y_pred = self.predict(X) / sizes y_true = y / sizes return sklearn.metrics.r2_score(y_true, y_pred) def length(self, vec): return vec[vec != 0].shape[0] # SCM evaluation DIAG = True print ("DIAG ELEMS", DIAG) # Featurize dataframe with sine coulomb matrix and time it start = time.monotonic() scm = SineCoulombMatrix(DIAG) # Set the number of jobs for parallelization scm.set_n_jobs(NJOBS) df = scm.featurize_dataframe(df, 'structure') # Take the eigenvalues of the SCMs to form vector descriptors df['sine coulomb matrix'] = pd.Series([np.sort(np.linalg.eigvals(s))[::-1] \ for s in df['sine coulomb matrix']], df.index) finish = time.monotonic() print ("TIME TO FEATURIZE SCM %f SECONDS" % (finish-start)) print() # Set up KRR model krr = KrrScm() print(krr.get_params().keys()) # Initialize hyperparameter grid search hpsel = GridSearchCV(krr, params['sine coulomb matrix'], cv=inner_cv, refit=True) X = df['sine coulomb matrix'].as_matrix()
y_true = y / sizes return sklearn.metrics.r2_score(y_true, y_pred) def length(self, vec): return vec[vec != 0].shape[0] # SCM evaluation DIAG = True print("DIAG ELEMS", DIAG) # Featurize dataframe with sine coulomb matrix and time it start = time.monotonic() scm = SineCoulombMatrix(DIAG) # Set the number of jobs for parallelization scm.set_n_jobs(NJOBS) df = scm.featurize_dataframe(df, 'structure') # Take the eigenvalues of the SCMs to form vector descriptors df['sine coulomb matrix'] = pd.Series( [np.sort(np.linalg.eigvals(s))[::-1] for s in df['sine coulomb matrix']], df.index) finish = time.monotonic() print("TIME TO FEATURIZE SCM %f SECONDS" % (finish - start)) print() # Set up KRR model krr = KrrScm() print(krr.get_params().keys()) # Initialize hyperparameter grid search hpsel = GridSearchCV(krr,
centro_dielectric_tensor=np.load('/Users/dennistrujillo/Dropbox/mp_share_dt_ag/dielectric_total/centro_diel.npy',allow_pickle=True) data = {'structures': centrosymmetric_structures, 'ids' : task_ids} df = pd.DataFrame(data) #soap representation #from matminer.featurizers.structure import SOAP #soap = SOAP(periodic=True) #soap=soap.fit(data['structures']) #labels=soap.feature_labels() #df = soap.featurize_dataframe(df,'structures') from matminer.featurizers.structure import SineCoulombMatrix sine_coulomb = SineCoulombMatrix() sine_coulomb.set_n_jobs(28) sine_coulomb.fit(centrosymmetric_structures)#data['structures']) labels=sine_coulomb.feature_labels() df = sine_coulomb.featurize_dataframe(df, 'structures')#,ignore_errors=True) #agni #from matminer.featurizers.site import AGNIFingerprints #agni=AGNIFingerprints(directions=['x','y','z']) #agni.set_n_jobs(28) #labels=agni.feature_labels() #df = agni.featurize(df['structures'],0) #df = agni.featurize_dataframe(df, ['structures', 'site'])#,ignore_errors=True) #get s_vs_ep ec_list=[] for item in centro_elastic_compliance: