コード例 #1
0
def getRnSData(SGwd_length, SGpolyOrd):
    for i in range(len(data)):
        t.append(i)
        v.append(float(data[i]))
    sgf = savgol_filter(data, SGwd_length, SGpolyOrd)
    R2_RnS = round(mthT.coeff_of_determination(np.array(data), sgf), 3)
    global pltData
    #print(times)
    pltData += [
        go.Scatter(
            x=times,  # assign x as the dataframe column 'x'
            y=v,
            name='Raw',
            mode='lines',
            marker=dict(size=10, color='rgba(170,170,0,1)'),
            line=dict(width=10, )),
        go.Scatter(
            x=times,  # assign x as the dataframe column 'x'
            y=sgf,
            name='S-Gf: R2:' + str(R2_RnS),
            mode='line',
            marker=dict(size=5, color='rgba(0,0,0,0.8)'),
            line=dict(width=3, color='rgba(0,0,0,0.8)'))
    ]
    return sgf
コード例 #2
0
ファイル: CompressAlgorithm.py プロジェクト: JeffHabe/GHFSs
 def getRnSData(self, fileName, SGwd_length, SGpolyOrd):
     t = []
     v = []
     pltData = []
     data, times = fT.readCSV(fileName)
     for i in range(len(data)):
         t.append(i)
         v.append(float(data[i]))
     sgf = savgol_filter(data, SGwd_length, SGpolyOrd)
     R2_RnS = round(mthT.coeff_of_determination(np.array(data), sgf), 3)
     #print(times)
     pltData += [
         go.Scatter(
             x=times,  # assign x as the dataframe column 'x'
             y=v,
             name='Raw',
             mode='lines',
             marker=dict(size=5, color='rgba(0,0,0,0.8)'),
             line=dict(width=8, )
             # =============================================================================
             #                         ),
             #             go.Scatter(
             #                 x=times, # assign x as the dataframe column 'x'
             #                 y=sgf,
             #                 name='S-Gf: R2:'+str(R2_RnS),
             #                 mode='line',
             #                 marker=dict(
             #                         size=5,
             #                         color='rgba(0,0,0,0.0)'),
             #                         line=dict(
             #                                 width=3,
             #                                 color='rgba(0,0,0,0.0)')
             # =============================================================================
         )
     ]
     return sgf, pltData
コード例 #3
0
ファイル: CHEB(CoD).py プロジェクト: JeffHabe/GHFSs
def CHEB_cod(fileName,
            min_r2=0.95,
            polyIndex=1,
            window_size_percent=0.5,
            maxCv=0.01,
            isplot=False):
# ==========================
# 設定初始、結束位置等
# ==========================
    startPt=0
    endPt=0
    delta=0
    timer=0

    '''
    plot(t,v,'-')
    plot(t,sgf,'-')
    '''
    tStart = time.time()#計時開始
    #plt.plot(t,v,'-')
    #plt.plot(t,sgf,'-')
# ========================================
# 預防數據來源總量過少,以及區間過小或等於0 
# ===========================================
    if(len(t)>100):
        pass
    else:
        window_size_percent=1
    #print('wdSize:',window_size_percent)
    
#==================
#  記錄多項式係數、Delta,type 為list 
#==================
    # 由 0 為n次,1為n-1次,如此類推
    coef_ary=[]
    coeff_5=[]
    coeff_4=[]
    coeff_3=[]
    coeff_2=[]
    coeff_1=[]
    coeff_0=[]
    Dlta=[]
#==================
#  記錄解壓縮、RMSE 數據,type 為list 
#==================
    
    decompData=[]
    RMSECpData=[]
    
    #first_inl=0
    R2_PnR=[]
    R2_ngt=[]
    R2_noon=[]
    R2_afr=[]
    R2_mrg=[]

#==================
#  記錄不同時段的數據,type 為list 
#==================
    mrgData=[]
    noonData=[]
    aftData=[]
    ngtData=[]
    
    
#==================
#  設定其他預設值 
#==================
    interval=int(len(t)*window_size_percent)-1
    start=[]
    end=[]
    #intervalAry=[]
    rsqRW=0
    ys_line=[]
    tot_segNum=0
    dirSnr=''
    DeltaCnt=0
    dtMean={}
    sensor=fileName[6:-1]
#==================
#  儲存分段最佳值 
#==================
    Maxr2RW=0.0
    MaxEnd=0
    MaxCoeff=[]
    MaxYs=[]
    
    
# =========================
# 判斷數據集是溫度或濕度
# =========================
    if(sensor=='T'):
        #print(fileName)
        dirSnr=sensor+'\\'
    elif(sensor=='H'):
        #print(fileName)
        dirSnr=sensor+'\\'
    #dirFoder='Data_csv\\SlidingWindow\\Chebyshev\\'+dirSnr+'\\Poly_Index '+str(pIndex)+'\\max angle '+str(angle) #'\\Poly_Index '+str(pIndex)+'\\SGwd_length '+str(SGwd_length)
    #dirFoder='Data_csv\\SlidingWindow\\Chebyshev\\'+dirSnr
    
