " %9.4f" * 6) % (
            chr(97 + i),
            X0[i],
            Y0[i],
            Z0[i],
            param_std[3 * i + 5],
            param_std[3 * i + 6],
            param_std[3 * i + 7],
        )

    print "\nPhoto coordinate residuals:"
    print ("%5s" + " %9s" * 4) % ("Point", "xl-res", "yl-res", "xr-res", "yr-res")
    for i in range(len(X0)):
        print ("%5s" + " %9.4f" * 4) % (
            chr(97 + i),
            pho_res[2 * i],
            pho_res[2 * i + 1],
            pho_res[2 * i + len(X0) * 2],
            pho_res[2 * i + len(X0) * 2 + 1],
        )
    print ("\n%5s" + " %9.4f" * 4 + "\n") % (
        "RMS",
        np.sqrt((pho_res[0 : len(X0) * 2 : 2] ** 2).mean()),
        np.sqrt((pho_res[1 : len(X0) * 2 + 1 : 2] ** 2).mean()),
        np.sqrt((pho_res[len(X0) * 2 :: 2] ** 2).mean()),
        np.sqrt((pho_res[len(X0) * 2 + 1 :: 2] ** 2).mean()),
    )

    print "Standard error of unit weight : %.4f" % s0
    print "Degree of freedom: %d" % (B.shape[0] - B.shape[1])

    return 0
コード例 #37
0
def main(inputFileName, IOFileName, outputFileName):
    # Read image coordinates from file
    fin = open(inputFileName)
    lines = fin.readlines()
    fin.close()

    data = np.array(map(lambda l: map(float, l.split()), lines))
    Lx, Ly, Rx, Ry = map(lambda a: a.flatten(), np.hsplit(data, 4))

    # Read interior orientation information from file
    fin = open(IOFileName)
    data = map(lambda x: float(x), fin.readline().split())
    fin.close()

    f = data[0]

    # Define initial values
    XL0 = YL0 = OmegaL0 = PhiL0 = KappaL0 = 0
    ZL0 = ZR0 = f
    XR0 = abs(Lx - Rx).mean()
    YR0 = OmegaR0 = PhiR0 = KappaR0 = 0

    # Define initial coordinate for object points
    # X0 = np.array(Lx)
    # Y0 = np.array(Ly)
    # Z0 = np.zeros(len(Lx))
    X0 = XR0 * Lx / (Lx - Rx)
    Y0 = XR0 * Ly / (Lx - Rx)
    Z0 = f - ((XR0 * f) / (Lx - Rx))

    # Define symbols
    fs, x0s, y0s = symbols("f x0 y0")
    XLs, YLs, ZLs, OmegaLs, PhiLs, KappaLs = symbols(
        u"XL YL ZL ωL, φL, κL".encode(LANG))

    XRs, YRs, ZRs, OmegaRs, PhiRs, KappaRs = symbols(
        u"XR YR ZR ωR, φR, κR".encode(LANG))

    xls, yls, xrs, yrs = symbols("xl yl xr yr")
    XAs, YAs, ZAs = symbols("XA YA ZA")

    # List observation equations
    F1 = getEqns(
        x0s, y0s, fs, XLs, YLs, ZLs, OmegaLs, PhiLs, KappaLs,
        xls, yls, XAs, YAs, ZAs)

    F2 = getEqns(
        x0s, y0s, fs, XRs, YRs, ZRs, OmegaRs, PhiRs, KappaRs,
        xrs, yrs, XAs, YAs, ZAs)

    # Create lists for substitution of initial values and constants
    var1 = np.array([x0s, y0s, fs, XLs, YLs, ZLs, OmegaLs, PhiLs, KappaLs,
                     xls, yls, XAs, YAs, ZAs])
    var2 = np.array([x0s, y0s, fs, XRs, YRs, ZRs, OmegaRs, PhiRs, KappaRs,
                     xrs, yrs, XAs, YAs, ZAs])

    # Define a symbol array for unknown parameters
    l = np.array([OmegaRs, PhiRs, KappaRs, YRs, ZRs, XAs, YAs, ZAs])

    # Compute coefficient matrix
    JF1 = F1.jacobian(l)
    JF2 = F2.jacobian(l)

    # Create function objects for two parts of coefficient matrix and f matrix
    B1 = lambdify(tuple(var1), JF1, modules='sympy')
    B2 = lambdify(tuple(var2), JF2, modules='sympy')
    F01 = lambdify(tuple(var1), -F1, modules='sympy')
    F02 = lambdify(tuple(var2), -F2, modules='sympy')

