def to_stik(mu_1,mu_2,t,sigma_tilde,n_1,n_2): """ t : se efter qt(0.975, df=n-2) sigma_tilde : findes som residual error """ lille = mu_1 - mu_2 - t * sigma_tilde^2*sq(1/n_1 + 1/n_2) stor = mu_1 + mu_2 - t * sigma_tilde^2*sq(1/n_1 + 1/n_2) return lille,stor
def solution(n1, n2): ans = 0 for i in range(n1, n2 + 1): if sq(i) == int(sq(i)): ans -= i else: ans += i return ans
def diag(self): self._diag.clear() self._diag.append( sq((self.points[0][0] - self.points[2][0])**2 + (self.points[0][1] - self.points[2][1])**2)) self._diag.append( sq((self.points[1][0] - self.points[3][0])**2 + (self.points[1][1] - self.points[3][1])**2))
def et_stik(mu,t,sigma_tilde,n): """ det hoejst ssh den med UKENDT varians n : antal i stikproeven t : se efter qt(0.975, df=n-1) sigma_tilde : findes som residual error """ lille = mu - t * sigma_tilde^2/sq(n) stor = mu + t * sigma_tilde^2/sq(n) return lille, stor
def sqrt(num): try: a = num.re b = num.im alpha = sq((sq(a**2 + b**2) + a) / 2) beta = sq((sq(a**2 + b**2) - a) / 2) return Complex(alpha, beta) except: return sq(num)
def roots(a, b, c): delta = (b**2) - (4 * a * c) if delta < 0: return () elif delta == 0: return (-b / (2 * a)) else: x = (-b + sq(delta)) / (2 * a) y = (-b - sq(delta)) / (2 * a) return (y, x)
def linreg_beta(beta_hat,n,t,sigma_tilde,var_x): """ alpha_hat = er intercepten n : antal i alt t : se efter qt(0.975, df=n -2) sigma_tilde : brug betas sd """ ssd_x = (n-1)*var_x lille = beta_hat - t * sigma_tilde^2/sq(ssd_x) stor = beta_hat + t * sigma_tilde^2/sq(ssd_x) return lille, stor
def test_solution(): import solution from math import sqrt as sq vector_a = solution.Vector3D(1, 5, 3) vector_b = solution.Vector3D(4, 4, 1) vector_c = solution.Vector3D(1, 5, 2) assert vector_a.magnitude() == sq(35) assert vector_b.magnitude() == sq(33) assert vector_c.magnitude() == sq(30)
def linreg_alpha(alpha_hat,n,t,sigma_tilde,var_x,mean_x): """ alpha_hat = er intercepten n : antal i stikproeven t : se efter qt(0.975, df=n-2) sigma_tilde : brug alphas sd """ ssd_x = (n-1)*var_x lille = alpha_hat -t * sq(1/n + mean_x**2/ssd_x) stor = alpha_hat -t * sq(1/n + mean_x**2/ssd_x) return lille, stor
def selesaikanABC(a, b, c): a = float(a) b = float(b) c = float(c) D = b**2 - 4 * a * c if D < 0: hasil = "Determinannya negatif. Persamaan tidak mempunyai akar real." else: x1 = (-b + sq(D)) / (2 * a) x2 = (-b - sq(D)) / (2 * a) hasil = (x1, x2) return str(hasil)
def selesaikanABC(a, b, c): a = float(a) b = float(b) c = float(c) D = (b**2) - (4 * a * c) if (D < 0): print("Determinannya negatif. Persamaan tidak mempunyai akar real") else: x1 = (-b + sq(D)) / (2 * a) x2 = (-b - sq(D)) / (2 * a) hasil = [x1, x2] print(hasil)
def selesaikanABC(r, s, t): r = float(r) s = float(s) t = float(t) D = (s**2) - (4 * r * t) if (D < 0): print("Determinannya negatif. Persamaan tidak mempunyai akar real") else: j1 = (-s + sq(D)) / (2 * r) j2 = (-s - sq(D)) / (2 * r) hasil = [j1, j2] print(hasil)
def selesaikanABC(a, b, c): a = float(a) b = float(b) c = float(c) D = (b**2) - (4 * a * c) if D < 0: return "Determinannya negatif. Persamaan tidak mempunyai akar real" else: x1 = (-b + sq(D)) / 2 * a x2 = (-b - sq(D)) / 2 * a hasil = (x1, x2) return hasil