#========================
# 運算結果檔案位置
#========================
    dirFoder='Data_csv\\SlidingWindow\\Chebyshev\\'+dirSnr
    fT.mkfolder(dirFoder)
    dirWCdetailFolder='Data_csv\\SlidingWindow\\Chebyshev\\Mean\\Worst compressing data\\'
    fT.mkfolder(dirWCdetailFolder)
#================================
# condition
#================================
    c=1
    segNum=0
    mrg=0
    noon=0
    aft=0
    ngt=0
    OmrgData=[]
    OnonData=[]
    OaftData=[]
    OngtData=[]
    OrgMrg=0
    OrgNoon=0
    OrgAft=0
    OrgNgt=0
    mxErr=0
    while(startPt<(len(t))):
        #MaxStart=0
        islimit=False
# =============================================================================
#             
#             if ((interval-startPt)<=min_time_interval) :
#                 interval=interval+int((len(t)/10))
#     
# =============================================================================
        for i in range(interval,startPt-1,-1):
            if ((i-startPt)>1):
                endPt=i+1
                delta=endPt-startPt
                coeff,ys_line,rsqRW,MAE,Cv = mthT.polyLine(startPt,endPt,polyIndex,t,data)
                if(rsqRW>=Maxr2RW):
                     Maxr2RW=rsqRW
                     MaxYs=ys_line
                     MaxEnd=endPt
                     MaxCoeff=coeff
            elif((i-startPt)<=1):                 
                if(Maxr2RW==0.0):
                    endPt=len(t)
                    delta=endPt-startPt
                    coeff,ys_line,rsqRW,MAE,Cv  = mthT.polyLine(startPt,endPt,polyIndex,t,data)
                    islimit=True
                else:
                    rsqRW=Maxr2RW
                    endPt=MaxEnd
                    coeff=MaxCoeff
                    delta=endPt-startPt
                    ys_line=MaxYs
                    delta=endPt-startPt
                    islimit=True
            if (rsqRW>=min_r2 or Cv<=maxCv) or islimit :    
                start.append(times[startPt])                
                if(endPt!=len(times)):    
                    end.append(times[endPt])
                else:
                    end.append(times[endPt-1])  
                #print(coeff)
# =============================================================================
#                 coeff_5.append(float(coeff[5]))
#                 coeff_4.append(float(coeff[4]))
#                 coeff_3.append(float(coeff[3]))
#                 coeff_2.append(float(coeff[2]))
#                 coeff_1.append(float(coeff[1]))
#                 coeff_0.append(float(coeff[0]))
# =============================================================================
          
                coef_ary.extend(coeff)
                decompData.extend(ys_line)
                Dlta.append(delta)
                DeltaCnt =DeltaCnt+endPt-startPt
                
                
# =============================================================================
#                 global pltData
# =============================================================================
        
                c+=1
                R2_PnR.append(round(rsqRW,3))
                startPt= endPt
                interval=startPt+int((len(t)*window_size_percent))-1
                
# =============================================================================
                if (interval>=len(t)):
                    interval=len(t)-1
                MaxCoeff=[]
                MaxYs=[]
                Maxr2RW=0.0
                MaxEnd=interval
                break
            
    tEnd = time.time()#計時結束
    
    
#========================
# 計算不同時間段的結果
#========================
    
    #print(len(start))
    for x in range(len(start)):
        if(start[x].hour<6):
            mrg+=1
        elif(start[x].hour>=6 and start[x].hour<12):    
            noon+=1
        elif(start[x].hour>=12 and start[x].hour<=18):    
            aft+=1
        elif(start[x].hour>=18 and start[x].hour<=23):  
            ngt+=1
            
            
    for x in range(len(data)):
        if(times[x].hour<6):
            OrgMrg+=1
            OmrgData.append(data[x])
            mrgData.append(decompData[x])
        elif(times[x].hour>=6 and times[x].hour<12):
            OrgNoon+=1
            OnonData.append(data[x])
            noonData.append(decompData[x])
        elif(times[x].hour>=12 and times[x].hour<=18):
            OrgAft+=1
            OaftData.append(data[x])
            aftData.append(decompData[x])
        elif(times[x].hour>=18 and times[x].hour<=23):
            OrgNgt+=1
            OngtData.append(data[x])
            ngtData.append(decompData[x])
# =======================
# 輸出每天壓縮後的詳細資料
# =======================
            