    X = np.ones(1)      # Initial value for iteration
    lc = 1              # Loop counter
    while abs(X.sum()) > 10**-10:
        B = np.matrix(np.zeros((4 * len(Lx), 5 + 3 * len(Lx))))
        F0 = np.matrix(np.zeros((4 * len(Lx), 1)))
        # Column index which is used to update values of B and f matrix
        j = 0
        for i in range(len(Lx)):
            # Create lists of initial values and constants
            val1 = np.array([0, 0, f, XL0, YL0, ZL0, OmegaL0, PhiL0, KappaL0,
                             Lx[i], Ly[i], X0[i], Y0[i], Z0[i]])
            val2 = np.array([0, 0, f, XR0, YR0, ZR0, OmegaR0, PhiR0, KappaR0,
                             Rx[i], Ry[i], X0[i], Y0[i], Z0[i]])
            # For coefficient matrix B
            b1 = matrix2numpy(B1(*val1)).astype(np.double)
            b2 = matrix2numpy(B2(*val2)).astype(np.double)
            B[i*4:i*4+2, :5] = b1[:, :5]
            B[i*4:i*4+2, 5+j*3:5+(j+1)*3] = b1[:, 5:]
            B[i*4+2:i*4+4, :5] = b2[:, :5]
            B[i*4+2:i*4+4, 5+j*3:5+(j+1)*3] = b2[:, 5:]

            # For constant matrix f
            f01 = matrix2numpy(F01(*val1)).astype(np.double)
            f02 = matrix2numpy(F02(*val2)).astype(np.double)
            F0[i*4:i*4+2, :5] = f01
            F0[i*4+2:i*4+4, :5] = f02
            j += 1

        # Solve unknown parameters
        N = np.matrix(B.T * B)  # Compute normal matrix
        t = B.T * F0            # Compute t matrix
        X = N.I * t             # Compute the unknown parameters

        # Update initial values
        OmegaR0 += X[0, 0]
        PhiR0 += X[1, 0]
        KappaR0 += X[2, 0]
        YR0 += X[3, 0]
        ZR0 += X[4, 0]
        X0 += np.array(X[5::3, 0]).flatten()
        Y0 += np.array(X[6::3, 0]).flatten()
        Z0 += np.array(X[7::3, 0]).flatten()

        # Output messages for iteration process
        print "Iteration count: %d" % lc, u"|ΔX| = %.6f".encode(LANG) \
            % abs(X.sum())
        lc += 1         # Update Loop counter

    # Compute residual vector
    V = F0 - B * X

    # Compute error of unit weight
    s0 = ((V.T * V)[0, 0] / (B.shape[0] - B.shape[1]))**0.5

    # Compute other informations
    # Sigmall = np.eye(B.shape[0])
    SigmaXX = s0**2 * N.I
    # SigmaVV = s0**2 * (Sigmall - B * N.I * B.T)
    # Sigmallhat = s0**2 * (Sigmall - SigmaVV)
    param_std = np.sqrt(np.diag(SigmaXX))
    pho_res = np.array(V).flatten()
    # pho_res = np.sqrt(np.diag(SigmaVV))

    # Output results
    print "\nExterior orientation parameters:"
    print ("%9s"+" %9s"*3) % ("Parameter", "Left pho", "Right pho", "SD right")
    print "%-10s %8.4f %9.4f %9.4f" % (
        "Omega(deg)", deg(OmegaL0), deg(OmegaR0), deg(param_std[0]))
    print "%-10s %8.4f %9.4f %9.4f" % (
        "Phi(deg)", deg(PhiL0), deg(PhiR0), deg(param_std[1]))
    print "%-10s %8.4f %9.4f %9.4f" % (
        "Kappa(deg)", deg(KappaL0), deg(KappaR0), deg(param_std[2]))
    print "%-10s %8.4f %9.4f" % (
        "XL", XL0, XR0)
    print "%-10s %8.4f %9.4f %9.4f" % (
        "YL", YL0, YR0, param_std[3])
    print "%-10s %8.4f %9.4f %9.4f\n" % (
        "ZL", ZL0, ZR0, param_std[4])

