コード例 #1
0
    def compute_simultaneous_packing_efficiency(self, comp):
        """Compute the packing efficiency of the system when the neighbor
        shell of each atom has the same composition as the alloy. When this
        criterion is satisfied, it is possible for every atom in this system
        to be simultaneously as efficiently-packed as possible.

        Args:
            comp (Composition): Composition to be assessed
        Returns
            (float) Average APE of all atoms
            (float) Average deviation of the APE of each atom from ideal (0)
        """

        # Compute the average atomic radius of the system
        elements, fractions = zip(*comp.element_composition.items())
        radii = self._data_source.get_elemental_properties(elements,
                                                           'MiracleRadius')
        mean_radius = PropertyStats.mean(radii, fractions)

        # Compute the APE for each cluster
        best_ape = [
            self.find_ideal_cluster_size(r / mean_radius)[1] for r in radii
        ]

        # Return the averages
        return PropertyStats.mean(best_ape, fractions), PropertyStats.mean(np.abs(best_ape), fractions)
コード例 #2
0
ファイル: thermo.py プロジェクト: CompRhys/matminer
    def compute_delta(self, comp):
        """Compute Yang's delta parameter

        :math:`\sqrt{\sum^n_{i=1} c_i \left( 1 - \\frac{r_i}{\\bar{r}} \\right)^2 }`

        where :math:`c_i` and :math:`r_i` are the fraction and radius of
        element :math:`i`, and :math:`\\bar{r}` is the fraction-weighted
        average of the radii. We use the radii compiled by
        .. Miracle et al. `https://www.tandfonline.com/doi/ref/10.1179/095066010X12646898728200?scroll=top`.

        Args:
            comp (Composition) - Composition to assess
        Returns:
            (float) delta

        """

        elements, fractions = zip(*comp.element_composition.items())

        # Get the radii of elements
        radii = self.elem_data.get_elemental_properties(
            elements, "MiracleRadius")
        mean_r = PropertyStats.mean(radii, fractions)

        # Compute the mean (1 - r/\\bar{r})^2
        r_dev = np.power(1.0 - np.divide(radii, mean_r), 2)
        return np.sqrt(PropertyStats.mean(r_dev, fractions))
コード例 #3
0
ファイル: test_stats.py プロジェクト: randomme/matminer
    def test_geom_std_dev(self):
        # This is right. Yes, a list without variation has a geom_std_dev of 1
        self.assertAlmostEqual(1, PropertyStats.geom_std_dev([1, 1, 1]))

        # Harder case
        self.assertAlmostEqual(1.166860716,
                               PropertyStats.geom_std_dev([0.5, 1.5, 1]))
        self.assertAlmostEqual(
            1.352205875,
            PropertyStats.geom_std_dev([0.5, 1.5, 1], weights=[2, 1, 0]))
コード例 #4
0
ファイル: test_stats.py プロジェクト: RamyaGuru/matminer
    def test_geom_std_dev(self):
        # This is right. Yes, a list without variation has a geom_std_dev of 1
        self.assertAlmostEqual(1, PropertyStats.geom_std_dev([1, 1, 1]))

        # Harder case
        self.assertAlmostEqual(1.166860716,
                               PropertyStats.geom_std_dev([0.5, 1.5, 1]))
        self.assertAlmostEqual(1.352205875,
                               PropertyStats.geom_std_dev([0.5, 1.5, 1],
                                                          weights=[2, 1, 0]))
コード例 #5
0
ファイル: matfeaturizers.py プロジェクト: scidatasoft/mof
    def featurize(self, n_w):
        """
        Get Voronoi fingerprints of site with given index in input structure.
        Args:
            struct (Structure): Pymatgen Structure object.
            idx (int): index of target site in structure.
        Returns:
            (list of floats): Voronoi fingerprints.
                -Voronoi indices
                -i-fold symmetry indices
                -weighted i-fold symmetry indices (if use_symm_weights = True)
                -Voronoi volume
                -Voronoi volume statistics
                -Voronoi area
                -Voronoi area statistics
                -Voronoi dist statistics
        """
        # Prepare storage for the Voronoi indices
        voro_idx_list = np.zeros(8, int)
        voro_idx_weights = np.zeros(8)
        vol_list = []
        area_list = []
        dist_list = []

