def featurize_composition(df: pd.DataFrame) -> pd.DataFrame: """ Decorate input `pandas.DataFrame` of structures with composition features from matminer. Currently applies the set of all matminer composition features. Args: df (pandas.DataFrame): the input dataframe with `"structure"` column containing `pymatgen.Structure` objects. Returns: pandas.DataFrame: the decorated DataFrame. """ logging.info("Applying composition featurizers...") df = df.copy() df['composition'] = df['structure'].apply(lambda s: s.composition) featurizer = MultipleFeaturizer([ElementProperty.from_preset("magpie"), AtomicOrbitals(), BandCenter(), # ElectronAffinity(), - This descriptor was not used in the paper preset Stoichiometry(), ValenceOrbital(), IonProperty(), ElementFraction(), TMetalFraction(), # CohesiveEnergy(), - This descriptor was not used in the paper preset Miedema(), YangSolidSolution(), AtomicPackingEfficiency(), ]) df = featurizer.featurize_dataframe(df, "composition", multiindex=True, ignore_errors=True) df.columns = df.columns.map('|'.join).str.strip('|') ox_featurizer = MultipleFeaturizer([OxidationStates(), ElectronegativityDiff() ]) df = CompositionToOxidComposition().featurize_dataframe(df, "Input Data|composition") df = ox_featurizer.featurize_dataframe(df, "composition_oxid", multiindex=True, ignore_errors=True) df = df.rename(columns={'Input Data': ''}) df.columns = df.columns.map('|'.join).str.strip('|') _orbitals = {"s": 1, "p": 2, "d": 3, "f": 4} df['AtomicOrbitals|HOMO_character'] = df['AtomicOrbitals|HOMO_character'].map(_orbitals) df['AtomicOrbitals|LUMO_character'] = df['AtomicOrbitals|LUMO_character'].map(_orbitals) df['AtomicOrbitals|HOMO_element'] = df['AtomicOrbitals|HOMO_element'].apply( lambda x: -1 if not isinstance(x, str) else Element(x).Z ) df['AtomicOrbitals|LUMO_element'] = df['AtomicOrbitals|LUMO_element'].apply( lambda x: -1 if not isinstance(x, str) else Element(x).Z ) df = df.replace([np.inf, -np.inf, np.nan], 0) return clean_df(df)
class DeBreuck2020Featurizer(modnet.featurizers.MODFeaturizer): """ Featurizer presets used for the paper 'Machine learning materials properties for small datasets' by Pierre-Paul De Breuck, Geoffroy Hautier & Gian-Marco Rignanese, arXiv:2004.14766 (2020). Uses most of the featurizers implemented by matminer at the time of writing with their default hyperparameters and presets. """ from matminer.featurizers.composition import ( AtomicOrbitals, AtomicPackingEfficiency, BandCenter, # CohesiveEnergy, - This descriptor was not used in the paper preset # ElectronAffinity, - This descriptor was not used in the paper preset ElectronegativityDiff, ElementFraction, ElementProperty, IonProperty, Miedema, OxidationStates, Stoichiometry, TMetalFraction, ValenceOrbital, YangSolidSolution, ) from matminer.featurizers.structure import ( # BagofBonds, - This descriptor was not used in the paper preset BondFractions, ChemicalOrdering, CoulombMatrix, DensityFeatures, EwaldEnergy, GlobalSymmetryFeatures, MaximumPackingEfficiency, # PartialRadialDistributionFunction, RadialDistributionFunction, SineCoulombMatrix, StructuralHeterogeneity, XRDPowderPattern, ) from matminer.featurizers.site import ( AGNIFingerprints, AverageBondAngle, AverageBondLength, BondOrientationalParameter, ChemEnvSiteFingerprint, CoordinationNumber, CrystalNNFingerprint, GaussianSymmFunc, GeneralizedRadialDistributionFunction, LocalPropertyDifference, OPSiteFingerprint, VoronoiFingerprint, ) composition_featurizers = ( AtomicOrbitals(), AtomicPackingEfficiency(), BandCenter(), ElementFraction(), ElementProperty.from_preset("magpie"), IonProperty(), Miedema(), Stoichiometry(), TMetalFraction(), ValenceOrbital(), YangSolidSolution(), ) oxide_composition_featurizers = ( ElectronegativityDiff(), OxidationStates(), ) structure_featurizers = ( DensityFeatures(), GlobalSymmetryFeatures(), RadialDistributionFunction(), CoulombMatrix(), # PartialRadialDistributionFunction(), SineCoulombMatrix(), EwaldEnergy(), BondFractions(), StructuralHeterogeneity(), MaximumPackingEfficiency(), ChemicalOrdering(), XRDPowderPattern(), # BagofBonds(), ) site_featurizers = ( AGNIFingerprints(), AverageBondAngle(VoronoiNN()), AverageBondLength(VoronoiNN()), BondOrientationalParameter(), ChemEnvSiteFingerprint.from_preset("simple"), CoordinationNumber(), CrystalNNFingerprint.from_preset("ops"), GaussianSymmFunc(), GeneralizedRadialDistributionFunction.from_preset("gaussian"), LocalPropertyDifference(), OPSiteFingerprint(), VoronoiFingerprint(), ) def featurize_composition(self, df): """ Applies the preset composition featurizers to the input dataframe, renames some fields and cleans the output dataframe. """ df = super().featurize_composition(df) _orbitals = {"s": 1, "p": 2, "d": 3, "f": 4} df['AtomicOrbitals|HOMO_character'] = df[ 'AtomicOrbitals|HOMO_character'].map(_orbitals) df['AtomicOrbitals|LUMO_character'] = df[ 'AtomicOrbitals|LUMO_character'].map(_orbitals) df['AtomicOrbitals|HOMO_element'] = df[ 'AtomicOrbitals|HOMO_element'].apply( lambda x: -1 if not isinstance(x, str) else Element(x).Z) df['AtomicOrbitals|LUMO_element'] = df[ 'AtomicOrbitals|LUMO_element'].apply( lambda x: -1 if not isinstance(x, str) else Element(x).Z) df = df.replace([np.inf, -np.inf, np.nan], 0) return modnet.featurizers.clean_df(df) def featurize_structure(self, df): """ Applies the preset structural featurizers to the input dataframe, renames some fields and cleans the output dataframe. """ df = super().featurize_structure(df) dist = df[ "RadialDistributionFunction|radial distribution function"].iloc[0][ 'distances'][:50] for i, d in enumerate(dist): _rdf_key = "RadialDistributionFunction|radial distribution function|d_{:.2f}".format( d) df[_rdf_key] = df[ "RadialDistributionFunction|radial distribution function"].apply( lambda x: x['distribution'][i]) df = df.drop("RadialDistributionFunction|radial distribution function", axis=1) _crystal_system = { "cubic": 1, "tetragonal": 2, "orthorombic": 3, "hexagonal": 4, "trigonal": 5, "monoclinic": 6, "triclinic": 7 } def _int_map(x): if x == np.nan: return 0 elif x: return 1 else: return 0 df["GlobalSymmetryFeatures|crystal_system"] = df[ "GlobalSymmetryFeatures|crystal_system"].map(_crystal_system) df["GlobalSymmetryFeatures|is_centrosymmetric"] = df[ "GlobalSymmetryFeatures|is_centrosymmetric"].map(_int_map) return modnet.featurizers.clean_df(df) def featurize_site(self, df): """ Applies the preset site featurizers to the input dataframe, renames some fields and cleans the output dataframe. """ # rename some features for backwards compatibility with pretrained models aliases = { "GeneralizedRadialDistributionFunction": "GeneralizedRDF", "AGNIFingerprints": "AGNIFingerPrint", "BondOrientationalParameter": "BondOrientationParameter", "GaussianSymmFunc": "ChemEnvSiteFingerprint|GaussianSymmFunc", } df = super().featurize_site(df, aliases=aliases) df = df.loc[:, (df != 0).any(axis=0)] return modnet.featurizers.clean_df(df)
def test_ape(self): f = AtomicPackingEfficiency() ef = ElementFraction() ef.set_n_jobs(1) # Test the APE calculation routines self.assertAlmostEqual(1.11632, f.get_ideal_radius_ratio(15)) self.assertAlmostEqual(0.154701, f.get_ideal_radius_ratio(2)) self.assertAlmostEqual(1.65915, f.get_ideal_radius_ratio(27)) self.assertAlmostEqual(15, f.find_ideal_cluster_size(1.116)[0]) self.assertAlmostEqual(3, f.find_ideal_cluster_size(0.1)[0]) self.assertAlmostEqual(24, f.find_ideal_cluster_size(2)[0]) # Test the nearest neighbor lookup tool nn_lookup = f.create_cluster_lookup_tool( [Element('Cu'), Element('Zr')]) # Check that the table gets the correct structures