コード例 #1
0
    def setUp(self):
        unittest.TestCase.setUp(self)

        self.m1 = matrices.Matrix3D([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
        self.m2 = matrices.Matrix3D([1, 2, 3], [4, 5, 6], [7, 8, 9])
        self.m3 = matrices.Matrix3D(1, 2, 3, 4, 5, 6, 7, 8, 9)
        self.m4 = matrices.Matrix3D(2, 2, 2, 3, 3, 3, 4, 4, 4)
コード例 #2
0
    def testalmostequal(self):
        m = matrices.Matrix3D(1, 2, 3, 0, 1, 4, 5, 6, 1)
        self.assertFalse(matrices.almostequal(self.m1, m))

        m = matrices.Matrix3D(1, 2, 3, 0, 1, 4, 5, 6, 0.0000000001)
        self.assertTrue(matrices.almostequal(self.m1, m))
        self.assertTrue(matrices.almostequal(m, self.m1))
コード例 #3
0
 def testconstructor(self):
     # Example of a matrix with a determinant of 1,
     # but that the inverse is not equal to the transpose
     m = matrices.Matrix3D(3, -4, 1, 5, 3, -7, -9, 2, 6)
     self.assertEqual(matrices.det(m), 1)
     self.assertRaises(TypeError, matrices.SpecialOrthogonalMatrix3D,
                       m.to_list())
コード例 #4
0
ファイル: unitcell.py プロジェクト: wangcs-1985/ebsdtools
    def _calculate_cartesian_matrix(self):
        """
        Calculate the matrix to change basis from the natural basis of a crystal
        :math:`(\\vec{a}, \\vec{b}, \\vec{c})` to the cartesian basis
        :math:`(\\vec{i}, \\vec{j}, \\vec{k})`.
        
        The cartesian basis is defined as follows:
        
          * :math:`\\vec{k}` is in the direction of :math:`\\vec{c}`
          * :math:`\\vec{j}` is in the direction of :math:`\\vec{c} \times \\vec{a}`
          * :math:`\\vec{i}` is in perpendicular to the plane of :math:`\\vec{k}`
            and :math:`\\vec{j}`
        
        **References**
        
          Equation 2.31 from Mathematical Crystallography
        
        """
        g11 = self.a * sin(self.beta)
        g12 = -self.b * sin(self.alpha) * cos(self.gamma_)
        g13 = 0
        g21 = 0
        g22 = self.b * sin(self.alpha) * sin(self.gamma_)
        g23 = 0
        g31 = self.a * cos(self.beta)
        g32 = self.b * cos(self.alpha)
        g33 = self.c

        self.cartesianmatrix = matrices.Matrix3D([g11, g12, g13],
                                                 [g21, g22, g23],
                                                 [g31, g32, g33])
コード例 #5
0
    def test__setitem__(self):
        m = matrices.Matrix3D(9, 2, 3, 4, 9, 6, 7, 8, 9)
        self.m1[0][0] = 9
        self.m1[1][1] = 9
        self.m1[2][2] = 9

        for i in range(3):
            for j in range(3):
                self.assertEqual(self.m1[i][j], m[i][j])
コード例 #6
0
    def testmetricalmatrix(self):
        # Example from Mathematical Crystallography
        L = unitcell.create_hexagonal_unitcell(4.914, 5.409)

        metricalmatrix = L.metricalmatrix
        expected_metricalmatrix = matrices.Matrix3D([24.1474, -12.0737, 0.0],
                                                    [-12.0737, 24.1474, 0.0],
                                                    [0.0, 0.0, 29.2573])
        self.assertTrue(
            matrices.almostequal(metricalmatrix, expected_metricalmatrix, 4))
コード例 #7
0
    def testdet(self):
        self.assertEqual(matrices.det(self.m1), 1.0)