        # Get statistics
        for nn in n_w:
            if nn['poly_info']['n_verts'] <= 10:
                # If a facet has more than 10 edges, it's skipped here.
                voro_idx_list[nn['poly_info']['n_verts'] - 3] += 1
                vol_list.append(nn['poly_info']['volume'])
                area_list.append(nn['poly_info']['area'])
                dist_list.append(nn['poly_info']['face_dist'] * 2)
                if self.use_symm_weights:
                    voro_idx_weights[nn['poly_info']['n_verts'] - 3] += \
                        nn['poly_info'][self.symm_weights]

        symm_idx_list = voro_idx_list / sum(voro_idx_list)
        if self.use_symm_weights:
            symm_wt_list = voro_idx_weights / sum(voro_idx_weights)
            voro_fps = list(np.concatenate((voro_idx_list, symm_idx_list,
                                           symm_wt_list), axis=0))
        else:
            voro_fps = list(np.concatenate((voro_idx_list,
                                           symm_idx_list), axis=0))

        voro_fps.append(sum(vol_list))
        voro_fps.append(sum(area_list))
        voro_fps += [PropertyStats().calc_stat(vol_list, stat_vol)
                     for stat_vol in self.stats_vol]
        voro_fps += [PropertyStats().calc_stat(area_list, stat_area)
                     for stat_area in self.stats_area]
        voro_fps += [PropertyStats().calc_stat(dist_list, stat_dist)
                     for stat_dist in self.stats_dist]
        return voro_fps
コード例 #6
0
ファイル: test_stats.py プロジェクト: RamyaGuru/matminer
    def test_holder_mean(self):
        self._run_test("holder_mean::0", 1, 1, np.product(self.sample_2), 0)

        self._run_test("holder_mean::1", 1, 1, 2. / 3, 5. / 7)
        self._run_test("holder_mean::2", 1, 1, sqrt(5. / 6), 0.88640526)

        # can't use run_test since it uses a sample with zero, which is not
        # allowed for Holder mean with -1
        self.assertAlmostEqual(PropertyStats.holder_mean(
            [1, 1, 2], power=-1), 1.2, places=3)

        self.assertAlmostEqual(PropertyStats.holder_mean(
            [1, 2], [2, 1], power=-1), 1.2, places=3)
コード例 #7
0
    def featurize(self, struct, idx):
        """
        Get interstice distribution fingerprints of site with given index in
        input structure.
        Args:
            struct (Structure): Pymatgen Structure object.
            idx (int): index of target site in structure.
        Returns:
            interstice_fps ([float]): Interstice distribution fingerprints.
        """
        interstice_fps = list()

        # Get the nearest neighbors using Voronoi tessellation
        n_w = VoronoiNN(cutoff=self.cutoff).get_voronoi_polyhedra(
            struct, idx).values()

        nn_coords = np.array([nn['site'].coords for nn in n_w])

        # Get center atom's radius and its nearest neighbors' radii
        center_r = MagpieData().get_elemental_properties(
            [struct[idx].specie], self.radius_type)[0] / 100
        nn_els = [nn['site'].specie for nn in n_w]
        nn_rs = np.array(MagpieData().get_elemental_properties(
            nn_els, self.radius_type)) / 100