stable_clusters = [ Composition('CuZr10'), Composition('Cu6Zr6'), Composition('Cu8Zr5'), Composition('Cu13Zr1'), Composition('Cu3Zr12'), Composition('Cu8Zr8'), Composition('Cu12Zr5'), Composition('Cu17Zr') ] ds, _ = nn_lookup.kneighbors(ef.featurize_many(stable_clusters), n_neighbors=1) self.assertArrayAlmostEqual([[0]] * 8, ds) self.assertEqual(8, nn_lookup._fit_X.shape[0]) # Swap the order of the clusters, make sure it gets the same list nn_lookup_swapped = f.create_cluster_lookup_tool( [Element('Zr'), Element('Cu')]) self.assertArrayAlmostEqual(sorted(nn_lookup._fit_X.tolist()), sorted(nn_lookup_swapped._fit_X.tolist())) # Make sure we had a cache hit self.assertEqual(1, f._create_cluster_lookup_tool.cache_info().misses) self.assertEqual(1, f._create_cluster_lookup_tool.cache_info().hits) # Change the tolerance, see if it changes the results properly f.threshold = 0.002 nn_lookup = f.create_cluster_lookup_tool( [Element('Cu'), Element('Zr')]) self.assertEqual(2, nn_lookup._fit_X.shape[0]) ds, _ = nn_lookup.kneighbors(ef.featurize_many( [Composition('CuZr10'), Composition('Cu3Zr12')]), n_neighbors=1) self.assertArrayAlmostEqual([[0]] * 2, ds) # Make sure we had a cache miss self.assertEqual(2, f._create_cluster_lookup_tool.cache_info().misses) self.assertEqual(1, f._create_cluster_lookup_tool.cache_info().hits) # Compute the distances from Cu50Zr50 mean_dists = f.compute_nearest_cluster_distance(Composition('CuZr')) self.assertArrayAlmostEqual([0.424264, 0.667602, 0.800561], mean_dists, decimal=6) # Compute the optimal APE for Cu50Zr50 self.assertArrayAlmostEqual([0.000233857, 0.003508794], f.compute_simultaneous_packing_efficiency( Composition('Cu50Zr50'))) # Test the dataframe calculator df = pd.DataFrame({'comp': [Composition('CuZr')]}) df = f.featurize_dataframe(df, 'comp') self.assertEqual(6, len(df.columns)) self.assertIn('dist from 5 clusters |APE| < 0.002', df.columns) self.assertAlmostEqual(0.003508794, df['mean abs simul. packing efficiency'][0]) # Make sure it works with composition that do not match any efficient clusters feat = f.compute_nearest_cluster_distance(Composition('Al')) self.assertArrayAlmostEqual([1] * 3, feat)
class FUTURE_PROSPECTS_2021(featurizer.extendedMODFeaturizer): from matminer.featurizers.composition import ( AtomicOrbitals, AtomicPackingEfficiency, BandCenter, CohesiveEnergy, ElectronAffinity, ElectronegativityDiff, ElementFraction, ElementProperty, IonProperty, Miedema, OxidationStates, Stoichiometry, TMetalFraction, ValenceOrbital, YangSolidSolution, ) from matminer.featurizers.structure import ( BagofBonds, BondFractions, ChemicalOrdering, CoulombMatrix, DensityFeatures, EwaldEnergy, GlobalSymmetryFeatures, MaximumPackingEfficiency, PartialRadialDistributionFunction, RadialDistributionFunction, SineCoulombMatrix, StructuralHeterogeneity, XRDPowderPattern, ) from matminer.featurizers.site import ( AGNIFingerprints, AverageBondAngle, AverageBondLength, BondOrientationalParameter, ChemEnvSiteFingerprint, CoordinationNumber, CrystalNNFingerprint, GaussianSymmFunc, GeneralizedRadialDistributionFunction, LocalPropertyDifference, OPSiteFingerprint, VoronoiFingerprint, ) from matminer.featurizers.dos import ( DOSFeaturizer, SiteDOS, Hybridization, DosAsymmetry, ) from matminer.featurizers.bandstructure import ( BandFeaturizer, BranchPointEnergy ) composition_featurizers = ( AtomicOrbitals(), AtomicPackingEfficiency(), BandCenter(), ElementFraction(), ElementProperty.from_preset("magpie"), IonProperty(), Miedema(), Stoichiometry(), TMetalFraction(), ValenceOrbital(), YangSolidSolution(), ) oxid_composition_featurizers = ( ElectronegativityDiff(), OxidationStates(), ) structure_featurizers = ( DensityFeatures(), GlobalSymmetryFeatures(), RadialDistributionFunction(), CoulombMatrix(), #PartialRadialDistributionFunction(), #Introduces