def circumCircle(p1, p2, p3): """circumCircle(p1, p2, p3) -> (Vector2, float) Returns the center and radius of the circumcircle of the given three points.""" p1sm = squaredNorm(p1) x1 = p1[0] y1 = p1[1] p2sm = squaredNorm(p2) x2 = p2[0] y2 = p2[1] p3sm = squaredNorm(p3) x3 = p3[0] y3 = p3[1] a = numpy.linalg.det( numpy.array([[x1, y1, 1], [x2, y2, 1], [x3, y3, 1]])) d = numpy.linalg.det( -numpy.array([[p1sm, y1, 1], [p2sm, y2, 1], [p3sm, y3, 1]])) e = numpy.linalg.det( numpy.array([[p1sm, x1, 1], [p2sm, x2, 1], [p3sm, x3, 1]])) f = numpy.linalg.det( -numpy.array([[p1sm, x1, y1], [p2sm, x2, y2], [p3sm, x3, y3]])) circumCenter = Vector2(-d/(2*a), -e/(2*a)) denom = 4*math.sq(a) - f/a circumRadius2 = (math.sq(d) + math.sq(e)) / (4*math.sq(a)) - f/a if circumRadius2 > 0: circumRadius = math.sqrt(circumRadius2) else: lengths = [(p2-p1).magnitude(), (p3-p2).magnitude(), (p1-p3).magnitude()] lengths.sort() circumRadius = (lengths[1] + lengths[2]) / 4.0 sys.stderr.write("circumcircle: side lengths^2 are %s -> improvised radius = %s\n" % (lengths, circumRadius)) return circumCenter, circumRadius
def do(): size = 20 numgens = 50 pertf = lambda x:0.5/sq(x) l = [Columns.rand() for i in range(size)] print() [print(n) for n in l] print() gen = 1 gens = [] t = [] for n in l: t.append(n) gens.append(t) while gen<numgens: Columns.sort(l) [l.pop(-1) for i in range(int(size/2))] pert = pertf(gen) ll = [] for i in range(len(l)-1): ll.append(Columns.merge(l[i],l[i+1],pert)) ll.append(Columns.merge(l[len(l)-1],l[0],pert)) l.extend(ll) print() print("Gen",gen,"done.") [print(n) for n in l] print() t = [] for n in l: t.append(n) gens.append(t) gen+=1
def button_equal(): second_number = float(e.get()) e.delete(0, END) if math == "addition": e.insert(0, f_num + second_number) elif math == "subtraction": e.insert(0, f_num - int(second_number)) elif math == "division": e.insert(0, round(f_num / int(second_number), 4)) elif math == "multiplication": e.insert(0, f_num * int(second_number)) elif math == "exponent": e.insert(0, f_num**int(second_number)) elif math == "modulus": e.insert(0, f_num % int(second_number)) elif math == "square_root": e.insert(sq(0, f_num)) elif math == "floor_division": e.insert(0, f_num // int(second_number)) elif math == "inverse": e.insert(0, pow(f_num, -1)) elif math == "dot": e.insert(0, float(f_num)) else: e.insert(0, float(f_num))
def dc(s, e): r = float("3.141592653589793238462643383279502884197169399375105820974944" "592307816406286208998628034825342117067982148086513282306647" "093844609550582231725359408128481117450284102701938521105559" "644622948954930381964428810975665933446128475648233786783165" "271201909145648566923460348610454326648213393607260249141273" "724587006606315588174881520920962829254091715364367892590360" "011330530548820466521384146951941511609433057270365759591953" "092186117381932611793105118548074462379962749567351885752724" "891227938183011949129833673362440656643086021394946395224737" "190702179860943702770539217176293176752384674818467669405132" "000568127145263560827785771342757789609173637178721468440901" "224953430146549585371050792279689258923542019956112129021960" "864034418159813629774771309960518707211349999998372978049951" "059731732816096318595024459455346908302642522308253344685035" "261931188171010003137838752886587533208381420617177669147303" "598253490428755468731159562863882353787593751957781857780532" "1712268066130019278766111959092164201989") / 180. r_start = (s[0] * r, s[1] * r) r_end = (e[0] * r, e[1] * r) cl1 = co(r_start[0]) cl2 = co(r_end[0]) sl1 = si(r_start[0]) sl2 = si(r_end[0]) dt = r_end[1] - r_start[1] cdt = co(dt) sdt = si(dt) return int( at(sq(pw(cl2 * sdt, 2) + pw(cl1 * sl2 - sl1 * cl2 * cdt, 2)), sl1 * sl2 + cl1 * cl2 * cdt) * 6372795)