        # Get indices of atoms forming the simplices of convex hull
        convex_hull_simplices = ConvexHull(nn_coords).simplices

        if 'dist' in self.interstice_types:
            nn_dists = [nn['face_dist'] * 2 for nn in n_w]
            interstice_dist_list = IntersticeDistribution.\
                analyze_dist_interstices(center_r, nn_rs, nn_dists)
            interstice_fps += [PropertyStats().calc_stat(
                interstice_dist_list, stat) for stat in self.stats]

        if 'area' in self.interstice_types:
            interstice_area_list = IntersticeDistribution.\
                analyze_area_interstice(nn_coords, nn_rs, convex_hull_simplices)
            interstice_fps += [PropertyStats().calc_stat(
                interstice_area_list, stat) for stat in self.stats]

        if 'vol' in self.interstice_types:
            interstice_vol_list = IntersticeDistribution.\
                analyze_vol_interstice(struct[idx].coords, nn_coords,
                                       center_r, nn_rs, convex_hull_simplices)
            interstice_fps += [PropertyStats().calc_stat(
                interstice_vol_list, stat) for stat in self.stats]
        return interstice_fps
コード例 #8
0
    def featurize(self, s):
        # Get each feature for each site
        vals = [[] for t in self._site_labels]
        for i, site in enumerate(s.sites):
            if (self.min_oxi is None or site.specie.oxi_state >= self.min_oxi) \
                    and (
                    self.max_oxi is None or site.specie.oxi_state >= self.max_oxi):
                opvalstmp = self.site_featurizer.featurize(s, i)
                for j, opval in enumerate(opvalstmp):
                    if opval is None:
                        vals[j].append(0.0)
                    else:
                        vals[j].append(opval)

        # If the user does not request statistics, return the site features now
        if self.stats is None:
            return vals

        # Compute the requested statistics
        stats = []
        for op in vals:
            for stat in self.stats:
                stats.append(PropertyStats().calc_stat(op, stat))

        # If desired, compute covariances
        if self.covariance:
            if len(s) == 1:
                stats.extend([0] * int(len(vals) * (len(vals) - 1) / 2))
            else:
                covar = np.cov(vals)
                tri_ind = np.triu_indices(len(vals), 1)
                stats.extend(covar[tri_ind].tolist())

        return stats
コード例 #9
0
ファイル: test_stats.py プロジェクト: randomme/matminer
    def test_holder_mean(self):
        self._run_test("holder_mean::0", 1, 1, np.product(self.sample_2), 0)

        self._run_test("holder_mean::1", 1, 1, 2. / 3, 5. / 7)
        self._run_test("holder_mean::2", 1, 1, sqrt(5. / 6), 0.88640526)

        # can't use run_test since it uses a sample with zero, which is not
        # allowed for Holder mean with -1
        self.assertAlmostEqual(PropertyStats.holder_mean([1, 1, 2], power=-1),
                               1.2,
                               places=3)

        self.assertAlmostEqual(PropertyStats.holder_mean([1, 2], [2, 1],
                                                         power=-1),
                               1.2,
                               places=3)
コード例 #10
0
    def __init__(self):
        self.data_source = MagpieData()

        #The labels for statistics on element properties
        self._element_property_feature_labels = [
            "mean AtomicWeight",
            "mean Column",
            "mean Row",
            "range Number",
            "mean Number",
            "range AtomicRadius",
            "mean AtomicRadius",
            "range Electronegativity",
            "mean Electronegativity"
        ]
        # Initialize stats computer
        self.pstats = PropertyStats()
コード例 #11
0
    def __init__(self, data_source, features, stats):
        if data_source == "pymatgen":
            self.data_source = PymatgenData()
        elif data_source == "magpie":
            self.data_source = MagpieData()
        elif data_source == "deml":
            self.data_source = DemlData()
        elif data_source == "matscholar_el":
            self.data_source = MatscholarElementData()
        elif data_source == "megnet_el":
            self.data_source = MEGNetElementData()
        else:
            self.data_source = data_source

        self.features = features
        self.stats = stats
        # Initialize stats computer
        self.pstats = PropertyStats()
コード例 #12
0
ファイル: oxidation.py プロジェクト: CompRhys/matminer
    def featurize(self, comp):
        # Check if oxidation states are present
        if not has_oxidation_states(comp):
            raise ValueError('Oxidation states have not been determined')