            
# =============================================================================
#     #==each day polynorimal data
#     dtPolyData={'start':start,
#                 'end':end,
#                 'min_r2':min_r2,
#                 'poly n':pIndex,
#                 'wd_size%':wdsize_percent,
#                 'min_interval%':min_interval_percent,
#                 'angle':angle,
#                 'coef':coef_ary,
#                 'Delta':Dlta,
#                 'coeff_5':coeff_0,
#                 'coeff_4':coeff_1,
#                 'coeff_3':coeff_2,
#                 'coeff_2':coeff_3,
#                 'coeff_1':coeff_4,
#                 'coeff_0':coeff_5,
#                 'R2_Raw':R2_PnR
#                 }
#     headerPD=['start','end','Delta','coeff_5','coeff_4','coeff_3','coeff_2','coeff_1','coeff_0']
#     #輸出沒有了r2 值
#     dfpolyDtlData=pd.DataFrame(dtPolyData,columns=headerPD,index=None)
#     SnrCsvfileName='Data_csv\\SlidingWindow\\Chebyshev\\Mean\\Worst compressing data'+'\\'+fileName+"_DetailData.csv"
#     dfpolyDtlData.to_csv(SnrCsvfileName,mode='w',index=None)
# =============================================================================
     
# =================================
# 計算四個時間段的R2、RMSE、壓縮比
# =================================            
            
# =============================================================================
#     print(OmrgData)
#     print(mrgData)
# =============================================================================
    cpMrg=compR(mrg,OrgMrg),
    cpNoon=compR(noon,OrgNoon),
    cpAft=compR(aft,OrgAft),
    cpNgt=compR(ngt,OrgNgt),
    rmseMrg=calRMSE(OmrgData,mrgData),
    rmseNoon=calRMSE(OnonData,noonData),
    rmseAft=calRMSE(OaftData,aftData),
    rmseNgt=calRMSE(OngtData,ngtData)

# =============================================================================
#     print('總結:times=',len(times),'deCompDaya=',len(decompData),'min_r2=',min_r2)
#     print('分段數量: 0-6點: ',mrg,'  6-12點: ',noon,'  12-18點: ',aft,'  18-23點: ',ngt)
#     print('R2: 0-6點: ',round(mthT.coeff_of_determination(np.array(OmrgData),mrgData,startPt,endPt),3),
#           '6-12點: ',round(mthT.coeff_of_determination(np.array(OnonData),noonData,startPt,endPt),3),
#           '12-18點: ',round(mthT.coeff_of_determination(np.array(OaftData),aftData,startPt,endPt),3),
#           '18-23點: ',round(mthT.coeff_of_determination(np.array(OngtData),ngtData,startPt,endPt),3))
#     print('壓縮比: 0-6點: ',compR(mrg,OrgMrg),
#           '6-12點: ',compR(noon,OrgNoon),
#           '12-18點: ',compR(aft,OrgAft),
#           '18-23點: ',compR(ngt,OrgNgt))
#     print('RMSE: 0-6點: ',calRMSE(OmrgData,mrgData),
#           '6-12點: ',calRMSE(OnonData,noonData),
#           '12-18點: ',calRMSE(OaftData,aftData),
#           '18-23點: ',calRMSE(OngtData,ngtData))
# =============================================================================
    
    
    #print('wd Length: ',SGwd_length,'SGpolyOrd: ',SGpolyOrd)
    hdr_timeData=["date",
                  "Sensor",
                  "segMrg",
                  "segNoon",
                  "segAft",
                  "segNgt",
                  "cpMrg",
                  "cpNoon",
                  "cpAft",
                  "cpNgt",
                  "rmseMrg",
                  "rmseNoon",
                  "rmseAft",
                  "rmseNgt"
                ]
    
    timeData={"date":fileName[:-3],
              "Sensor":fileName[6:],
                  "segMrg":mrg,
                  "segNoon":noon,
                  "segAft":aft,
                  "segNgt":ngt,
                  "cpMrg":cpMrg,
                  "cpNoon":cpNoon,
                  "cpAft":cpAft,
                  "cpNgt":cpNgt,
                  "rmseMrg":rmseMrg,
                  "rmseNoon":rmseNoon,
                  "rmseAft":rmseAft,
                  "rmseNgt":rmseNgt
         }


    df4periods=pd.DataFrame(timeData,columns=hdr_timeData)
    print(ssrType,end='')
    MeanCsvfileName=dirMean+'\\2020_4periods_Data\\R2t'+str(min_r2)+'_wd'+str(window_size_percent)+'_pIndex'+str(polyIndex)+'_'+dt.datetime.now().strftime('%m%d')+'.csv'
    if (pth.isfile(MeanCsvfileName)!=True):  
        df4periods.to_csv(MeanCsvfileName,mode='w',index=None)
    else:
        df4periods.to_csv(MeanCsvfileName,mode='a',header=None,index=None)
    df4periods=pd.DataFrame(None,None)
# ============================      
#   輸出解壓縮的詳細數據
# ============================       
# =============================================================================
#     #==each day deCompression data
#     dtdeCData={'times':times,
#             'Data':decompData
#             }
#     
#     headerDC=['times','Data']
#     dfdeCData=pd.DataFrame(dtdeCData,columns=headerDC,index=None)
#     
#     deCompCsvfileName='Data_csv\\SlidingWindow\\Chebyshev\\Mean\\Worst compressing data'+'\\'+fileName+"_DecompressionDetailData.csv"
# 
#     dfdeCData.to_csv(deCompCsvfileName,mode='w',index=None)
#     
# =============================================================================
    