def dc(s, e): r = float("3.141592653589793238462643383279502884197169399375105820974944" "592307816406286208998628034825342117067982148086513282306647" "093844609550582231725359408128481117450284102701938521105559" "644622948954930381964428810975665933446128475648233786783165" "271201909145648566923460348610454326648213393607260249141273" "724587006606315588174881520920962829254091715364367892590360" "011330530548820466521384146951941511609433057270365759591953" "092186117381932611793105118548074462379962749567351885752724" "891227938183011949129833673362440656643086021394946395224737" "190702179860943702770539217176293176752384674818467669405132" "000568127145263560827785771342757789609173637178721468440901" "224953430146549585371050792279689258923542019956112129021960" "864034418159813629774771309960518707211349999998372978049951" "059731732816096318595024459455346908302642522308253344685035" "261931188171010003137838752886587533208381420617177669147303" "598253490428755468731159562863882353787593751957781857780532" "1712268066130019278766111959092164201989") / 180. r_start = (s[0] * r, s[1] * r) r_end = (e[0] * r, e[1] * r) cl1 = co(r_start[0]) cl2 = co(r_end[0]) sl1 = si(r_start[0]) sl2 = si(r_end[0]) dt = r_end[1] - r_start[1] cdt = co(dt) sdt = si(dt) return int(at(sq(pw(cl2 * sdt, 2) + pw(cl1 * sl2 - sl1 * cl2 * cdt, 2)), sl1 * sl2 + cl1 * cl2 * cdt) * 6372795)
def isprime(n): prime = True ls = int(sq(n)) for i in range(2, ls + 1): if n % i == 0: prime = False break return prime
def d_cor(a, b): #a,b pairwise distance matrices of equal size dvar_a = paired_sample_covar(a, a) dvar_b = paired_sample_covar(b, b) if dvar_a * dvar_b == 0: return (0) dcor = (paired_sample_covar(a, b)) / sq(dvar_a * dvar_b) return (dcor)
def apakahPrima(n): n = int(n) assert n >= 0 primaKecil = [2, 3, 5, 7, 11] bukanPrKecil = [0, 1, 4, 6, 8, 9, 10] if n in primaKecil: return True elif n in bukanPrKecil: return False else: for i in range(2, int(sq(n)) + 1): if ((n % i) == 0): return False elif (i >= int(sq(n))): return True else: continue
def sides(self): self._sides.clear() ln = len(self.points) for i in range(ln): j = i + 1 if i != ln - 1 else 0 self._sides.append( sq((self.points[i][0] - self.points[j][0])**2 + (self.points[i][1] - self.points[j][1])**2))
def prime(x): x = int(x) assert x >= 0 sp = [2, 3, 5, 7, 11] nsp = [0, 1, 4, 6, 8, 9, 10] if x in sp: return True elif x in nsp: return False else: for i in range(2, int(sq(x)) + 1): if ((x % i) == 0): return False elif (i >= int(sq(x))): return True else: continue
def sqrt(self): calc_logger.info(f'Called sqrt func with attr {self.num}') try: result = sq(self.num) except ValueError: calc_logger.critical(f'Value {self.num} forbidden for this operation') result = f'Value {self.num} forbidden for this operation' return result
def main(): fi = (1 + sq(5)) / 2 k = 2 while abs(fi - fibo(k) / fibo(k - 1)) > 0.00000000001: print k k += 1 print "lo logre despues de %d vueltas" % k print "la aproximacion de %.7f es %.7f" % (fi, fibo(k) / fibo(k - 1))
def area(self): if self.is_trap(): return round( ((self._sides[self._osn[0]] + self._sides[self._osn[1]]) / 2) * sq(self._sides[self._osn[0] + 1]**2 - ((self._sides[self._osn[0]] - self._sides[self._osn[1]])**2) / 4), 2) else: return False
def check(n): if n == 2 or n == 3 or n == 4: return True if n % 2 == 0: return False for i in range(2, int(sq(n) + 1), 2): if n % i == 0: return False return True
def compute(n): l = defaultdict(lambda: 0) a0 = int(sq(n)) b0 = sq(n) - a0 a1 = int(1 / b0) b1 = 1 / b0 - a1 temp = b1 l[n] = 1 flag = True while flag: a2 = int(1 / b1) b2 = 1 / b1 - a2 if round(Decimal(b2), 6) == round(Decimal(temp), 6): flag = False return l b1 = b2 l[n] += 1