        # Get the oxidation states and their proportions
        oxid_states, fractions = zip(*[(s.oxi_state, f) for s, f in comp.items()])

        # Compute statistics
        return [PropertyStats.calc_stat(oxid_states, s, fractions) for s in self.stats]
コード例 #13
0
ファイル: voronoi.py プロジェクト: CompRhys/matminer
    def featurize(self, strc):
        # Compute the Voronoi tessellation of each site
        voro = VoronoiNN(extra_nn_info=True, weight=self.weight)
        nns = get_all_nearest_neighbors(voro, strc)

        # Compute the mean bond length of each atom, and the mean
        #   variation within each cell
        mean_bond_lengths = np.zeros((len(strc), ))
        bond_length_var = np.zeros_like(mean_bond_lengths)
        for i, nn in enumerate(nns):
            weights = [n['weight'] for n in nn]
            lengths = [n['poly_info']['face_dist'] * 2 for n in nn]
            mean_bond_lengths[i] = PropertyStats.mean(lengths, weights)

            # Compute the mean absolute deviation of the bond lengths
            bond_length_var[i] = PropertyStats.avg_dev(lengths, weights) / \
                                 mean_bond_lengths[i]

        # Normalize the bond lengths by the average of the whole structure
        #   This is done to make the attributes length-scale-invariant
        mean_bond_lengths /= mean_bond_lengths.mean()

        # Compute statistics related to bond lengths
        features = [
            PropertyStats.avg_dev(mean_bond_lengths),
            mean_bond_lengths.max(),
            mean_bond_lengths.min()
        ]
        features += [
            PropertyStats.calc_stat(bond_length_var, stat)
            for stat in self.stats
        ]

        # Compute the variance in volume
        cell_volumes = [
            sum(x['poly_info']['volume'] for x in nn) for nn in nns
        ]
        features.append(
            PropertyStats.avg_dev(cell_volumes) / np.mean(cell_volumes))

        return features
コード例 #14
0
ファイル: oxidation.py プロジェクト: CompRhys/matminer
    def featurize(self, comp):
        """
        Args:
            comp: Pymatgen Composition object

        Returns:
            en_diff_stats (list of floats): Property stats of electronegativity difference
        """

        # Check if oxidation states have been determined
        if not has_oxidation_states(comp):
            raise ValueError('Oxidation states have not yet been determined')
        if not is_ionic(comp):
            raise ValueError('Composition is not ionic')

        # Determine the average anion EN
        anions, anion_fractions = zip(*[(s, x) for s, x in comp.items() if s.oxi_state < 0])

        # If there are no anions, raise an Exception
        if len(anions) == 0:
            raise Exception('Features not applicable: Compound contains no anions')

        anion_en = [s.element.X for s in anions]
        mean_anion_en = PropertyStats.mean(anion_en, anion_fractions)

        # Determine the EN difference for each cation
        cations, cation_fractions = zip(*[(s, x) for s, x in comp.items() if s.oxi_state > 0])

        # If there are no cations, raise an Exception
        #  It is possible to construct a non-charge-balanced Composition,
        #    so we have to check for both the presence of anions and cations
        if len(cations) == 0:
            raise Exception('Features not applicable: Compound contains no cations')

        en_difference = [mean_anion_en - s.element.X for s in cations]

        # Compute the statistics
        return [
            PropertyStats.calc_stat(en_difference, stat, cation_fractions) for stat in self.stats
        ]
コード例 #15
0
ファイル: test_stats.py プロジェクト: RamyaGuru/matminer
    def _run_test(self, statistic, sample_1, sample_1_weighted, sample_2,
                  sample_2_weighted):
        """ Run a test for a certain statistic against the two sample datasets