    print "Object space coordinates:"
    print ("%5s"+" %9s"*6) % ("Point", "X", "Y", "Z", "SD-X", "SD-Y", "SD-Z")

    for i in range(len(X0)):
        print ("%5s"+" %9.4f"*6) % (
            ("p%d" % i), X0[i], Y0[i], Z0[i],
            param_std[3*i+5],
            param_std[3*i+6],
            param_std[3*i+7])

    print "\nPhoto coordinate residuals:"
    print ("%5s"+" %9s"*4) % ("Point", "xl-res", "yl-res", "xr-res", "yr-res")
    for i in range(len(X0)):
        print ("%5s"+" %9.4f"*4) % (
            ("p%d" % i), pho_res[2*i], pho_res[2*i+1],
            pho_res[2*i+len(X0)*2], pho_res[2*i+len(X0)*2+1])
    print ("\n%5s"+" %9.4f"*4+"\n") % (
        "RMS",
        np.sqrt((pho_res[0:len(X0)*2:2]**2).mean()),
        np.sqrt((pho_res[1:len(X0)*2+1:2]**2).mean()),
        np.sqrt((pho_res[len(X0)*2::2]**2).mean()),
        np.sqrt((pho_res[len(X0)*2+1::2]**2).mean()))

    print "Standard error of unit weight : %.4f" % s0
    print "Degree of freedom: %d" % (B.shape[0] - B.shape[1])

    # Write out results
    fout = open(outputFileName, "w")
    fout.write("%.8f %.8f %.8f\n" % (XL0, YL0, ZL0))
    fout.write("%.8f %.8f %.8f\n" % (XR0, YR0, ZR0))
    for i in range(len(X0)):
        fout.write("%.8f %.8f %.8f\n" % (X0[i], Y0[i], Z0[i]))
    fout.close()

    return 0
コード例 #38
0
ファイル: hsPhaseCurve.py プロジェクト: dronir/EM
    
    for i in range(nSamples):
      Ip[i,:] =  samples[i,:] * iCosTh[i]
      Ep[i,:] =  samples[i,:] * eCosTh[i]

      Ip[i] = normalize(I - Ip[i,:])
      Ep[i] = normalize(E - Ep[i,:])
      
      ePhi[i] = np.arccos(np.dot(Ip[i,:], Ep[i,:]) - 1e-8)

    iTh = iTheta[ok]
    eTh = eTheta[ok]
    ePh = ePhi[ok]

    for i in range(len(iTh)):
      p[1,a] += hs.eval(deg(iTh[i]), deg(eTh[i]), deg(ePh[i]))

    p[1,a] *= dw / 15.0

    p[0,a] = a
    p[2,a] = np.sum(iTh*eTh / (iTh+eTh)) * dw

    

#for i in range(nSamples):
#  pl.plot([samples[i,0]], [samples[i,1]],'o', c=str(ePhi[i] / math.pi))

pl.plot(p[0,:],p[1,:],'o')
pl.plot(p[0,:],p[2,:],'o')
pl.show()
コード例 #39
0
def spaceResection(inputFile, outputFile, s,
                   useRANSAC, maxIter, sampleSize, thres, init):
    """Perform a space resection."""
    # Read observables from txt file
    with open(inputFile) as fin:
        f = float(fin.readline())           # The focal length in mm

    # Define symbols
    EO = symbols("XL YL ZL Omega Phi Kappa")  # Exterior orienration parameters
    PT = symbols("XA YA ZA")    # Object point coordinates
    pt = symbols("xa ya")       # Image coordinates

    # Define variable for inerior orienration parameters
    IO = f, 0, 0

    # List and linearize observation equations
    F = getEqn(IO, EO, PT, pt)
    JFx = F.jacobian(EO)
    JFl = F.jacobian(PT)    # Jacobian matrix for observables

    # Create lambda function objects
    FuncJFl = lambdify((EO+PT), JFl, 'numpy')
    FuncJFx = lambdify((EO+PT), JFx, 'numpy')
    FuncF = lambdify((EO+PT+pt), F, 'numpy')

    data = pd.read_csv(
        inputFile,
        delimiter=' ',
        usecols=range(1, 9),
        names=[str(i) for i in range(8)],
        skiprows=1)