def apakahPrima(x): n = int(x) assert n >= 0 if n in [2, 3, 5, 7, 11]: return True elif n in [0, 1, 4, 6, 8, 9, 10]: return False else: for i in range(2, int(sq(n) + 1)): if n % i == 0: return False return True
def func_count(start, step): m = start my_list = [] i = 0 for el in count(start): i += 1 if i > sq(el): break else: my_list.append(el) print(el) return my_list
def cholesky(A): n = len(A) L = np.zeros(shape = (n,n)) for i in range(n): for k in range(i+1): ksuma = sum( L[i][j] * L[k][j] for j in range(k) ) if (i == k): L[i][k] = sq(abs( A[i][i] - ksuma )) else: L[i][k] = (( 1.0 / L[k][k] ) * ( A[i][k] - ksuma )) return np.asarray(L)
def apakahPrima(n): n = int(n) assert n >= 0 #hanya menerima bilangan non-negatif primaKecil = [2, 3, 5, 7, 11] bukanPrKecil = [0, 1, 4, 6, 8, 9, 10] if n in primaKecil: return True elif n in bukanPrKecil: return False else: for i in range(2, int(sq(n)) + 1): if n % i == 0: return False return True
def apakahPrima(x): x = int(x) primaKecil = [2, 3, 5, 7, 11] bknPrimaKecil = [0, 1, 4, 6, 8, 9, 10] if x in primaKecil: return True elif x in bknPrimaKecil: return False else: for i in range(2, int(sq(x)) + 1): if x % i == 0: return False else: return True
def cholesky(A): n = len(A) L = np.zeros(shape=(n, n)) for i in range(n): for k in range(i + 1): ksuma = sum(L[i][j] * L[k][j] for j in range(k)) if (i == k): L[i][k] = sq(abs(A[i][i] - ksuma)) else: L[i][k] = ((1.0 / L[k][k]) * (A[i][k] - ksuma)) return np.asarray(L)
def apakahPrima(n): n = int(n) assert n >= 0 primakecil = [2, 3, 5, 7, 11] bukanprima = [0, 1, 4, 6, 8, 9, 10] if n in primakecil: return True elif n in bukanprima: return False else: for i in range(2, int(sq(n)) + 1): if (n % i == 0): return False return True
def compute(n, m): l = [] a0 = int(sq(n)) b0 = sq(n) - a0 a1 = int(1 / b0) b1 = 1 / b0 - a1 temp = b1 flag = True count = 0 while flag: a2 = int(1 / b1) b2 = 1 / b1 - a2 print(a2, b2) count += 1 if count == m: flag = False return l l.append(a2) b1 = b2
def Npr(n,t): #Privedenie mownosti dvigatelya return n*sq(288.15/(t+273.15))
def cef(n,t): #Rasprivedenie ydelnogo rasxoda topliva dvigatelya return n*sq((t+273.15)/288.15)
def cef(n,t): #Расприведение удельного расхода топлива двигателя return n*sq((t+273.15)/288.15)
def nf(n,t): #Расприведение частоты вращения двигателя return n*sq((t+273.15)/288.15)
def Nf(n,t): #Расприведение мощности двигателя return n*sq((t+273.15)/288.15)
def Gvf(n,t,B): #Расприведение расхода воздуха двигателя return n*(B/760)*sq(288.15/(t+273.15))
def Nf(n,t): #Rasprivedenie mownosti dvigatelya return n*sq((t+273.15)/288.15)
def cepr(n,t): #Privedenie ydelnogo rasxoda topliva dvigatelya return n*sq(288.15/(t+273.15))
def Nctpr(n,t,B): #Privedenie mownosti silovoi tyrbini dvigatelya return n*sq(288.15/(t+273.15))*(760.0/B)
def npr(n,t): #Privedenie chastoti vraweniya dvigatelya return n*sq(288.15/(t+273.15))
def Gvpr(n,t,B): #Privedenie rasxoda vozdyxa dvigatelya return n*(760.0/B)*sq((t+273.15)/288.15)
def Gtpr(n,t,B): #Privedenie rasxoda topliva dvigatelya return n*(760.0/B)*sq(288.15/(t+273.15))
def markAlphaShapes(delaunayMap, alpha, beta = 0.0): if not hasattr(delaunayMap, "circumCircles"): print "- reconstructing triangle circumcircles..." delaunayMap.circumCircles = \ delaunay.calculateTriangleCircumcircles(delaunayMap) # store parameters for convenience: delaunayMap.alpha = alpha delaunayMap.beta = beta print "- marking triangles with radii < alpha(%s)..." % (alpha, ) for triangle in delaunayMap.faceIter(skipInfinite = True): triangle.setFlag( ALPHA_MARK, delaunayMap.circumCircles[triangle.label()][1] < alpha) print "- marking