    segNum=len(start)# num of segement 
    tot_segNum+=segNum# total number of segements in all data 
    Nr=len(t)*2*8
    Nc=segNum*(pIndex+4)*8
    comp_ratio=(Nr-Nc)/Nr
    #print(dfpolyDtlData)
    #R2_RnS=round(mthT.coeff_of_determination(np.array(data),sgf,startPt,endPt),3)
    R2=round(mthT.coeff_of_determination(np.array(data),decompData,startPt,endPt),3)
    MeanR2=round(np.mean(R2),3)
    STD=round(np.std(R2_PnR,ddof=1 ),3)
    
    
    
    
#==============================================================================
# this for loop is compare Compress data and Raw data
# =============================================================================    
    temp=[]
    for n in range(len(data)):
        temp.append(np.abs(np.round(data[n],5)-np.round(decompData[n],5)))
    maxErr=np.max(temp)
    minErr=np.min(temp)
            
    MeanRMSE=calRMSE(data,decompData)
    CRatio=round(comp_ratio,3)
    timer=tEnd-tStart
    #print('分段總數= ',str(mrg+noon+aft+ngt),'  Mean R2=',MeanR2,'  CompRatio=',CRatio,'  RMSE=',MeanRMSE,)
    #print('MeanR2PnR = ' ,MeanR2PnR,', MeanR2PnS = ',MeanR2PnS)
    #print(fileName[:2]+fileName[3:])
    dtMean={
            'date':fileName[:-3],
            'Sensor':fileName[6:],
            'data Length':len(t),
            'pIndex':pIndex,
            'wdsize':window_size_percent,
            'Cv':maxCv,
            'segNum':segNum,
            'comp_ratio':CRatio,
            'timer': timer,
            'Mean_R2':MeanR2,
            'R2_STD':STD,
            'Mean_RMSE':MeanRMSE,
            'Max_Err':maxErr,
            'Min_Err':minErr
            }
#    print(df)
#    df.head()
    #print(pltData)
    #print(sensor,end=',')  
    
    global pltData
    #print(len(plotTime),':',len(decompData))
    pltData += [
                    go.Scatter(
                        x=plotTime, # assign x as the dataframe column 'x'
                        y=decompData,
                        mode='lines',
                        name='CHEB',
                        marker=dict(
                                size=5,
                                color='rgba(255,0,0,0.9)'
                                )
                        )]
# ============================      
#  畫圖 to html 
# ============================
    if isplot:
        #print(window_size_percent)
        pltT.PlotLy(t,window_size_percent,min_r2,polyIndex,maxCv,fileName,pltData,plotisOpen)
    return dtMean
コード例 #4
0
ファイル: CHEB(CoD).py プロジェクト: JeffHabe/PythonWorkspace
def Seg2poly(fileName,SGwd_length=11,SGpolyOrd=3,max_slope=1,min_r2=0.95,polyIndex=1,window_size_percent=0.5,min_interval_percent=0,isplot=False):
    startPt=0
    endPt=0
    delta=0
    timer=0
    '''
    plot(t,v,'-')
    plot(t,sgf,'-')
    '''
    tStart = time.time()#計時開始
    #plt.plot(t,v,'-')
    #plt.plot(t,sgf,'-')
    angle=int(round((np.arctan(max_slope)*180)/pi))
    if(len(t)>100):
        pass
    else:
        window_size_percent=1
    #print('wdSize:',window_size_percent)
    interval=int(len(t)*window_size_percent)-1
    start=[]
    end=[]
    #intervalAry=[]
    coef_ary=[]
    coeff_5=[]
    coeff_4=[]
    coeff_3=[]
    coeff_2=[]
    coeff_1=[]
    coeff_0=[]