        if numpy is not None:
            for _k in range(REPETITIONS):
                m = []
                for _i in range(3):
                    r = []
                    for _j in range(3):
                        r.append(random.random())
                    m.append(r)

                m_ = numpy.array(m)

                self.assertAlmostEqual(numpy.linalg.det(m_),
                                       matrices.det(matrices.Matrix3D(m)))
コード例 #8
0
    def test__rmul__(self):
        mm = self.m2 * self.m1
        self.assertTrue(isinstance(mm, matrices.SpecialOrthogonalMatrix3D))

        mm = 4 * self.m1
        self.assertFalse(isinstance(mm, matrices.SpecialOrthogonalMatrix3D))
        self.assertTrue(isinstance(mm, matrices.Matrix3D))

        mm = 1.0 * self.m1
        self.assertTrue(isinstance(mm, matrices.SpecialOrthogonalMatrix3D))

        # If a special orthogonal matrix is multiplied with a regular matrix,
        # the results is a regular Matrix3D object.
        m = matrices.Matrix3D(1, 2, 3, 4, 5, 6, 7, 8, 9)
        mm = m * self.m1
        self.assertFalse(isinstance(mm, matrices.SpecialOrthogonalMatrix3D))
        self.assertTrue(isinstance(mm, matrices.Matrix3D))
コード例 #9
0
    def testcartesianmatrix(self):
        alpha = 93.11 / 180.0 * pi
        beta = 115.91 / 180.0 * pi
        gamma = 91.26 / 180.0 * pi
        L = unitcell.create_triclinic_unitcell(8.173, 12.869, 14.165, alpha,
                                               beta, gamma)

        cartesianmatrix = L.cartesianmatrix
        expected_cartesianmatrix = matrices.Matrix3D(
            [7.3513, -0.65437, 0.0], [0.0, 12.8333, 0.0],
            [-3.5716, -0.69886, 14.165])
        self.assertTrue(
            matrices.almostequal(cartesianmatrix, expected_cartesianmatrix, 2))

        # Identity G = A^T A
        g = matrices.transpose(cartesianmatrix) * cartesianmatrix
        self.assertTrue(matrices.almostequal(g, L.metricalmatrix, 4))
コード例 #10
0
ファイル: unitcell.py プロジェクト: wangcs-1985/ebsdtools
    def _calculate_metrical_matrix(self):
        """
        Calculate the metrical matrix (G) of the unit cell.
        
        **References**
        
          Equation 1.12 and 2.14 from Mathematical Crystallography
        
        """
        g11 = self.a * self.a
        g12 = self.a * self.b * cos(self.gamma)
        g13 = self.a * self.c * cos(self.beta)
        g21 = g12
        g22 = self.b * self.b
        g23 = self.b * self.c * cos(self.alpha)
        g31 = g13
        g32 = g23
        g33 = self.c * self.c

        self.metricalmatrix = matrices.Matrix3D([g11, g12, g13],
                                                [g21, g22, g23],
                                                [g31, g32, g33])
コード例 #11
0
 def testinverse(self):
     expected_m1_inverse = matrices.Matrix3D(-24, 18, 5, 20, -15, -4, -5, 4,
                                             1)
     m1_inverse = matrices.inverse(self.m1)
     self.assertEqual(expected_m1_inverse, m1_inverse)
コード例 #12
0
 def testtranspose(self):
     expected_m1_transpose = matrices.Matrix3D(1, 0, 5, 2, 1, 6, 3, 4, 0)
     m1_transpose = matrices.transpose(self.m1)
     self.assertEqual(expected_m1_transpose, m1_transpose)
コード例 #13
0
    def setUp(self):
        unittest.TestCase.setUp(self)

        self.m1 = matrices.Matrix3D(1, 2, 3, 0, 1, 4, 5, 6, 0)
        self.m_so3 = matrices.Matrix3D(0.36, 0.48, -0.8, -0.8, 0.6, 0, 0.48,
                                       0.64, 0.6)