edges with empty circle radii < alpha(%s)..." % (alpha, ) for edge in delaunayMap.edgeIter(): assert len(edge) == 2, "markAlphaShapes() expects a delaunay map!" edge.setFlag(ALPHA_MARK, edge.leftFace().flag(ALPHA_MARK) or edge.rightFace().flag(ALPHA_MARK)) if edge.flag(ALPHA_MARK): continue radius = edge.length()/2 if radius < alpha: radius2 = math.sq(radius) p1 = edge[0] p2 = edge[1] midPoint = (p1 + p2)/2 if (squaredNorm(edge.dart().nextSigma()[1]-midPoint) >= radius2 and squaredNorm(edge.dart().nextAlpha().nextSigma()[1]-midPoint) >= radius2): edge.setFlag(ALPHA_MARK) print " %d/%d edges and %d/%d faces marked." % ( sum([edge.flag(ALPHA_MARK) and 1 or 0 for edge in delaunayMap.edgeIter()]), delaunayMap.edgeCount, sum([face.flag(ALPHA_MARK) and 1 or 0 for face in delaunayMap.faceIter()]), delaunayMap.faceCount) print "- finding connected components of unlabelled cells..." edgeComponent = [None] * delaunayMap.maxEdgeLabel() faceComponent = [None] * delaunayMap.maxFaceLabel() componentCount = 0 for edge in delaunayMap.edgeIter(): if edge.flag(ALPHA_MARK) or edgeComponent[edge.label()]: continue componentCount += 1 boundary = [edge] while boundary: cell = boundary.pop() if hasattr(cell, "leftFace"): edge = cell if edge.flag(ALPHA_MARK) or edgeComponent[edge.label()]: continue edgeComponent[edge.label()] = componentCount boundary.append(edge.leftFace()) boundary.append(edge.rightFace()) else: face = cell if face.flag(ALPHA_MARK) or faceComponent[face.label()]: continue faceComponent[face.label()] = componentCount for dart in face.contour().phiOrbit(): boundary.append(dart.edge()) for face in delaunayMap.faceIter(): if face.flag(ALPHA_MARK) or faceComponent[face.label()]: continue componentCount += 1 faceComponent[face.label()] = componentCount print " %s unlabelled components found." % (componentCount, ) if not beta: return edgeComponent print "- looking for unmarked triangles with radii >= beta (%s)..." % ( beta, ) badComponent = [True] * (componentCount+1) for face in delaunayMap.faceIter(skipInfinite = True): if face.flag(ALPHA_MARK): continue if delaunayMap.circumCircles[face.label()][1] >= beta: badComponent[faceComponent[face.label()]] = False for label in range(1, componentCount+1): if badComponent[label]: print " marking connected component %d." % ( label, ) componentCount -= 1 for edge in delaunayMap.edgeIter(): if not edge.flag(ALPHA_MARK): edge.setFlag(ALPHA_MARK, badComponent[edgeComponent[edge.label()]]) for face in delaunayMap.faceIter(skipInfinite = True): if not face.flag(ALPHA_MARK): face.setFlag(ALPHA_MARK, badComponent[faceComponent[face.label()]]) print " %s unlabelled components left." % (componentCount, ) return componentCount
def magnitude(U): S = 0 for e in U: S += e*e mU = sq(S) return mU
def Gtf(n,t,B): #Rasprivedenie rasxoda topliva dvigatelya return n*(B/760.0)*sq((t+273.15)/288.15)
def Gtf(n,t,B): #Расприведение расхода топлива двигателя return n*(B/760)*sq((t+273.15)/288.15)
def cepr(n,t): #Приведение удельного расхода топлива двигателя return n*sq(288.15/(t+273.15))
def Gvf(n,t,B): #Rasprivedenie rasxoda vozdyxa dvigatelya return n*(B/760.0)*sq(288.15/(t+273.15))
def Nctf(n,t,B): #Расприведение мощности силовой турбины двигателя return n*sq((t+273.15)/288.15)*(B/760)
def dpi(w,h,d): return sq(w**2+h**2)/(d*1.0)
def nf(n,t): #Rasprivedenie chastoti vraweniya dvigatelya return n*sq((t+273.15)/288.15)
def Nctf(n,t,B): #Rasprivedenie mownosti silovoi tyrbini dvigatelya return n*sq((t+273.15)/288.15)*(B/760.0)
def Npr(n,t): #Приведение мощности двигателя return n*sq(288.15/(t+273.15))