    decompData=[]
    RMSDCData=[]
    #first_inl=0
    R2_PnS=[]
    R2_PnR=[]
    R2_ngt=[]
    R2_noon=[]
    R2_afr=[]
    R2_mrg=[]
    mrgData=[]
    noonData=[]
    aftData=[]
    ngtData=[]
    Dlta=[]
    dtMean={}
    sensor=fileName[6:-1]
    Maxr2SGF=0.0
    Maxr2RW=0.0
    MaxEnd=0
    MaxCoeff=[]
    MaxYs=[]
    rsqSGF=0
    rsqRW=0
    ys_line=[]
    tot_segNum=0
    dirSnr=''
    DeltaCnt=0
    if(sensor=='T'):
        print(fileName)
        dirSnr=sensor+'\\'
    elif(sensor=='H'):
        print(fileName)
        dirSnr=sensor+'\\'
    #dirFoder='Data_csv\\SlidingWindow\\Chebyshev\\'+dirSnr+'\\Poly_Index '+str(pIndex)+'\\max angle '+str(angle) #'\\Poly_Index '+str(pIndex)+'\\SGwd_length '+str(SGwd_length)
    #dirFoder='Data_csv\\SlidingWindow\\Chebyshev\\'+dirSnr
    dirFoder='Data_csv\\SlidingWindow\\Chebyshev\\'+dirSnr
    fT.mkfolder(dirFoder)
    dirWCdetailFolder='Data_csv\\SlidingWindow\\Chebyshev\\Mean\\Worst compressing data\\'
    fT.mkfolder(dirWCdetailFolder)
    #===condition====
    #max_slope=2 #  反應差
    min_time_interval= int(len(t)*min_interval_percent)
    c=1
    segNum=0

    mrg=0
    noon=0
    aft=0
    ngt=0
    OmrgData=[]
    OnonData=[]
    OaftData=[]
    OngtData=[]
    OrgMrg=0
    OrgNoon=0
    OrgAft=0
    OrgNgt=0
    while(startPt<(len(t))):
        #MaxStart=0
        
        islimit=False
# =============================================================================
#             
#             if ((interval-startPt)<=min_time_interval) :
#                 interval=interval+int((len(t)/10))
#     
# =============================================================================
        for i in range(interval,startPt-1,-1):
            if ((i-startPt)>1):
                endPt=i+1
                delta=endPt-startPt
                coeff,ys_line,rsqSGF,rsqRW = mthT.polyLine(startPt,endPt,polyIndex,t,sgf,data)
                if(rsqRW>=Maxr2RW):
                     Maxr2RW=rsqRW
                     MaxYs=ys_line
                     MaxEnd=endPt
                     MaxCoeff=coeff
            elif((i-startPt)<=1):                 
                if(Maxr2RW==0.0):
                    endPt=len(t)
                    delta=endPt-startPt
                    coeff,ys_line,rsqSGF,rsqRW = mthT.polyLine(startPt,endPt,polyIndex,t,sgf,data)
                    islimit=True
                else:
                    rsqRW=Maxr2RW
                    endPt=MaxEnd
                    coeff=MaxCoeff
                    delta=endPt-startPt
                    ys_line=MaxYs
                    delta=endPt-startPt
                    islimit=True
            if (rsqRW>=min_r2) or islimit :    
                start.append(times[startPt])                
                if(endPt!=len(times)):    
                    end.append(times[endPt])
                else:
                    end.append(times[endPt-1])            
                coeff_5.append(float(coeff[0]))
                coeff_4.append(float(coeff[1]))
                coeff_3.append(float(coeff[2]))
                coeff_2.append(float(coeff[3]))
                coeff_1.append(float(coeff[4]))
                coeff_0.append(float(coeff[5]))
                coef_ary.extend(coeff)
                decompData.extend(ys_line)
                Dlta.append(delta)
                    
                DeltaCnt =DeltaCnt+endPt-startPt
                global pltData

                c+=1
                R2_PnR.append(round(rsqRW,3))
                R2_PnS.append(round(rsqSGF,3))
                startPt= endPt
                interval=startPt+int((len(t)*window_size_percent))-1
                
    # =============================================================================
                if (interval>=len(t)):
                    interval=len(t)-1
                MaxCoeff=[]
                MaxYs=[]
                Maxr2RW=0.0
                MaxEnd=interval
                break
            