a large amount of features SineCoulombMatrix(), EwaldEnergy(), BondFractions(), StructuralHeterogeneity(), MaximumPackingEfficiency(), ChemicalOrdering(), XRDPowderPattern(), ) site_featurizers = ( AGNIFingerprints(), AverageBondAngle(VoronoiNN()), AverageBondLength(VoronoiNN()), BondOrientationalParameter(), ChemEnvSiteFingerprint.from_preset("simple"), CoordinationNumber(), CrystalNNFingerprint.from_preset("ops"), GaussianSymmFunc(), GeneralizedRadialDistributionFunction.from_preset("gaussian"), LocalPropertyDifference(), OPSiteFingerprint(), VoronoiFingerprint(), ) dos_featurizers = ( DOSFeaturizer(), SiteDOS(), Hybridization() ) band_featurizers = ( BandFeaturizer(), BranchPointEnergy() ) def __init__(self, n_jobs=None): self._n_jobs = n_jobs def featurize_composition(self, df): """Applies the preset composition featurizers to the input dataframe, renames some fields and cleans the output dataframe. """ df = super().featurize_composition(df) _orbitals = {"s": 1, "p": 2, "d": 3, "f": 4} df["AtomicOrbitals|HOMO_character"] = df["AtomicOrbitals|HOMO_character"].map( _orbitals ) df["AtomicOrbitals|LUMO_character"] = df["AtomicOrbitals|LUMO_character"].map( _orbitals ) df["AtomicOrbitals|HOMO_element"] = df["AtomicOrbitals|HOMO_element"].apply( lambda x: -1 if not isinstance(x, str) else Element(x).Z ) df["AtomicOrbitals|LUMO_element"] = df["AtomicOrbitals|LUMO_element"].apply( lambda x: -1 if not isinstance(x, str) else Element(x).Z ) return clean_df(df) def featurize_structure(self, df): """Applies the preset structural featurizers to the input dataframe, renames some fields and cleans the output dataframe. """ df = super().featurize_structure(df) dist = df["RadialDistributionFunction|radial distribution function"].iloc[0][ "distances" ][:50] for i, d in enumerate(dist): _rdf_key = "RadialDistributionFunction|radial distribution function|d_{:.2f}".format( d ) df[_rdf_key] = df[ "RadialDistributionFunction|radial distribution function" ].apply(lambda x: x["distribution"][i]) df = df.drop("RadialDistributionFunction|radial distribution function", axis=1) _crystal_system = { "cubic": 1, "tetragonal": 2, "orthorombic": 3, "hexagonal": 4, "trigonal": 5, "monoclinic": 6, "triclinic": 7, } def _int_map(x): if x == np.nan: return 0 elif x: return 1 else: return 0 df["GlobalSymmetryFeatures|crystal_system"] = df[ "GlobalSymmetryFeatures|crystal_system" ].map(_crystal_system) df["GlobalSymmetryFeatures|is_centrosymmetric"] = df[ "GlobalSymmetryFeatures|is_centrosymmetric" ].map(_int_map) return clean_df(df) def featurize_dos(self, df): """Applies the presetdos featurizers to the input dataframe, renames some fields and cleans the output dataframe. """ df = super().featurize_dos(df) hotencodeColumns = ["DOSFeaturizer|vbm_specie_1","DOSFeaturizer|cbm_specie_1"] one_hot = pd.get_dummies(df[hotencodeColumns]) df = df.drop(hotencodeColumns, axis = 1).join(one_hot) _orbitals = {"s": 1, "p": 2, "d": 3, "f": 4} df["DOSFeaturizer|vbm_character_1"] = df[ "DOSFeaturizer|vbm_character_1" ].map(_orbitals) df["DOSFeaturizer|cbm_character_1"] = df[ "DOSFeaturizer|cbm_character_1" ].map(_orbitals) # Splitting one feature into several floating features # e.g. number;number;number into three columns splitColumns = ["DOSFeaturizer|cbm_location_1", "DOSFeaturizer|vbm_location_1"] for column in splitColumns: try: newColumns = df[column].str.split(";", n = 2, expand = True) for i in range(0,3): df[column + "_" + str(i)] = np.array(newColumns[i]).astype(np.float) except: continue df = df.drop(splitColumns, axis=1) df = df.drop(["dos"], axis=1) return clean_df(df) def featurize_bandstructure(self, df): """Applies the preset band structure featurizers to the input dataframe, renames some fields and cleans the output dataframe. """ df = super().featurize_bandstructure(df) def _int_map(x): if str(x) == "False": return 0 elif str(x) == "True": return 1 df["BandFeaturizer|is_gap_direct"] = df[ "BandFeaturizer|is_gap_direct" ].map(_int_map) df = df.drop(["bandstructure"], axis=1) return clean_df(df) def featurize_site(self, df): """Applies the preset site featurizers to the input dataframe, renames some fields and cleans the output dataframe. """ aliases = { "GeneralizedRadialDistributionFunction": "GeneralizedRDF", "AGNIFingerprints": "AGNIFingerPrint", "BondOrientationalParameter": "BondOrientationParameter", "GaussianSymmFunc": "ChemEnvSiteFingerprint|GaussianSymmFunc", } df = super().featurize_site(df, aliases=aliases) df = df.loc[:, (df != 0).any(axis=0)] return clean_df(df)
def predict_log10_eps( target: Union[Structure, Composition], dielectric_type: str, model_type: str, ) -> float: """ :param target: structure or composition to predict dielectric constants :param dielectric_type: "el" or "ion" :param model_type: "comp" or "comp_st" :return: Descriptor vector """ if dielectric_type not in ["el", "ion"]: raise ValueError( f'Specify dielectric type "el" or "ion"\nInput: {dielectric_type}') if model_type not in ["comp", "comp_st"]: raise ValueError( f'Specify regression_type "comp" or "comp_st"\nInput: {model_type}' ) if model_type == "comp": if isinstance(target, Structure): comp = target.composition else: comp = target comp_oxi = comp.add_charges_from_oxi_state_guesses() if dielectric_type == "el": ep = ScalarFeaturizer(ElementProperty.from_preset("matminer"), comp) valence = ScalarFeaturizer(ValenceOrbital(), comp) ion_prop = ScalarFeaturizer(IonProperty(), comp) en_diff = ScalarFeaturizer(ElectronegativityDiff(), comp_oxi) oxi_state = ScalarFeaturizer(OxidationStates.from_preset("deml"), comp_oxi) atomic_orbital = ScalarFeaturizer(AtomicOrbitals(), comp) descriptor = [ ep.get_from_label("PymatgenData minimum X"), ep.get_from_label("PymatgenData range X"), ep.get_from_label("PymatgenData std_dev X"), ep.get_from_label("PymatgenData mean row"), ep.get_from_label("PymatgenData std_dev row"), ep.get_from_label("PymatgenData mean group"), ep.get_from_label("PymatgenData mean block"), ep.get_from_label("PymatgenData std_dev block"), ep.get_from_label("PymatgenData mean atomic_mass"), ep.get_from_label("PymatgenData std_dev atomic_mass"), ep.get_from_label("PymatgenData std_dev atomic_radius"), ep.get_from_label("PymatgenData minimum mendeleev_no"), ep.get_from_label("PymatgenData range mendeleev_no"), ep.get_from_label("PymatgenData std_dev mendeleev_no"), ep.get_from_label("PymatgenData mean thermal_conductivity"), ep.get_from_label("PymatgenData std_dev thermal_conductivity"), ep.get_from_label("PymatgenData mean melting_point"), ep.get_from_label("PymatgenData std_dev melting_point"), valence.get_from_label("avg s valence electrons"), valence.get_from_label("avg d valence electrons"), valence.get_from_label("frac s valence electrons"), valence.get_from_label("frac p valence electrons"), valence.get_from_label("frac d valence electrons"), ion_prop.get_from_label("avg ionic char"), TMetalFraction().featurize(comp)[0], en_diff.get_from_label("maximum EN difference"), en_diff.get_from_label("range EN difference"), en_diff.get_from_label("mean EN difference"), en_diff.get_from_label("std_dev EN difference"), BandCenter().featurize(comp)[0], oxi_state.get_from_label("std_dev oxidation state"), atomic_orbital.get_from_label("HOMO_energy"), atomic_orbital.get_from_label("LUMO_energy"), atomic_orbital.get_from_label("gap_AO"), ] elif dielectric_type == "ion": stoich = ScalarFeaturizer(Stoichiometry(), comp) ep = ScalarFeaturizer(ElementProperty.from_preset("matminer"), comp) valence = ScalarFeaturizer(ValenceOrbital(), comp) ion_prop = ScalarFeaturizer(IonProperty(), comp) en_diff = ScalarFeaturizer(ElectronegativityDiff(), comp_oxi) oxi_state = ScalarFeaturizer(OxidationStates.from_preset("deml"), comp_oxi) atomic_orbital = ScalarFeaturizer(AtomicOrbitals(), comp) at_pack_eff = ScalarFeaturizer(AtomicPackingEfficiency(), comp) descriptor = [ stoich.get_from_label("3-norm"), stoich.get_from_label("5-norm"), ep.get_from_label("PymatgenData mean X"), ep.get_from_label("PymatgenData mean row"), ep.get_from_label("PymatgenData std_dev row"), ep.get_from_label("PymatgenData std_dev group"), ep.get_from_label("PymatgenData mean block"), ep.get_from_label("PymatgenData std_dev block"), ep.get_from_label("PymatgenData maximum atomic_mass"), ep.get_from_label("PymatgenData range atomic_mass"), ep.get_from_label("PymatgenData mean atomic_mass"), ep.get_from_label("PymatgenData std_dev atomic_mass"), ep.get_from_label("PymatgenData maximum atomic_radius"), ep.get_from_label("PymatgenData range atomic_radius"), ep.get_from_label("PymatgenData mean atomic_radius"), ep.get_from_label("PymatgenData std_dev atomic_radius"), ep.get_from_label("PymatgenData minimum mendeleev_no"), ep.get_from_label("PymatgenData mean mendeleev_no"), ep.get_from_label("PymatgenData std_dev mendeleev_no"), ep.get_from_label("PymatgenData mean thermal_conductivity"), ep.get_from_label("PymatgenData std_dev thermal_conductivity"), ep.get_from_label("PymatgenData mean melting_point"), ep.get_from_label("PymatgenData std_dev melting_point"), valence.get_from_label("avg s valence electrons"), valence.get_from_label("frac s valence electrons"), valence.get_from_label("frac p valence electrons"), valence.get_from_label("frac d valence electrons"), ion_prop.get_from_label("avg ionic char"), TMetalFraction().featurize(comp)[0], en_diff.get_from_label("minimum EN difference"), en_diff.get_from_label("range EN difference"), en_diff.get_from_label("mean EN difference"), en_diff.get_from_label("std_dev EN difference"), oxi_state.get_from_label("range oxidation state"), oxi_state.get_from_label("std_dev oxidation state"), atomic_orbital.get_from_label("LUMO_energy"), atomic_orbital.get_from_label("gap_AO"), at_pack_eff.get_from_label("mean simul. packing efficiency"), at_pack_eff.get_from_label( "mean abs simul. packing efficiency"), at_pack_eff.get_from_label( "dist from 1 clusters |APE| < 0.010"), at_pack_eff.get_from_label( "dist from 3 clusters |APE| < 0.010"), at_pack_eff.get_from_label( "dist from 5 clusters |APE| < 0.010"), ] elif model_type == "comp_st": if isinstance(target, Composition): raise ValueError( 'comp_st (Using compositional and structural descriptor) is specified, ' 'but target is composition') comp: Composition = target.composition comp_oxi = comp.add_charges_from_oxi_state_guesses() target_orig = deepcopy(target) target.add_oxidation_state_by_guess() if dielectric_type == "el": ep = ScalarFeaturizer(ElementProperty.from_preset("matminer"), comp) valence = ScalarFeaturizer(ValenceOrbital(), comp) en_diff = ScalarFeaturizer(ElectronegativityDiff(), comp_oxi) atomic_orbital = ScalarFeaturizer(AtomicOrbitals(), comp) density = ScalarFeaturizer(DensityFeatures(), target) dist_btw_nn = MinimumRelativeDistances().featurize(target_orig) opsf = SiteFeaturizer(OPSiteFingerprint(), target) voro_fp = SiteFeaturizer(VoronoiFingerprint(use_symm_weights=True), target) gsf = SiteFeaturizer(GaussianSymmFunc(), target) lpd = SiteFeaturizer( LocalPropertyDifference.from_preset("ward-prb-2017"), target) descriptor = [ ep.get_from_label("PymatgenData std_dev X"), ep.get_from_label("PymatgenData mean block"), ep.get_from_label("PymatgenData std_dev atomic_mass"), valence.get_from_label("frac d valence electrons"), TMetalFraction().featurize(comp)[0], en_diff.get_from_label("maximum EN difference"), en_diff.get_from_label("mean EN