        Args:
            statistic: name of statistic
            sample_1: float, expected value for statistic of sample 1 without weights
            sample_1_weighted: float, expected value for statistic of sample 1 with weights
            sample_2: float, expected value for statistic of sample 2 without weights
            sample_2_weighted: float, expected value for statistic of sample 2 with weights
        """

        self.assertAlmostEqual(sample_1, PropertyStats.calc_stat(self.sample_1,
                                                                 statistic))
        self.assertAlmostEqual(sample_1_weighted,
                               PropertyStats.calc_stat(self.sample_1, statistic,
                                                       self.sample_1_weights))
        self.assertAlmostEqual(sample_2, PropertyStats.calc_stat(self.sample_2,
                                                                 statistic))
        self.assertAlmostEqual(sample_2_weighted,
                               PropertyStats.calc_stat(self.sample_2, statistic,
                                                       self.sample_2_weights))
コード例 #16
0
ファイル: test_stats.py プロジェクト: randomme/matminer
    def _run_test(self, statistic, sample_1, sample_1_weighted, sample_2,
                  sample_2_weighted):
        """ Run a test for a certain statistic against the two sample datasets

        :param statistic: name of statistic
        :param sample_1: float, expected value for statistic of sample 1 without weights
        :param sample_1_weighted: float, expected value for statistic of sample 1 with weights
        :param sample_2: float, expected value for statistic of sample 2 without weights
        :param sample_2_weighted: float, expected value for statistic of sample 2 with weights
        """

        self.assertAlmostEqual(
            sample_1, PropertyStats.calc_stat(self.sample_1, statistic))
        self.assertAlmostEqual(
            sample_1_weighted,
            PropertyStats.calc_stat(self.sample_1, statistic,
                                    self.sample_1_weights))
        self.assertAlmostEqual(
            sample_2, PropertyStats.calc_stat(self.sample_2, statistic))
        self.assertAlmostEqual(
            sample_2_weighted,
            PropertyStats.calc_stat(self.sample_2, statistic,
                                    self.sample_2_weights))
コード例 #17
0
ファイル: oxidation.py プロジェクト: CompRhys/matminer
    def featurize(self, comp):
        # Check if oxidation states are present
        if not has_oxidation_states(comp):
            raise ValueError('Oxidation states have not been determined')
        if not is_ionic(comp):
            raise ValueError('Composition is not ionic')

        # Prepare to store the attributes
        all_attributes = []

        # Initialize stats computer
        pstats = PropertyStats()

        # Get the cation species and fractions
        cations, fractions = zip(*[(s, f) for s, f in comp.items() if s.oxi_state > 0])

        for attr in self.features:
            elem_data = [self.data_source.get_charge_dependent_property_from_specie(c, attr)
                         for c in cations]

            for stat in self.stats:
                all_attributes.append(pstats.calc_stat(elem_data, stat, fractions))

        return all_attributes
コード例 #18
0
ファイル: thermo.py プロジェクト: CompRhys/matminer
    def compute_omega(self, comp):
        """Compute Yang's mixing thermodynamics descriptor

        :math:`\\frac{T_m \Delta S_{mix}}{ |  \Delta H_{mix} | }`

        Where :math:`T_m` is average melting temperature,
        :math:`\Delta S_{mix}` is the ideal mixing entropy,
        and :math:`\Delta H_{mix}` is the average mixing enthalpies
        of all pairs of elements in the alloy

        Args:
            comp (Composition) - Composition to featurizer
        Returns:
            (float) Omega
        """

        # Special case: Elemental compound (entropy == 0 -> Omega == 1)
        if len(comp) == 1:
            return 0

        # Get the element names and fractions
        elements, fractions = zip(
            *comp.element_composition.fractional_composition.items())

        # Get the mean melting temperature
        mean_Tm = PropertyStats.mean(
            self.elem_data.get_elemental_properties(elements, "MeltingT"),
            fractions)

        # Get the mixing entropy
        entropy = np.dot(fractions, np.log(fractions)) * 8.314 / 1000

        # Get the mixing enthalpy
        enthalpy = 0
        for i, (e1, f1) in enumerate(zip(elements, fractions)):
            for e2, f2 in zip(elements[:i], fractions):
                enthalpy += f1 * f2 * self.dhf_mix.get_mixing_enthalpy(e1, e2)
        enthalpy *= 4

        # Make sure the enthalpy is nonzero
        #  The limit as dH->0 of omega is +\inf. A very small positive dH will approximate
        #  this limit without causing issues with infinite features
        enthalpy = max(1e-6, abs(enthalpy))

        return abs(mean_Tm * entropy / enthalpy)
コード例 #19
0
class ElementProperty(BaseFeaturizer):
    """
    Class to calculate elemental property attributes.

    To initialize quickly, use the from_preset() method.

    Features: Based on the statistics of the data_source chosen, computed
    by element stoichiometry. The format generally is:

    "{data source} {statistic} {property}"

    For example:

    "PymetgenData range X"  # Range of electronegativity from Pymatgen data

    For a list of all statistics, see the PropertyStats documentation; for a
    list of all attributes available for a given data_source, see the
    documentation for the data sources (e.g., PymatgenData, MagpieData,
    MatscholarElementData, etc.).

    Args:
        data_source (AbstractData or str): source from which to retrieve
            element property data (or use str for preset: "pymatgen",
            "magpie", or "deml")
        features (list of strings): List of elemental properties to use
            (these must be supported by data_source)
        stats (list of strings): a list of weighted statistics to compute to for each
            property (see PropertyStats for available stats)
    """
    def __init__(self, data_source, features, stats):
        if data_source == "pymatgen":
            self.data_source = PymatgenData()
        elif data_source == "magpie":
            self.data_source = MagpieData()
        elif data_source == "deml":
            self.data_source = DemlData()
        elif data_source == "matscholar_el":
            self.data_source = MatscholarElementData()
        elif data_source == "megnet_el":
            self.data_source = MEGNetElementData()
        else:
            self.data_source = data_source

        self.features = features
        self.stats = stats
        # Initialize stats computer
        self.pstats = PropertyStats()

    @classmethod
    def from_preset(cls, preset_name):
        """
        Return ElementProperty from a preset string
        Args:
            preset_name: (str) can be one of "magpie", "deml", "matminer",
                "matscholar_el", or "megnet_el".

        Returns:
            ElementProperty based on the preset name.
        """
        if preset_name == "magpie":
            data_source = "magpie"
            features = [
                "Number", "MendeleevNumber", "AtomicWeight", "MeltingT",
                "Column", "Row", "CovalentRadius", "Electronegativity",
                "NsValence", "NpValence", "NdValence", "NfValence", "NValence",
                "NsUnfilled", "NpUnfilled", "NdUnfilled", "NfUnfilled",
                "NUnfilled", "GSvolume_pa", "GSbandgap", "GSmagmom",
                "SpaceGroupNumber"
            ]
            stats = ["minimum", "maximum", "range", "mean", "avg_dev", "mode"]

        elif preset_name == "deml":
            data_source = "deml"
            stats = ["minimum", "maximum", "range", "mean", "std_dev"]
            features = [
                "atom_num", "atom_mass", "row_num", "col_num", "atom_radius",
                "molar_vol", "heat_fusion", "melting_point", "boiling_point",
                "heat_cap", "first_ioniz", "electronegativity", "electric_pol",
                "GGAU_Etot", "mus_fere", "FERE correction"
            ]

        elif preset_name == "matminer":
            data_source = "pymatgen"
            stats = ["minimum", "maximum", "range", "mean", "std_dev"]
            features = [
                "X", "row", "group", "block", "atomic_mass", "atomic_radius",
                "mendeleev_no", "electrical_resistivity", "velocity_of_sound",
                "thermal_conductivity", "melting_point", "bulk_modulus",
                "coefficient_of_linear_thermal_expansion"
            ]

        elif preset_name == "matscholar_el":
            data_source = "matscholar_el"
            stats = ["minimum", "maximum", "range", "mean", "std_dev"]
            features = MatscholarElementData().prop_names

        elif preset_name == "megnet_el":
            data_source = "megnet_el"
            stats = ["minimum", "maximum", "range", "mean", "std_dev"]
            features = MEGNetElementData().prop_names

        else:
            raise ValueError("Invalid preset_name specified!")