    tEnd = time.time()#計時結束

    for x in range(len(data)):
        if(times[x].hour<6):
            OrgMrg+=1
        elif(times[x].hour>=6 and times[x].hour<12):
            OrgNoon+=1
        elif(times[x].hour>=12 and times[x].hour<=18):
            OrgAft+=1
        elif(times[x].hour>=18 and times[x].hour<=23):
            OrgNgt+=1
#=================每一天壓縮後數據==================================
# =============================================================================
#     #==each day polynorimal data
#     dtPolyData={'start':start,
#                 'end':end,
#                 'min_r2':min_r2,
#                 'poly n':pIndex,
#                 'wd_size%':wdsize_percent,
#                 'min_interval%':min_interval_percent,
#                 'angle':angle,
#                 'coef':coef_ary,
#                 'Delta':Dlta,
#                 'coeff_5':coeff_5,
#                 'coeff_4':coeff_4,
#                 'coeff_3':coeff_3,
#                 'coeff_2':coeff_2,
#                 'coeff_1':coeff_1,
#                 'coeff_0':coeff_0,
#                 'R2_Raw':R2_PnR,
#                 'R2_SGF':R2_PnS
#                 }
#     headerPD=['start','end','Delta','coeff_5','coeff_4','coeff_3','coeff_2','coeff_1','coeff_0']
#     #輸出沒有了r2 值
#     dfpolyDtlData=pd.DataFrame(dtPolyData,columns=headerPD,index=None)
#     SnrCsvfileName='Data_csv\\SlidingWindow\\Chebyshev\\Mean\\Worst compressing data'+'\\'+fileName+"_DetailData.csv"
#     dfpolyDtlData.to_csv(SnrCsvfileName,mode='w',index=None)
# =============================================================================
# =============================================================================
# 
#     print('總結:times=',len(times),'deCompDaya=',len(decompData),'min_r2=',min_r2)
#     print('分段數量: 0-6點: ',mrg,'  6-12點: ',noon,'  12-18點: ',aft,'  18-23點: ',ngt)
#     print('R2: 0-6點: ',round(mthT.coeff_of_determination(np.array(OmrgData),mrgData,startPt,endPt),3),
#           '6-12點: ',round(mthT.coeff_of_determination(np.array(OnonData),noonData,startPt,endPt),3),
#           '12-18點: ',round(mthT.coeff_of_determination(np.array(OaftData),aftData,startPt,endPt),3),
#           '18-23點: ',round(mthT.coeff_of_determination(np.array(OngtData),ngtData,startPt,endPt),3))
#     print('壓縮比: 0-6點: ',compR(mrg,OrgMrg),
#           '6-12點: ',compR(noon,OrgNoon),
#           '12-18點: ',compR(aft,OrgAft),
#           '18-23點: ',compR(ngt,OrgNgt))
#     print('RMSD: 0-6點: ',calRMSD(OmrgData,mrgData),
#           '6-12點: ',calRMSD(OnonData,noonData),
#           '12-18點: ',calRMSD(OaftData,aftData),
#           '18-23點: ',calRMSD(OngtData,ngtData))
#     
#     
#     
# =============================================================================
     
    
# =============================================================================
#     #==each day deCompression data
#     dtdeCData={'times':times,
#             'Data':decompData
#             }
#     
#     headerDC=['times','Data']
#     dfdeCData=pd.DataFrame(dtdeCData,columns=headerDC,index=None)
#     
#     deCompCsvfileName='Data_csv\\SlidingWindow\\Chebyshev\\Mean\\Worst compressing data'+'\\'+fileName+"_DecompressionDetailData.csv"
# 
#     dfdeCData.to_csv(deCompCsvfileName,mode='w',index=None)
#     
# =============================================================================
    
    segNum=len(start)# num of segement 
    tot_segNum+=segNum# total number of segements in all data 
    Nr=len(t)*2*8
    Nc=segNum*(pIndex+4)*8
    comp_ratio=(Nr-Nc)/Nr
    #print(dfpolyDtlData)
    R2_RnS=round(mthT.coeff_of_determination(np.array(data),sgf,startPt,endPt),3)
    R2=round(mthT.coeff_of_determination(np.array(data),decompData,startPt,endPt),3)
    MeanR2=round(np.mean(R2),3)
    STD=round(np.std(R2_PnR,ddof=1 ),3)
    
    sumDCData=0
    for n in range(len(data)):
    ## to compare decompress Alg data and Decompress DB data
        sumDCData+=(np.round(data[n],5)-np.round(decompData[n],5))**2
    RMSDCData.append(float(np.round(math.sqrt(sumDCData/len(data)),5)))
    MeanRMSD=round(np.mean(RMSDCData),3)
    CRatio=round(comp_ratio,3)
    timer=tEnd-tStart
    print('分段總數= ',str(mrg+noon+aft+ngt),'  Mean R2=',MeanR2,'  CompRatio=',CRatio,'  RMSD=',MeanRMSD,)
    #print('MeanR2PnR = ' ,MeanR2PnR,', MeanR2PnS = ',MeanR2PnS)
    #print(fileName[:2]+fileName[3:])
    dtMean={
            'date':fileName[:-3],
            'Sensor':fileName[6:],
            'data Length':len(t),
            'pIndex':pIndex,
            'Minium interval':min_time_interval,
            'angle':angle,
            'segNum':segNum,
            'comp_ratio':comp_ratio,
            'R2_R&S':R2_RnS,
            'timer': timer,
            'Mean_R2':MeanR2,
            'Mean_RMSD':MeanRMSD,
            'STD':STD
            }
#    print(df)
#    df.head()
    #print(pltData)

    
    