difference"), atomic_orbital.get_from_label("HOMO_energy"), atomic_orbital.get_from_label("LUMO_energy"), density.get_from_label("density"), np.mean(dist_btw_nn), np.std(dist_btw_nn), opsf.get_from_label_func("tetrahedral CN_4", np.max), opsf.get_from_label_func("rectangular see-saw-like CN_4", np.max), np.max([ EwaldSiteEnergy(accuracy=4).featurize(target, i) for i in range(target.num_sites) ]), voro_fp.get_from_label_func("Voro_area_std_dev", np.max), voro_fp.get_from_label_func("Voro_area_std_dev", np.mean), voro_fp.get_from_label_func("Voro_dist_minimum", np.min), voro_fp.get_from_label_func("Voro_dist_minimum", np.std), gsf.get_from_label_func("G2_20.0", np.std), gsf.get_from_label_func("G2_80.0", np.max), gsf.get_from_label_func("G4_0.005_4.0_-1.0", np.mean), lpd.get_from_label_func("local difference in NdValence", np.mean), lpd.get_from_label_func("local difference in NValence", np.min), lpd.get_from_label_func("local difference in NValence", np.std), lpd.get_from_label_func("local difference in NdUnfilled", np.mean), lpd.get_from_label_func("local difference in NUnfilled", np.min), lpd.get_from_label_func("local difference in NUnfilled", np.mean), lpd.get_from_label_func("local difference in GSmagmom", np.mean) ] elif dielectric_type == "ion": ep = ScalarFeaturizer(ElementProperty.from_preset("matminer"), comp) atomic_orbitals = ScalarFeaturizer(AtomicOrbitals(), comp) density = ScalarFeaturizer(DensityFeatures(), target) str_het = ScalarFeaturizer(StructuralHeterogeneity(), target) opsf = SiteFeaturizer(OPSiteFingerprint(), target) voro_fp = SiteFeaturizer(VoronoiFingerprint(use_symm_weights=True), target) gsf = SiteFeaturizer(GaussianSymmFunc(), target) lpd = SiteFeaturizer( LocalPropertyDifference.from_preset("ward-prb-2017"), target) descriptor = [ ep.get_from_label("PymatgenData std_dev row"), ep.get_from_label("PymatgenData mean thermal_conductivity"), ep.get_from_label("PymatgenData std_dev melting_point"), TMetalFraction().featurize(comp)[0], atomic_orbitals.get_from_label("gap_AO"), density.get_from_label("density"), density.get_from_label("packing fraction"), str_het.get_from_label("mean neighbor distance variation"), str_het.get_from_label("avg_dev neighbor distance variation"), opsf.get_from_label_func("sgl_bd CN_1", np.mean), opsf.get_from_label_func("bent 150 degrees CN_2", np.mean), opsf.get_from_label_func("linear CN_2", np.mean), opsf.get_from_label_func("trigonal planar CN_3", np.mean), opsf.get_from_label_func("pentagonal planar CN_5", np.std), opsf.get_from_label_func("octahedral CN_6", np.max), opsf.get_from_label_func("octahedral CN_6", np.std), opsf.get_from_label_func("q6 CN_12", np.mean), np.max([ EwaldSiteEnergy(accuracy=4).featurize(target, i) for i in range(target.num_sites) ]), voro_fp.get_from_label_func("Symmetry_weighted_index_4", np.std), voro_fp.get_from_label_func("Voro_vol_maximum", np.mean), voro_fp.get_from_label_func("Voro_area_std_dev", np.mean), voro_fp.get_from_label_func("Voro_area_minimum", np.std), voro_fp.get_from_label_func("Voro_area_maximum", np.min), voro_fp.get_from_label_func("Voro_dist_std_dev", np.mean), gsf.get_from_label_func("G2_80.0", np.min), gsf.get_from_label_func("G4_0.005_4.0_1.0", np.std), lpd.get_from_label_func("local difference in Number", np.max), lpd.get_from_label_func("local difference in MendeleevNumber", np.max), lpd.get_from_label_func("local difference in MendeleevNumber", np.min), lpd.get_from_label_func("local difference in AtomicWeight", np.max), lpd.get_from_label_func("local difference in AtomicWeight", np.mean), lpd.get_from_label_func("local difference in MeltingT", np.mean), lpd.get_from_label_func("local difference in Row", np.max), lpd.get_from_label_func( "local difference in Electronegativity", np.min), lpd.get_from_label_func("local difference in NValence", np.std), lpd.get_from_label_func("local difference in