    # Check data size
    if useRANSAC and len(data) <= sampleSize:
        print "Insufficient data for applying RANSAC method,",
        print "change to normal approach"
        useRANSAC = False

    if useRANSAC:
        bestErr = np.inf
        bestIC = 0
        bestParam = 0
        bestN = 0
        for i in range(maxIter):
            print "Iteration count: %d" % (i+1)
            sample = data.sample(sampleSize)
            # Compute initial model with sample data
            try:
                X0, s0, N = estimate(
                    sample, f, s, (FuncJFl, FuncJFx, FuncF), init)
            except np.linalg.linalg.LinAlgError:
                continue

            idx = getInlier(data, f, s, (FuncJFl, FuncJFx, FuncF), X0, thres)
            consensusSet = data.loc[idx]    # Inliers

            # Update the model if the number consesus set is greater than
            # current model and the error is smaller
            if len(consensusSet) >= bestIC:
                try:
                    X0, s0, N = estimate(
                        consensusSet, f, s, (FuncJFl, FuncJFx, FuncF), init)
                except np.linalg.linalg.LinAlgError:
                    continue

                if s0 < bestErr:
                    bestErr = s0
                    bestIC = len(consensusSet)
                    bestParam = X0
                    bestN = N
                    print "Found better model,",
                    print "inlier=%d (%.2f%%), error=%.6f" % \
                        (bestIC, 100.0 * bestIC / len(data), bestErr)

        if bestIC == 0:
            print "Cannot apply RANSAC method, change to normal approach"
            bestParam, bestErr, bestN = estimate(
                data, f, s, (FuncJFl, FuncJFx, FuncF), init)
    else:
        bestParam, bestErr, bestN = estimate(
            data.sample(frac=1), f, s, (FuncJFl, FuncJFx, FuncF), init)

    # Compute other informations
    SigmaXX = bestErr**2 * bestN.I
    paramStd = np.sqrt(np.diag(SigmaXX))
    XL, YL, ZL, Omega, Phi, Kappa = np.array(bestParam).ravel()

    # Output results
    print "Exterior orientation parameters:"
    print (" %9s %11s %11s") % ("Parameter", "Value", "Std.")
    print " %-10s %11.6f %11.6f" % (
        "Omega(deg)", deg(Omega) % 360, deg(paramStd[3]))
    print " %-10s %11.6f %11.6f" % (
        "Phi(deg)", deg(Phi) % 360, deg(paramStd[4]))
    print " %-10s %11.6f %11.6f" % (
        "Kappa(deg)", deg(Kappa) % 360, deg(paramStd[5]))
    print " %-10s %11.6f %11.6f" % ("XL", XL, paramStd[0])
    print " %-10s %11.6f %11.6f" % ("YL", YL, paramStd[1])
    print " %-10s %11.6f %11.6f" % ("ZL", ZL, paramStd[2])
    print "\nSigma0 : %.6f" % bestErr

    with open(outputFile, 'w') as fout:
        fout.write("%.6f "*3 % (XL, YL, ZL))
        fout.write("%.6f "*3 %
                   tuple(map(lambda x: deg(x) % 360, [Omega, Phi, Kappa])))
        fout.write("%.6f "*3 % tuple(paramStd[:3]))
        fout.write("%.6f "*3 % tuple(map(lambda x: deg(x), paramStd[3:])))
コード例 #40
0
ファイル: 3Dconf.py プロジェクト: otakusaikou/2015-521-M6410
def transProc(pointFile, controlPtFile, outputFileName):
    """A function to control 3D conformal transformation process"""
    # Read 3D coordinates from file
    fin = open(controlPtFile)
    lines = fin.readlines()
    fin.close()

    data = np.array(map(lambda l: map(float, l.split()), lines))
    x, y, z, X, Y, Z = map(lambda e: e.flatten(), np.hsplit(data, 6))

    L = np.matrix(np.append(x, [y, z, X, Y, Z])).T

    # Define symbols
    Ss, Omegas, Phis, Kappas, Txs, Tys, Tzs = symbols(
        u"σ ω φ κ Tx Ty Tz".encode(LANG))
    dXs = np.array([Ss, Omegas, Phis, Kappas, Txs, Tys, Tzs])