    #print(len(plotTime),':',len(decompData))
    pltData += [
                    go.Scatter(
                        x=plotTime, # assign x as the dataframe column 'x'
                        y=decompData,
                        mode='lines',
                        name='CHEB',
                        marker=dict(
                                size=5,
                                color='rgba(255,0,0,0.9)'
                                )
                        )]
    if isplot:
        #print(window_size_percent)
        pltT.PlotLy(t,window_size_percent,min_r2,polyIndex,fileName,pltData,plotisOpen)
    return dtMean
コード例 #5
0
def Seg2poly(fileName,
             SGwd_length=11,
             SGpolyOrd=3,
             max_slope=1,
             min_r2=0.95,
             polyIndex=1,
             window_size_percent=0.5,
             min_interval_percent=0,
             isplot=False):
    startPt = 0
    endPt = 0
    delta = 0
    timer = 0
    '''
    plot(t,v,'-')
    plot(t,sgf,'-')
    '''
    tStart = time.time()  #計時開始
    #plt.plot(t,v,'-')
    #plt.plot(t,sgf,'-')
    angle = int(round((np.arctan(max_slope) * 180) / pi))
    # =============================================================================
    #     if(len(t)>100):
    #         pass
    #     else:
    #         window_size_percent=1
    # =============================================================================
    interval = int(len(t) * window_size_percent) - 1
    start = []
    end = []
    #intervalAry=[]
    coef_ary = []
    coeff_5 = []
    coeff_4 = []
    coeff_3 = []
    coeff_2 = []
    coeff_1 = []
    coeff_0 = []

    decompData = []
    #first_inl=0
    R2_PnS = []
    R2_PnR = []
    Dlta = []
    dtMean = {}
    sensor = fileName[6:-1]
    Maxr2SGF = 0.0
    MaxEnd = 0
    MaxCoeff = []
    MaxYs = []
    rsqSGF = 0
    rsqTT = 0
    ys_line = []
    tot_segNum = 0
    dirSnr = ''
    DeltaCnt = 0
    if (sensor == 'T'):
        print(fileName)
        dirSnr = sensor + '\\'
    elif (sensor == 'H'):
        print(fileName)
        dirSnr = sensor + '\\'
    #dirFoder='Data_csv\\SlidingWindow\\Chebyshev\\'+dirSnr+'\\Poly_Index '+str(pIndex)+'\\max angle '+str(angle) #'\\Poly_Index '+str(pIndex)+'\\SGwd_length '+str(SGwd_length)
    #dirFoder='Data_csv\\SlidingWindow\\Chebyshev\\'+dirSnr
    dirFoder = 'Data_csv\\SlidingWindow\\Chebyshev\\' + dirSnr
    fT.mkfolder(dirFoder)
    dirWCdetailFolder = 'Data_csv\\SlidingWindow\\Chebyshev\\Worst compressing data\\'
    fT.mkfolder(dirWCdetailFolder)
    #===condition====
    #max_slope=2 #  反應差
    min_time_interval = int(len(t) * min_interval_percent)
    c = 1
    segNum = 0

    while (startPt < (len(t))):
        #MaxStart=0

        islimit = False
        # =============================================================================
        #
        #             if ((interval-startPt)<=min_time_interval) :
        #                 interval=interval+int((len(t)/10))
        #
        # =============================================================================
        for i in range(interval, startPt - 1, -1):

            if ((i - startPt) > min_time_interval):
                endPt = i + 1
                delta = endPt - startPt
                coeff, ys_line, rsqSGF, rsqTT = mthT.polyLine(
                    startPt, endPt, polyIndex, t, sgf, data)
                if (rsqTT >= Maxr2SGF):
                    Maxr2SGF = rsqSGF
                    MaxYs = ys_line
                    #MaxStart=startPt
                    MaxEnd = endPt
                    MaxCoeff = coeff
                break
            elif ((i - startPt) <= min_time_interval + 1):
                if (Maxr2SGF == 0):
                    endPt = len(t)
                    delta = endPt - startPt
                    coeff, ys_line, rsqSGF, rsqTT = mthT.polyLine(
                        startPt, endPt, polyIndex, t, sgf, data)
                    islimit = True
                else:
                    endPt = MaxEnd
                    coeff = MaxCoeff
                    delta = endPt - startPt
                    rsqTT = Maxr2SGF
                    ys_line = MaxYs
                    delta = endPt - startPt
                    islimit = True
                break
        if (rsqTT >= min_r2) or islimit:
            #====coeff[0] = A  coeff[1] = B coeff[2] = C; Ax^2+Bx+C
            #start.append(time[startPt])
            #end.append(time[endPt])
            # =============================================================================
            #             if(rsqTT<min_r2):
            #                 print(c)
            #                 print(Maxr2SGF)
            #                 print(islimit)
            #                 print(i)
            #                 print(startPt)
            # =============================================================================
            start.append(times[startPt])
            if (endPt != len(times)):
                end.append(times[endPt])
                #print(len(times),':',endPt)
            else:
                end.append(times[endPt - 1])
                #print(len(times),':',endPt)
            #coef_ary.append(coeff)
            coeff_5.append(coeff[0])
            coeff_4.append(coeff[1])
            coeff_3.append(coeff[2])
            coeff_2.append(coeff[3])
            coeff_1.append(coeff[4])
            coeff_0.append(coeff[5])
            Dlta.append(delta)

            for deCdata in ys_line:
                decompData.append(deCdata)