NsUnfilled", np.mean), lpd.get_from_label_func("local difference in NdUnfilled", np.max), lpd.get_from_label_func("local difference in NdUnfilled", np.std), lpd.get_from_label_func("local difference in NUnfilled", np.max), lpd.get_from_label_func("local difference in NUnfilled", np.min), lpd.get_from_label_func("local difference in NUnfilled", np.mean), lpd.get_from_label_func("local difference in NUnfilled", np.std), lpd.get_from_label_func("local difference in GSvolume_pa", np.max), lpd.get_from_label_func("local difference in GSvolume_pa", np.min), lpd.get_from_label_func("local difference in SpaceGroupNumber", np.max), ] with open( f"{os.path.dirname(__file__)}/{dielectric_type}_{model_type}.joblib", "rb") as fr: model: RandomForestRegressor = joblib.load(fr) with open( f"{os.path.dirname(__file__)}/{dielectric_type}_{model_type}_scaler.joblib", "rb") as fr: scaler: StandardScaler = joblib.load(fr) descriptor = scaler.transform([descriptor]) return model.predict(descriptor)[0]
def test_ape(self): f = AtomicPackingEfficiency() ef = ElementFraction() ef.set_n_jobs(1) # Test the APE calculation routines self.assertAlmostEqual(1.11632, f.get_ideal_radius_ratio(15)) self.assertAlmostEqual(0.154701, f.get_ideal_radius_ratio(2)) self.assertAlmostEqual(1.65915, f.get_ideal_radius_ratio(27)) self.assertAlmostEqual(15, f.find_ideal_cluster_size(1.116)[0]) self.assertAlmostEqual(3, f.find_ideal_cluster_size(0.1)[0]) self.assertAlmostEqual(24, f.find_ideal_cluster_size(2)[0]) # Test the nearest neighbor lookup tool nn_lookup = f.create_cluster_lookup_tool([Element('Cu'), Element('Zr')]) # Check that the table gets the correct structures stable_clusters = [Composition('CuZr10'), Composition('Cu6Zr6'), Composition('Cu8Zr5'), Composition('Cu13Zr1'), Composition('Cu3Zr12'), Composition('Cu8Zr8'), Composition('Cu12Zr5'), Composition('Cu17Zr')] ds, _ = nn_lookup.kneighbors( ef.featurize_many(stable_clusters), n_neighbors=1) self.assertArrayAlmostEqual([[0]]*8, ds) self.assertEqual(8, nn_lookup._fit_X.shape[0]) # Swap the order of the clusters, make sure it gets the same list nn_lookup_swapped = f.create_cluster_lookup_tool([Element('Zr'), Element('Cu')]) self.assertArrayAlmostEqual(sorted(nn_lookup._fit_X.tolist()), sorted(nn_lookup_swapped._fit_X.tolist())) # Make sure we had a cache hit self.assertEqual(1, f._create_cluster_lookup_tool.cache_info().misses) self.assertEqual(1, f._create_cluster_lookup_tool.cache_info().hits) # Change the tolerance, see if it changes the results properly f.threshold = 0.002 nn_lookup = f.create_cluster_lookup_tool([Element('Cu'), Element('Zr')]) self.assertEqual(2, nn_lookup._fit_X.shape[0]) ds, _ = nn_lookup.kneighbors( ef.featurize_many([Composition('CuZr10'), Composition('Cu3Zr12')]), n_neighbors=1) self.assertArrayAlmostEqual([[0]]*2, ds) # Make sure we had a cache miss self.assertEqual(2, f._create_cluster_lookup_tool.cache_info().misses) self.assertEqual(1, f._create_cluster_lookup_tool.cache_info().hits) # Compute the distances from Cu50Zr50 mean_dists = f.compute_nearest_cluster_distance(Composition('CuZr')) self.assertArrayAlmostEqual([0.424264, 0.667602, 0.800561], mean_dists, decimal=6) # Compute the optimal APE for Cu50Zr50 self.assertArrayAlmostEqual([0.000233857, 0.003508794], f.compute_simultaneous_packing_efficiency( Composition('Cu50Zr50') )) # Test the dataframe calculator df = pd.DataFrame({'comp': [Composition('CuZr')]}) f.featurize_dataframe(df, 'comp') self.assertEqual(6, len(df.columns)) self.assertIn('dist from 5 clusters |APE| < 0.002', df.columns) self.assertAlmostEqual(0.003508794, df['mean abs simul. packing efficiency'][0]) # Make sure it works with composition that do not match any efficient clusters feat = f.compute_nearest_cluster_distance(Composition('Al')) self.assertArrayAlmostEqual([1]*3, feat)