    # Symbole for observations
    xs = np.array(symbols("x1:%d" % (len(x)+1)))
    ys = np.array(symbols("y1:%d" % (len(y)+1)))
    zs = np.array(symbols("z1:%d" % (len(z)+1)))
    Xs = np.array(symbols("X1:%d" % (len(X)+1)))
    Ys = np.array(symbols("Y1:%d" % (len(Y)+1)))
    Zs = np.array(symbols("Z1:%d" % (len(Z)+1)))
    Ls = np.array(np.append(xs, [ys, zs, Xs, Ys, Zs]))

    # Compute initial values
    S0, Omega0, Phi0, Kappa0, Tx0, Ty0, Tz0 = getInit(x, y, z, X, Y, Z)
    L0 = np.matrix(np.append(x, [y, z, X, Y, Z])).T

    # List observation equations
    F = getEqns(
        Ss, Omegas, Phis, Kappas, Txs, Tys, Tzs, xs, ys, zs, Xs, Ys, Zs)

    # Create lists for substitution of initial values and constants
    var = np.append([Ss, Omegas, Phis, Kappas, Txs, Tys, Tzs], Ls)

    # Compute cofficient matrix
    JFx = F.jacobian(dXs)
    JFl = F.jacobian(Ls)

    # Create function objects for two parts of cofficient matrix and f matrix
    FuncB = lambdify(tuple(var), JFx, modules='sympy')
    FuncA = lambdify(tuple(var), JFl, modules='sympy')
    FuncF = lambdify(tuple(var), F, modules='sympy')

    dX = np.ones(1)      # Initial value for iteration
    lc = 1              # Loop counter
    while abs(dX.sum()) > 10**-10:
        # Create lists of initial values and constants
        val = np.append([S0, Omega0, Phi0, Kappa0, Tx0, Ty0, Tz0], L0)

        # Substitute values for symbols
        B = np.matrix(FuncB(*val)).astype(np.double)
        A = np.matrix(FuncA(*val)).astype(np.double)
        F0 = np.matrix(FuncF(*val)).astype(np.double)
        F = -F0 - A * (L - L0)

        Qe = A * A.T
        We = Qe.I
        N = (B.T * We * B)                  # Compute normal matrix
        t = (B.T * We * F)                  # Compute t matrix
        dX = N.I * t                        # Compute the unknown parameters
        V = A.T * We * (F - B * dX)         # Compute residual vector

        # Update initial values
        S0 += dX[0, 0]
        Omega0 += dX[1, 0]
        Phi0 += dX[2, 0]
        Kappa0 += dX[3, 0]
        Tx0 += dX[4, 0]
        Ty0 += dX[5, 0]
        Tz0 += dX[6, 0]
        L0 = L + V

        # Output messages for iteration process
        print "Iteration count: %d" % lc, u"|ΔX| = %.6f".encode(LANG) \
            % abs(dX.sum())
        lc += 1         # Update Loop counter

    # Compute residual vector
    V = A.T * We * (F - B * dX)         # Compute residual vector

    # Compute error of unit weight
    s0 = ((V.T * V)[0, 0] / (B.shape[0] - B.shape[1]))**0.5

    # Compute other informations
    SigmaXX = s0**2 * N.I
    # SigmaVV = s0**2 * (A.T - A.T * We * B * N.I * B.T) \
    #    * (A.T * We - A.T * We * B * N.I * B.T * We).T
    param_std = np.sqrt(np.diag(SigmaXX))

    # Output results
    print "\nResiduals:"
    print ("%-8s"+" %-8s"*6) % (
        "Point", "x res", "y res", "z res", "X res", "Y res", "Z res")
    for i in range(0, len(V) / 6):
        print ("%-8d"+" %-8.4f"*6) % (i + 1, V[i, 0], V[i + 3, 0], V[i + 6, 0],
                                      V[i + 9, 0], V[i + 12, 0], V[i + 15, 0])