            DeltaCnt = DeltaCnt + endPt - startPt
            # print(len(decompData),'Delta=',DeltaCnt)
            global pltData
            pltData += [
                go.Scatter(
                    x=times[
                        startPt:endPt],  # assign x as the dataframe column 'x'
                    y=ys_line,
                    mode='lines',
                    name=str(c) + ':S: ' + str(rsqSGF) + ',R: ' + str(rsqTT),
                    marker=dict(size=5, color='rgba(255,0,0,0.9)'))
            ]
            c += 1
            #print(startPt,"-",endPt)
            R2_PnR.append(round(rsqTT, 3))
            R2_PnS.append(round(rsqSGF, 3))
            startPt = endPt
            interval = startPt + int((len(t) * window_size_percent)) - 1

            # =============================================================================
            if (interval >= len(t)):
                interval = len(t) - 1

            #intervalAry.append(interval)
            MaxCoeff = []
            MaxYs = []
            Maxr2SGF = 0.0
            MaxEnd = interval
        else:
            interval -= 1

    tEnd = time.time()  #計時結束
    # =============================================================================
    # #=================每一天壓縮後數據==================================
    #     #==each day polynorimal data
    #     dtPolyData={'start':start,
    #                 'end':end,
    #                 'min_r2':min_r2,
    #                 'poly n':pIndex,
    #                 'wd_size%':wdsize_percent,
    #                 'min_interval%':min_interval_percent,
    #                 'angle':angle,
    #                 'coef':coef_ary,
    #                 'coeff_5':coeff_5,
    #                 'coeff_4':coeff_4,
    #                 'coeff_3':coeff_3,
    #                 'coeff_2':coeff_2,
    #                 'coeff_1':coeff_1,
    #                 'coeff_0':coeff_0,
    #                 'Delta':Dlta,
    #                 'R2_Raw':R2_PnR,
    #                 'R2_SGF':R2_PnS
    #                 }
    #     headerPD=['start','end','coeff_5','coeff_4','coeff_3','coeff_2','coeff_1','coeff_0','R2_Raw','Delta']
    #     dfpolyDtlData=pd.DataFrame(dtPolyData,columns=headerPD,index=None)
    #     SnrCsvfileName='Data_csv\\SlidingWindow\\Chebyshev\\Worst compressing data'+'\\'+fileName+"_DetailData.csv"
    #     dfpolyDtlData.to_csv(SnrCsvfileName,mode='w')
    #     print('總結:times=',len(times),'deCompDaya=',len(decompData))
    #
    #
    #
    #
    #
    #     #==each day deCompression data
    #     dtdeCData={'times':times,
    #             'Data':decompData
    #             }
    #
    #     headerDC=['times','Data']
    #     dfdeCData=pd.DataFrame(dtdeCData,columns=headerDC,index=None)
    #
    #     deCompCsvfileName='Data_csv\\SlidingWindow\\Chebyshev\\Worst compressing data'+'\\'+fileName+"_DecompressionDetailData.csv"
    #
    #     dfdeCData.to_csv(deCompCsvfileName,mode='w')
    #
    # =============================================================================

    segNum = len(start)  # num of segement
    tot_segNum += segNum  # total number of segements in all data
    Nr = len(t) * 2 * 8
    Nc = segNum * (pIndex + 4) * 8
    comp_ratio = (Nr - Nc) / Nr
    #print(dfpolyDtlData)
    R2_RnS = round(
        mthT.coeff_of_determination(np.array(data), sgf, startPt, endPt), 3)
    MeanR2PnR = round(np.mean(R2_PnR), 3)
    MeanR2PnS = round(np.mean(R2_PnS), 3)
    STD = round(np.std(R2_PnS), 3)
    timer = tEnd - tStart
    #print('MeanR2PnR = ' ,MeanR2PnR,', MeanR2PnS = ',MeanR2PnS)
    #print(fileName[:2]+fileName[3:])
    dtMean = {
        'date': fileName[:-3],
        'Sensor': fileName[6:],
        'data Length': len(t),
        'pIndex': pIndex,
        'Minium interval': min_time_interval,
        'angle': angle,
        'segNum': segNum,
        'comp_ratio': comp_ratio,
        'R2_R&S': R2_RnS,
        'timer': timer,
        'Mean_R2_P&R': MeanR2PnR,
        'Mean_R2_P&S': MeanR2PnS,
        'STD': STD
    }
    #    print(df)
    #    df.head()
    #print(pltData)

    if isplot:
        pltT.PlotLy(t, window_size_percent, min_interval_percent, polyIndex,
                    fileName, pltData, plotisOpen)
    return dtMean