        return cls(data_source, features, stats)

    def featurize(self, comp):
        """
        Get elemental property attributes

        Args:
            comp: Pymatgen composition object

        Returns:
            all_attributes: Specified property statistics of features
        """

        all_attributes = []

        # Get the element names and fractions
        elements, fractions = zip(*comp.element_composition.items())

        for attr in self.features:
            elem_data = [
                self.data_source.get_elemental_property(e, attr)
                for e in elements
            ]

            for stat in self.stats:
                all_attributes.append(
                    self.pstats.calc_stat(elem_data, stat, fractions))

        return all_attributes

    def feature_labels(self):
        labels = []
        for attr in self.features:
            src = self.data_source.__class__.__name__
            for stat in self.stats:
                labels.append(f"{src} {stat} {attr}")
        return labels

    def citations(self):
        if self.data_source.__class__.__name__ == "MagpieData":
            citation = [
                "@article{ward_agrawal_choudary_wolverton_2016, title={A general-purpose "
                "machine learning framework for predicting properties of inorganic materials}, "
                "volume={2}, DOI={10.1038/npjcompumats.2017.28}, number={1}, journal={npj "
                "Computational Materials}, author={Ward, Logan and Agrawal, Ankit and Choudhary, "
                "Alok and Wolverton, Christopher}, year={2016}}"
            ]
        elif self.data_source.__class__.__name__ == "DemlData":
            citation = [
                "@article{deml_ohayre_wolverton_stevanovic_2016, title={Predicting density "
                "functional theory total energies and enthalpies of formation of metal-nonmetal "
                "compounds by linear regression}, volume={47}, DOI={10.1002/chin.201644254}, "
                "number={44}, journal={ChemInform}, author={Deml, Ann M. and Ohayre, Ryan and "
                "Wolverton, Chris and Stevanovic, Vladan}, year={2016}}"
            ]
        elif self.data_source.__class__.__name__ == "PymatgenData":
            citation = [
                "@article{Ong2013, author = {Ong, Shyue Ping and Richards, William Davidson and Jain, Anubhav and Hautier, "
                "Geoffroy and Kocher, Michael and Cholia, Shreyas and Gunter, Dan and Chevrier, Vincent L. and Persson, "
                "Kristin A. and Ceder, Gerbrand}, doi = {10.1016/j.commatsci.2012.10.028}, issn = {09270256}, "
                "journal = {Computational Materials Science}, month = {feb}, pages = {314--319}, "
                "publisher = {Elsevier B.V.}, title = {{Python Materials Genomics (pymatgen): A robust, open-source python "
                "library for materials analysis}}, url = {http://linkinghub.elsevier.com/retrieve/pii/S0927025612006295}, "
                "volume = {68}, year = {2013} } "
            ]
        elif self.data_source.__class__.__name__ == "MEGNetElementData":
            # TODO: Cite MEGNet publication (not preprint) once released!
            citation = [
                "@ARTICLE{2018arXiv181205055C,"
                "author = {{Chen}, Chi and {Ye}, Weike and {Zuo}, Yunxing and {Zheng}, Chen and {Ong}, Shyue Ping},"
                "title = '{Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals}',"
                "journal = {arXiv e-prints},"
                "keywords = {Condensed Matter - Materials Science, Physics - Computational Physics},"
                "year = '2018',"
                "month = 'Dec',"
                "eid = {arXiv:1812.05055},"
                "pages = {arXiv:1812.05055},"
                "archivePrefix = {arXiv},"
                "eprint = {1812.05055},"
                "primaryClass = {cond-mat.mtrl-sci},"
                "adsurl = {https://ui.adsabs.harvard.edu/\#abs/2018arXiv181205055C},"
                "adsnote = {Provided by the SAO/NASA Astrophysics Data System}}"
            ]
        else:
            citation = []
        return citation

    def implementors(self):
        return ["Jiming Chen", "Logan Ward", "Anubhav Jain", "Alex Dunn"]
コード例 #20
0
ファイル: test_stats.py プロジェクト: randomme/matminer
    def test_mode(self):
        self._run_test("mode", 1, 1, 0, 0.5)

        # Additional tests
        self.assertAlmostEqual(0, PropertyStats.mode([0, 1, 2], [1, 1, 1]))
コード例 #21
0
ファイル: test_stats.py プロジェクト: RamyaGuru/matminer
    def test_mode(self):
        self._run_test("mode", 1, 1, 0, 0.5)

        # Additional tests
        self.assertAlmostEqual(0, PropertyStats.mode([0, 1, 2], [1, 1, 1]))
コード例 #22
0
class Meredig(BaseFeaturizer):
    """
    Class to calculate features as defined in Meredig et. al.

    Features:
        Atomic fraction of each of the first 103 elements, in order of atomic number.
        17 statistics of elemental properties;
            Mean atomic weight of constituent elements
            Mean periodic table row and column number
            Mean and range of atomic number
            Mean and range of atomic radius
            Mean and range of electronegativity
            Mean number of valence electrons in each orbital
            Fraction of total valence electrons in each orbital

    """

    def __init__(self):
        self.data_source = MagpieData()

        #The labels for statistics on element properties
        self._element_property_feature_labels = [
            "mean AtomicWeight",
            "mean Column",
            "mean Row",
            "range Number",
            "mean Number",
            "range AtomicRadius",
            "mean AtomicRadius",
            "range Electronegativity",
            "mean Electronegativity"
        ]
        # Initialize stats computer
        self.pstats = PropertyStats()

    def featurize(self, comp):
        """
        Get elemental property attributes

        Args:
            comp: Pymatgen composition object

        Returns:
            all_attributes: Specified property statistics of features
        """

        # First 103 features are element fractions, we can get these from the ElementFraction featurizer
        element_fraction_features = ElementFraction().featurize(comp)

        # Next 9 features are statistics on elemental properties
        elements, fractions = zip(*comp.element_composition.items())
        element_property_features = [0] * len(self._element_property_feature_labels)

        for i,feat in enumerate(self._element_property_feature_labels):
            stat = feat.split(" ")[0]
            attr = " ".join(feat.split(" ")[1:])

            elem_data = [self.data_source.get_elemental_property(e, attr) for e in elements]
            element_property_features[i] = self.pstats.calc_stat(elem_data, stat, fractions)

        # Final 8 features are statistics on valence orbitals, available from the ValenceOrbital featurizer
        valence_orbital_features = ValenceOrbital(orbitals=("s", "p", "d", "f"), props=("avg", "frac")).featurize(comp)

        return element_fraction_features+element_property_features+valence_orbital_features

    def feature_labels(self):
        # Since we have more features than just element fractions, append 'fraction' to element symbols for clarity
        element_fraction_features = [e + " fraction" for e in ElementFraction().feature_labels()]
        valence_orbital_features = ValenceOrbital().feature_labels()
        return element_fraction_features+self._element_property_feature_labels+valence_orbital_features

    def citations(self):
        citation = [
            "@article{meredig_agrawal_kirklin_saal_doak_thompson_zhang_choudhary_wolverton_2014, title={Combinatorial "
            "screening for new materials in unconstrained composition space with machine learning}, "
            "volume={89}, DOI={10.1103/PhysRevB.89.094104}, number={1}, journal={Physical "
            "Review B}, author={B. Meredig, A. Agrawal, S. Kirklin, J. E. Saal, J. W. Doak, A. Thompson, "
            "K. Zhang, A. Choudhary, and C. Wolverton}, year={2014}}"]
        return citation

    def implementors(self):
        return ["Amalie Trewartha"]