    print "\n3D comformal transformation parameters:"
    print ("%9s"+" %12s %12s") % ("Parameter", "Value", "Stan Err")
    print "%-10s %12.4f %12.5f" % ("Scale", S0, param_std[0])
    print "%-10s %12.4fd %11.5fd" % (
        "Omega(deg)", deg(Omega0), deg(param_std[1]))
    print "%-10s %12.4fd %11.5fd" % (
        "Phi(deg)", deg(Phi0), deg(param_std[2]))
    print "%-10s %12.4fd %11.5fd" % (
        "Kappa(deg)", deg(Kappa0), deg(param_std[3]))
    print "%-10s %12.4f %12.5f" % ("Tx", Tx0, param_std[4])
    print "%-10s %12.4f %12.5f" % ("Ty", Ty0, param_std[5])
    print "%-10s %12.4f %12.5f" % ("Tz", Tz0, param_std[6])

    print "\nStandard error of unit weight : %.4f" % s0
    print "Degree of freedom: %d" % (B.shape[0] - B.shape[1])

    # Transform 3D coordinates
    # Read 3D coordinates from file
    fin = open(pointFile)
    lines = fin.readlines()
    fin.close()

    data = np.array(map(lambda l: map(float, l.split()), lines))
    x, y, z = map(lambda e: e.flatten(), np.hsplit(data, 3))

    M = getM(Omega0, Phi0, Kappa0)

    X = S0 * (M[0, 0]*x + M[1, 0]*y + M[2, 0]*z) + Tx0
    Y = S0 * (M[0, 1]*x + M[1, 1]*y + M[2, 1]*z) + Ty0
    Z = S0 * (M[0, 2]*x + M[1, 2]*y + M[2, 2]*z) + Tz0

    # Write out results
    fout = open(outputFileName, "w")
    for i in range(len(X)):
        fout.write("%.8f %.8f %.8f\n" % (X[i], Y[i], Z[i]))
    fout.close()
コード例 #41
0
ファイル: gravtide.py プロジェクト: cuihaoleo/exercises
    def func(delta_hour):
        d = d_o + dt.timedelta(hours=delta_hour)
        d, T, h, ps, s, p, N = astro_params(d)

        cm_rm = gracefulol([
            (1, 1),
            (0.054501, cos(s-p)),
            (0.010025, cos(s-2*h+p)),
            (0.008249, cos(2*(s-h))),
            (0.002970, cos(2*(s-p)))])
        lmd_m = gracefulol([
            (1, s),
            (deg(0.109760), sin(s-p)),
            (deg(0.022236), sin(s-2*h+p)),
            (deg(0.011490), sin(2*(s-h))),
            (deg(0.003728), sin(2*(s-p)))], map_to_360deg)
        beta_m = gracefulol([
            (deg(0.089504), sin(s-N)),
            (deg(0.004897), sin(2*s-p-N)),
            (-deg(0.004847), sin(p-N)),
            (deg(0.003024), sin(s-2*h+N))], map_to_360deg)

        cs_rs = gracefulol([
            (1, 1),
            (0.016750, cos(h-ps)),
            (0.000280, cos(2*(h-ps))),
            (0.000005, cos(3*(h-ps)))])
        lmd_s = gracefulol([
            (1, h),
            (deg(0.016750), cos(h-ps)),
            (deg(0.000280), cos(2*(h-ps))),
            (deg(0.000005), cos(3*(h-ps)))], map_to_360deg)

        x = (d.timestamp() % 86400)*15/3600 + h + L - 180
        E = gracefulol([
            (23.452294, 1),
            (-0.0130125, T),
            (-0.0000016, T*T),
            (0.0000005, T*T*T)], map_to_360deg)

        cos_zm = sin(phi) * (
                     sin(E)*sin(lmd_m)*cos(beta_m) +
                     cos(E)*sin(beta_m)) + \
                 cos(phi) * (
                     cos(lmd_m)*cos(beta_m)*cos(x) +
                     sin(x) * (
                         cos(E)*sin(lmd_m)*cos(beta_m) +
                         -sin(E)*sin(beta_m)))
        d_gm = 54.993 * cm_rm**3 * (1-3*cos_zm**2) + \
                1.369 * cm_rm**4 * (3*cos_zm - 5*cos_zm**3)

        cos_zs = sin(phi) * sin(lmd_s)*sin(E) + \
                 cos(phi) * (
                     cos(lmd_s)*cos(x) +
                     sin(lmd_s)*sin(x)*cos(E))
        d_gs = 25.358 * cs_rs**3 * (1-3*cos_zs**2)

        return d_gm + d_gs